SlideShare a Scribd company logo
1 of 53
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it  should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture PowerPoint Chapter 21 Physics: Principles with Applications, 6 th  edition Giancoli
Chapter 21 Electromagnetic Induction and Faraday’s Law
Units of Chapter 21 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Units of Chapter 21 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
21.1 Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:
21.1 Induced EMF He found no evidence when the current was steady, but did see a current induced when the switch was turned on or off.
21.1 Induced EMF Therefore, a changing magnetic field induces an emf. Faraday’s experiment used a magnetic field that was changing because the current producing it was changing; the previous graphic shows a magnetic field that is changing because the magnet is moving.
21.2 Faraday’s Law of Induction; Lenz’s Law The induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop. Magnetic flux: (21-1) Unit of magnetic flux: weber,  Wb . 1  Wb  = 1  T · m 2
This drawing shows the variables in the flux equation: 21.2 Faraday’s Law of Induction; Lenz’s Law
The magnetic flux is analogous to the electric flux – it is proportional to the total number of lines passing through the loop. 21.2 Faraday’s Law of Induction; Lenz’s Law
Faraday’s law of induction: [1 loop] (21-2a) [N loops] (21-2b) 21.2 Faraday’s Law of Induction; Lenz’s Law
The minus sign gives the direction of the induced emf: A current produced by an induced emf moves in a direction so that the magnetic field it produces tends to restore the changed field. 21.2 Faraday’s Law of Induction; Lenz’s Law
Magnetic flux will change if the area of the loop changes: 21.2 Faraday’s Law of Induction; Lenz’s Law
Magnetic flux will change if the angle between the loop and the field changes: 21.2 Faraday’s Law of Induction; Lenz’s Law
[object Object],[object Object],[object Object],[object Object],[object Object],21.2 Faraday’s Law of Induction; Lenz’s Law
21.3 EMF Induced in a Moving Conductor This image shows another way the magnetic flux can change:
21.3 EMF Induced in a Moving Conductor The induced current is in a direction that tends to slow the moving bar – it will take an external force to keep it moving.
21.3 EMF Induced in a Moving Conductor The induced emf has magnitude (21-3) Measurement of blood velocity from induced emf:
21.4 Changing Magnetic Flux Produces an Electric Field A changing magnetic flux induces an electric field; this is a generalization of Faraday’s law. The electric field will exist regardless of whether there are any conductors around.
21.5 Electric Generators A generator is the opposite of a motor – it transforms mechanical energy into electrical energy. This is an ac generator: The axle is rotated by an external force such as falling water or steam. The brushes are in constant electrical contact with the slip rings.
21.5 Electric Generators A dc generator is similar, except that it has a split-ring commutator instead of slip rings.
21.5 Electric Generators A sinusoidal emf is induced in the rotating loop ( N  is the number of turns, and  A  the area of the loop): (21-5)
21.6 Back EMF and Counter Torque; Eddy Currents An electric motor turns because there is a torque on it due to the current. We would expect the motor to accelerate unless there is some sort of drag torque. That drag torque exists, and is due to the induced emf, called a back emf.
21.6 Back EMF and Counter Torque; Eddy Currents A similar effect occurs in a generator – if it is connected to a circuit, current will flow in it, and will produce a counter torque. This means the external applied torque must increase to keep the generator turning.
21.6 Back EMF and Counter Torque; Eddy Currents Induced currents can flow in bulk material as well as through wires. These are called eddy currents, and can dramatically slow a conductor moving into or out of a magnetic field.
21.7 Transformers and Transmission of Power A transformer consists of two coils, either interwoven or linked by an iron core. A changing emf in one induces an emf in the other.  The ratio of the emfs is equal to the ratio of the number of turns in each coil: (21-6)
21.7 Transformers and Transmission of Power This is a step-up transformer – the emf in the secondary coil is larger than the emf in the primary:
21.7 Transformers and Transmission of Power Energy must be conserved; therefore, in the absence of losses, the ratio of the currents must be the inverse of the ratio of turns: (21-6)
21.7 Transformers and Transmission of Power Transformers work only if the current is changing; this is one reason why electricity is transmitted as ac.
21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI This microphone works by induction; the vibrating membrane induces an emf in the coil
21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI Differently magnetized areas on an audio tape or disk induce signals in the read/write heads.
21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI A seismograph has a fixed coil and a magnet hung on a spring (or vice versa), and records the current induced when the earth shakes.
21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI A ground fault circuit interrupter (GFCI) will interrupt the current to a circuit that has shorted out in a very short time, preventing electrocution.
21.9 Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil. (21-8a) And vice versa; note that the constant M, known as the mutual inductance, is the same: (21-8b)
21.9 Inductance Unit of inductance: the henry,  H . 1  H  = 1  V · s / A  = 1 Ω· s . A transformer is an example of mutual inductance.
21.9 Inductance A changing current in a coil will also induce an emf in itself: (21-9) Here,  L  is called the self-inductance.
21.10 Energy Stored in a Magnetic Field Just as we saw that energy can be stored in an electric field, energy can be stored in a magnetic field as well, in an inductor, for example. Analysis shows that the energy density of the field is given by: (21-10)
21.11 LR Circuit A circuit consisting of an inductor and a resistor will begin with most of the voltage drop across the inductor, as the current is changing rapidly. With time, the current will increase less and less, until all the voltage is across the resistor.
21.11 LR Circuit If the circuit is then shorted across the battery, the current will gradually decay away. where
21.12 AC Circuits and Reactance Resistors, capacitors, and inductors have different phase relationships between current and voltage when placed in an ac circuit. The current through a resistor is in phase with the voltage.
21.12 AC Circuits and Reactance The current through an inductor lags the voltage by 90 °.
21.12 AC Circuits and Reactance In a capacitor, the current leads the voltage by 90 °.
21.12 AC Circuits and Reactance Both the inductor and capacitor have an effective resistance (ratio of voltage to current), called the reactance. Inductor: Capacitor: (21-11b) (21-12b) Note that both depend on frequency.
21.13 LRC Series AC Circuit Analyzing the LRC series AC circuit is complicated, as the voltages are not in phase – this means we cannot simply add them. Furthermore, the reactances depend on the frequency.
21.13 LRC Series AC Circuit We calculate the voltage (and current) using what are called phasors – these are vectors representing the individual voltages. Here, at  t  = 0, the current and voltage are both at a maximum. As time goes on, the phasors will rotate counterclockwise.
21.13 LRC Series AC Circuit Some time  t  later, the phasors have rotated.
21.13 LRC Series AC Circuit The voltages across each device are given by the x-component of each, and the current by its x-component. The current is the same throughout the circuit.
21.13 LRC Series AC Circuit We find from the ratio of voltage to current that the effective resistance, called the impedance, of the circuit is given by: (21-15)
21.14 Resonance in AC Circuits The rms current in an ac circuit is: (21-18) Clearly,  I rms  depends on the frequency.
21.14 Resonance in AC Circuits We see that  I rms  will be a maximum when  X C  =  X L ; the frequency at which this occurs is (21-19) This is called the resonant frequency.
Summary of Chapter 21 ,[object Object],[object Object],[object Object]
Summary of Chapter 21 ,[object Object],[object Object],[object Object]
Summary of Chapter 21 ,[object Object],[object Object],[object Object]

More Related Content

What's hot

12.1 - Lenz's law
12.1  - Lenz's law12.1  - Lenz's law
12.1 - Lenz's lawsimonandisa
 
Ch37 electromagnetic induction
Ch37 electromagnetic inductionCh37 electromagnetic induction
Ch37 electromagnetic inductionDenisiu
 
Electromagnetism
ElectromagnetismElectromagnetism
ElectromagnetismFiq Syafiq
 
Magnetic field of solenoid
Magnetic field of solenoidMagnetic field of solenoid
Magnetic field of solenoidU Reshmi
 
Faraday's law's and its applications
 Faraday's law's and its applications Faraday's law's and its applications
Faraday's law's and its applicationsSayan Samanta
 
Answer 1 sir teehseen
Answer 1 sir teehseenAnswer 1 sir teehseen
Answer 1 sir teehseenWAQARAHMED586
 
Electromagnetism
ElectromagnetismElectromagnetism
ElectromagnetismKundan Parmar
 
Biot savart law & amperes law
Biot savart law & amperes lawBiot savart law & amperes law
Biot savart law & amperes lawAbbas Najam
 
Ohms Law
Ohms LawOhms Law
Ohms Lawstooty s
 
Hall sensors/working of hall sensors /hall effet ,
Hall sensors/working of hall sensors /hall effet ,Hall sensors/working of hall sensors /hall effet ,
Hall sensors/working of hall sensors /hall effet ,Shivam MısHrą
 
6 faradays law
6 faradays law6 faradays law
6 faradays lawRuben Conde
 
Kirchoff's Law
Kirchoff's LawKirchoff's Law
Kirchoff's LawWee Ping
 
Electromagnetic induction & useful applications
Electromagnetic induction & useful applicationsElectromagnetic induction & useful applications
Electromagnetic induction & useful applicationsFazle Rabbi Ador
 
Ohm’s law
Ohm’s lawOhm’s law
Ohm’s lawVijay Pratap
 
Piezoelectric effect
Piezoelectric effectPiezoelectric effect
Piezoelectric effectSri Jyothsna
 
Structure of matter(miller indices).pptx
Structure of matter(miller indices).pptxStructure of matter(miller indices).pptx
Structure of matter(miller indices).pptxRjAnik
 

What's hot (20)

12.1 - Lenz's law
12.1  - Lenz's law12.1  - Lenz's law
12.1 - Lenz's law
 
Ch37 electromagnetic induction
Ch37 electromagnetic inductionCh37 electromagnetic induction
Ch37 electromagnetic induction
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Magnetic field of solenoid
Magnetic field of solenoidMagnetic field of solenoid
Magnetic field of solenoid
 
Faraday's law's and its applications
 Faraday's law's and its applications Faraday's law's and its applications
Faraday's law's and its applications
 
Faradays law
Faradays lawFaradays law
Faradays law
 
Answer 1 sir teehseen
Answer 1 sir teehseenAnswer 1 sir teehseen
Answer 1 sir teehseen
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Biot savart law & amperes law
Biot savart law & amperes lawBiot savart law & amperes law
Biot savart law & amperes law
 
Ohms Law
Ohms LawOhms Law
Ohms Law
 
Hall sensors/working of hall sensors /hall effet ,
Hall sensors/working of hall sensors /hall effet ,Hall sensors/working of hall sensors /hall effet ,
Hall sensors/working of hall sensors /hall effet ,
 
coulombs-law.ppt
coulombs-law.pptcoulombs-law.ppt
coulombs-law.ppt
 
6 faradays law
6 faradays law6 faradays law
6 faradays law
 
Kirchoff's Law
Kirchoff's LawKirchoff's Law
Kirchoff's Law
 
Alternating current
Alternating  currentAlternating  current
Alternating current
 
Electromagnetic induction & useful applications
Electromagnetic induction & useful applicationsElectromagnetic induction & useful applications
Electromagnetic induction & useful applications
 
Ohm’s law
Ohm’s lawOhm’s law
Ohm’s law
 
Piezoelectric effect
Piezoelectric effectPiezoelectric effect
Piezoelectric effect
 
Structure of matter(miller indices).pptx
Structure of matter(miller indices).pptxStructure of matter(miller indices).pptx
Structure of matter(miller indices).pptx
 
Three phase System
Three phase SystemThree phase System
Three phase System
 

Viewers also liked

Ppa6 concep tests_ch_21
Ppa6 concep tests_ch_21Ppa6 concep tests_ch_21
Ppa6 concep tests_ch_21josoborned
 
Ppa6 lecture ch_19
Ppa6 lecture ch_19Ppa6 lecture ch_19
Ppa6 lecture ch_19josoborned
 
Ppa6 concep tests_ch_19
Ppa6 concep tests_ch_19Ppa6 concep tests_ch_19
Ppa6 concep tests_ch_19josoborned
 
Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18josoborned
 
Ppa6 lecture ch_20
Ppa6 lecture ch_20Ppa6 lecture ch_20
Ppa6 lecture ch_20josoborned
 
P P A6 Concep Tests Ch 17
P P A6  Concep Tests  Ch 17P P A6  Concep Tests  Ch 17
P P A6 Concep Tests Ch 17josoborned
 
Hp 22 win
Hp 22 winHp 22 win
Hp 22 winjosoborned
 
Ppa6 concep tests_ch_20
Ppa6 concep tests_ch_20Ppa6 concep tests_ch_20
Ppa6 concep tests_ch_20josoborned
 
Ppa6 Concep Tests Ch 16
Ppa6 Concep Tests Ch 16Ppa6 Concep Tests Ch 16
Ppa6 Concep Tests Ch 16guest21fde91d
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18josoborned
 
Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18josoborned
 
Ppa6 Lecture Ch 11
Ppa6 Lecture Ch 11Ppa6 Lecture Ch 11
Ppa6 Lecture Ch 11josoborned
 
P P A6 Lecture Ch 17
P P A6  Lecture  Ch 17P P A6  Lecture  Ch 17
P P A6 Lecture Ch 17josoborned
 
Ppa6 Concep Tests Ch 15
Ppa6 Concep Tests Ch 15Ppa6 Concep Tests Ch 15
Ppa6 Concep Tests Ch 15josoborned
 
P P A6 Lecture Ch 06
P P A6  Lecture  Ch 06P P A6  Lecture  Ch 06
P P A6 Lecture Ch 06josoborned
 
Ppa6 Lecture Ch 07
Ppa6 Lecture Ch 07Ppa6 Lecture Ch 07
Ppa6 Lecture Ch 07josoborned
 
P P A6 Concep Tests Ch 06
P P A6  Concep Tests  Ch 06P P A6  Concep Tests  Ch 06
P P A6 Concep Tests Ch 06josoborned
 
Pp Presentation Ap Physics Ch 5
Pp Presentation Ap Physics Ch 5Pp Presentation Ap Physics Ch 5
Pp Presentation Ap Physics Ch 5josoborned
 
Hp 20 win
Hp 20 winHp 20 win
Hp 20 winjosoborned
 
P P A6 Concep Tests Ch 05
P P A6  Concep Tests  Ch 05P P A6  Concep Tests  Ch 05
P P A6 Concep Tests Ch 05josoborned
 

Viewers also liked (20)

Ppa6 concep tests_ch_21
Ppa6 concep tests_ch_21Ppa6 concep tests_ch_21
Ppa6 concep tests_ch_21
 
Ppa6 lecture ch_19
Ppa6 lecture ch_19Ppa6 lecture ch_19
Ppa6 lecture ch_19
 
Ppa6 concep tests_ch_19
Ppa6 concep tests_ch_19Ppa6 concep tests_ch_19
Ppa6 concep tests_ch_19
 
Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18
 
Ppa6 lecture ch_20
Ppa6 lecture ch_20Ppa6 lecture ch_20
Ppa6 lecture ch_20
 
P P A6 Concep Tests Ch 17
P P A6  Concep Tests  Ch 17P P A6  Concep Tests  Ch 17
P P A6 Concep Tests Ch 17
 
Hp 22 win
Hp 22 winHp 22 win
Hp 22 win
 
Ppa6 concep tests_ch_20
Ppa6 concep tests_ch_20Ppa6 concep tests_ch_20
Ppa6 concep tests_ch_20
 
Ppa6 Concep Tests Ch 16
Ppa6 Concep Tests Ch 16Ppa6 Concep Tests Ch 16
Ppa6 Concep Tests Ch 16
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18
 
Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18Ppa6 concep tests_ch_18
Ppa6 concep tests_ch_18
 
Ppa6 Lecture Ch 11
Ppa6 Lecture Ch 11Ppa6 Lecture Ch 11
Ppa6 Lecture Ch 11
 
P P A6 Lecture Ch 17
P P A6  Lecture  Ch 17P P A6  Lecture  Ch 17
P P A6 Lecture Ch 17
 
Ppa6 Concep Tests Ch 15
Ppa6 Concep Tests Ch 15Ppa6 Concep Tests Ch 15
Ppa6 Concep Tests Ch 15
 
P P A6 Lecture Ch 06
P P A6  Lecture  Ch 06P P A6  Lecture  Ch 06
P P A6 Lecture Ch 06
 
Ppa6 Lecture Ch 07
Ppa6 Lecture Ch 07Ppa6 Lecture Ch 07
Ppa6 Lecture Ch 07
 
P P A6 Concep Tests Ch 06
P P A6  Concep Tests  Ch 06P P A6  Concep Tests  Ch 06
P P A6 Concep Tests Ch 06
 
Pp Presentation Ap Physics Ch 5
Pp Presentation Ap Physics Ch 5Pp Presentation Ap Physics Ch 5
Pp Presentation Ap Physics Ch 5
 
Hp 20 win
Hp 20 winHp 20 win
Hp 20 win
 
P P A6 Concep Tests Ch 05
P P A6  Concep Tests  Ch 05P P A6  Concep Tests  Ch 05
P P A6 Concep Tests Ch 05
 

Similar to Ppa6 lecture ch_21

19552135 pc-chapter-31
19552135 pc-chapter-3119552135 pc-chapter-31
19552135 pc-chapter-31Krishna Patel
 
Transformer wikipedia, the free encyclopedia
Transformer   wikipedia, the free encyclopediaTransformer   wikipedia, the free encyclopedia
Transformer wikipedia, the free encyclopediaBibek Chouhan
 
Transformer wikipedia, the free encyclopedia
Transformer   wikipedia, the free encyclopediaTransformer   wikipedia, the free encyclopedia
Transformer wikipedia, the free encyclopediaBibek Chouhan
 
Chapter 2 mukesh gurjar
Chapter 2 mukesh gurjarChapter 2 mukesh gurjar
Chapter 2 mukesh gurjarMukesh gurjar
 
PHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfPHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfrinesh2
 
electric charge and electric field
electric charge and electric fieldelectric charge and electric field
electric charge and electric fieldcandice santiago
 
electromagnetism Exam coverage.pptx
electromagnetism Exam coverage.pptxelectromagnetism Exam coverage.pptx
electromagnetism Exam coverage.pptxWalidHassan53
 
Dc generator
Dc generatorDc generator
Dc generatorMEHTA NIRAV
 
Electromagnetic induction and transformer
Electromagnetic induction and transformer Electromagnetic induction and transformer
Electromagnetic induction and transformer Nitish Prajapati
 
Eg1108 transformers
Eg1108 transformersEg1108 transformers
Eg1108 transformersVikram Singh
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionnaomizammit2003
 
Electromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxElectromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxnysa tutorial
 
Physics project abhishek
Physics project abhishekPhysics project abhishek
Physics project abhishekAbhishek Kushwaha
 
EE 8301 EMI
EE 8301 EMIEE 8301 EMI
EE 8301 EMIrmkceteee
 
Chapter1 magnetic and induction
Chapter1 magnetic and inductionChapter1 magnetic and induction
Chapter1 magnetic and inductionKhairul Azhar
 
Ac circuits 15 april 2013(1)
Ac circuits 15 april 2013(1)Ac circuits 15 april 2013(1)
Ac circuits 15 april 2013(1)Malusela Ndivhuwo
 

Similar to Ppa6 lecture ch_21 (20)

19552135 pc-chapter-31
19552135 pc-chapter-3119552135 pc-chapter-31
19552135 pc-chapter-31
 
Transformer wikipedia, the free encyclopedia
Transformer   wikipedia, the free encyclopediaTransformer   wikipedia, the free encyclopedia
Transformer wikipedia, the free encyclopedia
 
Transformer wikipedia, the free encyclopedia
Transformer   wikipedia, the free encyclopediaTransformer   wikipedia, the free encyclopedia
Transformer wikipedia, the free encyclopedia
 
Chapter 2 mukesh gurjar
Chapter 2 mukesh gurjarChapter 2 mukesh gurjar
Chapter 2 mukesh gurjar
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
PHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfPHYSICS PROJECT.pdf
PHYSICS PROJECT.pdf
 
electric charge and electric field
electric charge and electric fieldelectric charge and electric field
electric charge and electric field
 
electromagnetism Exam coverage.pptx
electromagnetism Exam coverage.pptxelectromagnetism Exam coverage.pptx
electromagnetism Exam coverage.pptx
 
Dc generator
Dc generatorDc generator
Dc generator
 
Electromagnetic induction and transformer
Electromagnetic induction and transformer Electromagnetic induction and transformer
Electromagnetic induction and transformer
 
Eg1108 transformers
Eg1108 transformersEg1108 transformers
Eg1108 transformers
 
Unidad V.ppt
Unidad V.pptUnidad V.ppt
Unidad V.ppt
 
electromagnetic induction
electromagnetic inductionelectromagnetic induction
electromagnetic induction
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
Electromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxElectromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptx
 
Physics project abhishek
Physics project abhishekPhysics project abhishek
Physics project abhishek
 
EE 8301 EMI
EE 8301 EMIEE 8301 EMI
EE 8301 EMI
 
Chapter1 magnetic and induction
Chapter1 magnetic and inductionChapter1 magnetic and induction
Chapter1 magnetic and induction
 
Ac circuits
Ac circuitsAc circuits
Ac circuits
 
Ac circuits 15 april 2013(1)
Ac circuits 15 april 2013(1)Ac circuits 15 april 2013(1)
Ac circuits 15 april 2013(1)
 

More from josoborned

Hp 21 win
Hp 21 winHp 21 win
Hp 21 winjosoborned
 
Hp 19 win
Hp 19 winHp 19 win
Hp 19 winjosoborned
 
Hp 18 win
Hp 18 winHp 18 win
Hp 18 winjosoborned
 
Hp 17 win
Hp 17 winHp 17 win
Hp 17 winjosoborned
 
Hp 16 win
Hp 16 winHp 16 win
Hp 16 winjosoborned
 
Hp 15 win
Hp 15 winHp 15 win
Hp 15 winjosoborned
 
Hp 14 win
Hp 14 winHp 14 win
Hp 14 winjosoborned
 
Physics pp presntation ch 14
Physics pp presntation ch 14Physics pp presntation ch 14
Physics pp presntation ch 14josoborned
 
Physics pp presentation ch 13
Physics pp presentation ch 13Physics pp presentation ch 13
Physics pp presentation ch 13josoborned
 
Physics pp presentation ch 12
Physics pp presentation ch 12Physics pp presentation ch 12
Physics pp presentation ch 12josoborned
 
Taking the ap physics b exam
Taking the ap physics b examTaking the ap physics b exam
Taking the ap physics b examjosoborned
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18josoborned
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18josoborned
 
Ap physics course objectives 2009 official
Ap physics course objectives 2009 officialAp physics course objectives 2009 official
Ap physics course objectives 2009 officialjosoborned
 
Physics Pp Presentation Ch 11
Physics Pp Presentation Ch 11Physics Pp Presentation Ch 11
Physics Pp Presentation Ch 11josoborned
 
Physics P P Presentation Ch 10
Physics  P P  Presentation  Ch 10Physics  P P  Presentation  Ch 10
Physics P P Presentation Ch 10josoborned
 
P P A6 Concep Tests Ch 15
P P A6  Concep Tests  Ch 15P P A6  Concep Tests  Ch 15
P P A6 Concep Tests Ch 15josoborned
 

More from josoborned (17)

Hp 21 win
Hp 21 winHp 21 win
Hp 21 win
 
Hp 19 win
Hp 19 winHp 19 win
Hp 19 win
 
Hp 18 win
Hp 18 winHp 18 win
Hp 18 win
 
Hp 17 win
Hp 17 winHp 17 win
Hp 17 win
 
Hp 16 win
Hp 16 winHp 16 win
Hp 16 win
 
Hp 15 win
Hp 15 winHp 15 win
Hp 15 win
 
Hp 14 win
Hp 14 winHp 14 win
Hp 14 win
 
Physics pp presntation ch 14
Physics pp presntation ch 14Physics pp presntation ch 14
Physics pp presntation ch 14
 
Physics pp presentation ch 13
Physics pp presentation ch 13Physics pp presentation ch 13
Physics pp presentation ch 13
 
Physics pp presentation ch 12
Physics pp presentation ch 12Physics pp presentation ch 12
Physics pp presentation ch 12
 
Taking the ap physics b exam
Taking the ap physics b examTaking the ap physics b exam
Taking the ap physics b exam
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18
 
Ppa6 lecture ch_18
Ppa6 lecture ch_18Ppa6 lecture ch_18
Ppa6 lecture ch_18
 
Ap physics course objectives 2009 official
Ap physics course objectives 2009 officialAp physics course objectives 2009 official
Ap physics course objectives 2009 official
 
Physics Pp Presentation Ch 11
Physics Pp Presentation Ch 11Physics Pp Presentation Ch 11
Physics Pp Presentation Ch 11
 
Physics P P Presentation Ch 10
Physics  P P  Presentation  Ch 10Physics  P P  Presentation  Ch 10
Physics P P Presentation Ch 10
 
P P A6 Concep Tests Ch 15
P P A6  Concep Tests  Ch 15P P A6  Concep Tests  Ch 15
P P A6 Concep Tests Ch 15
 

Recently uploaded

The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 đź’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 đź’ž Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 đź’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 đź’ž Full Nigh...Pooja Nehwal
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Recently uploaded (20)

The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 đź’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 đź’ž Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 đź’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 đź’ž Full Nigh...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

Ppa6 lecture ch_21

  • 1. © 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture PowerPoint Chapter 21 Physics: Principles with Applications, 6 th edition Giancoli
  • 2. Chapter 21 Electromagnetic Induction and Faraday’s Law
  • 3.
  • 4.
  • 5. 21.1 Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:
  • 6. 21.1 Induced EMF He found no evidence when the current was steady, but did see a current induced when the switch was turned on or off.
  • 7. 21.1 Induced EMF Therefore, a changing magnetic field induces an emf. Faraday’s experiment used a magnetic field that was changing because the current producing it was changing; the previous graphic shows a magnetic field that is changing because the magnet is moving.
  • 8. 21.2 Faraday’s Law of Induction; Lenz’s Law The induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop. Magnetic flux: (21-1) Unit of magnetic flux: weber, Wb . 1 Wb = 1 T · m 2
  • 9. This drawing shows the variables in the flux equation: 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 10. The magnetic flux is analogous to the electric flux – it is proportional to the total number of lines passing through the loop. 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 11. Faraday’s law of induction: [1 loop] (21-2a) [N loops] (21-2b) 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 12. The minus sign gives the direction of the induced emf: A current produced by an induced emf moves in a direction so that the magnetic field it produces tends to restore the changed field. 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 13. Magnetic flux will change if the area of the loop changes: 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 14. Magnetic flux will change if the angle between the loop and the field changes: 21.2 Faraday’s Law of Induction; Lenz’s Law
  • 15.
  • 16. 21.3 EMF Induced in a Moving Conductor This image shows another way the magnetic flux can change:
  • 17. 21.3 EMF Induced in a Moving Conductor The induced current is in a direction that tends to slow the moving bar – it will take an external force to keep it moving.
  • 18. 21.3 EMF Induced in a Moving Conductor The induced emf has magnitude (21-3) Measurement of blood velocity from induced emf:
  • 19. 21.4 Changing Magnetic Flux Produces an Electric Field A changing magnetic flux induces an electric field; this is a generalization of Faraday’s law. The electric field will exist regardless of whether there are any conductors around.
  • 20. 21.5 Electric Generators A generator is the opposite of a motor – it transforms mechanical energy into electrical energy. This is an ac generator: The axle is rotated by an external force such as falling water or steam. The brushes are in constant electrical contact with the slip rings.
  • 21. 21.5 Electric Generators A dc generator is similar, except that it has a split-ring commutator instead of slip rings.
  • 22. 21.5 Electric Generators A sinusoidal emf is induced in the rotating loop ( N is the number of turns, and A the area of the loop): (21-5)
  • 23. 21.6 Back EMF and Counter Torque; Eddy Currents An electric motor turns because there is a torque on it due to the current. We would expect the motor to accelerate unless there is some sort of drag torque. That drag torque exists, and is due to the induced emf, called a back emf.
  • 24. 21.6 Back EMF and Counter Torque; Eddy Currents A similar effect occurs in a generator – if it is connected to a circuit, current will flow in it, and will produce a counter torque. This means the external applied torque must increase to keep the generator turning.
  • 25. 21.6 Back EMF and Counter Torque; Eddy Currents Induced currents can flow in bulk material as well as through wires. These are called eddy currents, and can dramatically slow a conductor moving into or out of a magnetic field.
  • 26. 21.7 Transformers and Transmission of Power A transformer consists of two coils, either interwoven or linked by an iron core. A changing emf in one induces an emf in the other. The ratio of the emfs is equal to the ratio of the number of turns in each coil: (21-6)
  • 27. 21.7 Transformers and Transmission of Power This is a step-up transformer – the emf in the secondary coil is larger than the emf in the primary:
  • 28. 21.7 Transformers and Transmission of Power Energy must be conserved; therefore, in the absence of losses, the ratio of the currents must be the inverse of the ratio of turns: (21-6)
  • 29. 21.7 Transformers and Transmission of Power Transformers work only if the current is changing; this is one reason why electricity is transmitted as ac.
  • 30. 21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI This microphone works by induction; the vibrating membrane induces an emf in the coil
  • 31. 21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI Differently magnetized areas on an audio tape or disk induce signals in the read/write heads.
  • 32. 21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI A seismograph has a fixed coil and a magnet hung on a spring (or vice versa), and records the current induced when the earth shakes.
  • 33. 21.8 Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI A ground fault circuit interrupter (GFCI) will interrupt the current to a circuit that has shorted out in a very short time, preventing electrocution.
  • 34. 21.9 Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil. (21-8a) And vice versa; note that the constant M, known as the mutual inductance, is the same: (21-8b)
  • 35. 21.9 Inductance Unit of inductance: the henry, H . 1 H = 1 V · s / A = 1 Ω· s . A transformer is an example of mutual inductance.
  • 36. 21.9 Inductance A changing current in a coil will also induce an emf in itself: (21-9) Here, L is called the self-inductance.
  • 37. 21.10 Energy Stored in a Magnetic Field Just as we saw that energy can be stored in an electric field, energy can be stored in a magnetic field as well, in an inductor, for example. Analysis shows that the energy density of the field is given by: (21-10)
  • 38. 21.11 LR Circuit A circuit consisting of an inductor and a resistor will begin with most of the voltage drop across the inductor, as the current is changing rapidly. With time, the current will increase less and less, until all the voltage is across the resistor.
  • 39. 21.11 LR Circuit If the circuit is then shorted across the battery, the current will gradually decay away. where
  • 40. 21.12 AC Circuits and Reactance Resistors, capacitors, and inductors have different phase relationships between current and voltage when placed in an ac circuit. The current through a resistor is in phase with the voltage.
  • 41. 21.12 AC Circuits and Reactance The current through an inductor lags the voltage by 90 °.
  • 42. 21.12 AC Circuits and Reactance In a capacitor, the current leads the voltage by 90 °.
  • 43. 21.12 AC Circuits and Reactance Both the inductor and capacitor have an effective resistance (ratio of voltage to current), called the reactance. Inductor: Capacitor: (21-11b) (21-12b) Note that both depend on frequency.
  • 44. 21.13 LRC Series AC Circuit Analyzing the LRC series AC circuit is complicated, as the voltages are not in phase – this means we cannot simply add them. Furthermore, the reactances depend on the frequency.
  • 45. 21.13 LRC Series AC Circuit We calculate the voltage (and current) using what are called phasors – these are vectors representing the individual voltages. Here, at t = 0, the current and voltage are both at a maximum. As time goes on, the phasors will rotate counterclockwise.
  • 46. 21.13 LRC Series AC Circuit Some time t later, the phasors have rotated.
  • 47. 21.13 LRC Series AC Circuit The voltages across each device are given by the x-component of each, and the current by its x-component. The current is the same throughout the circuit.
  • 48. 21.13 LRC Series AC Circuit We find from the ratio of voltage to current that the effective resistance, called the impedance, of the circuit is given by: (21-15)
  • 49. 21.14 Resonance in AC Circuits The rms current in an ac circuit is: (21-18) Clearly, I rms depends on the frequency.
  • 50. 21.14 Resonance in AC Circuits We see that I rms will be a maximum when X C = X L ; the frequency at which this occurs is (21-19) This is called the resonant frequency.
  • 51.
  • 52.
  • 53.