Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
© 2014 MapR Technologies 1© 2014 MapR Technologies
The Internet of Things and Big Data: Intro
© 2014 MapR Technologies 2
What This Is; What This Is Not
• It’s not specific to IoT
– It’s not about any specific type of...
© 2014 MapR Technologies 3
© 2014 MapR Technologies 4
© 2014 MapR Technologies 5
When Does Data Become ―Big?‖
• When the size of the data, itself, becomes a problem
• When the ...
© 2014 MapR Technologies 6
C’mon! What does that mean in size?
• Not gigabytes
• Most likely not a few terabytes
• Possibl...
© 2014 MapR Technologies 7
So How Do We Handle Big Data?
• Distribute & parallelize!
© 2014 MapR Technologies 8
MPP Analytic Databases or Hadoop
© 2014 MapR Technologies 9
Big Data Analytics
Bridging classic & big data worlds
“Capture only what’s needed”
SQL performa...
© 2014 MapR Technologies 10
Philosophical Differences
Traditional Methods
• More power
• Summarize data
• Transform and st...
© 2014 MapR Technologies 11
answer = f(all data)
• Save all raw data
• Data immutability
• Transform as needed
• Result is...
© 2014 MapR Technologies 12
Q&A
@mapr maprtech
jberns@mapr.com
Engage with us!
MapR
maprtech
mapr-technologies
© 2014 MapR Technologies 13© 2014 MapR Technologies
Iot and Big Data:
Hadoop as a Data Platform
© 2014 MapR Technologies 14
Hadoop: The Disruptive Technology at the Core of Big Data
© 2014 MapR Technologies 15
Forces of Adoption
Hadoop TAM comes from disrupting enterprise data warehouse and storage spen...
© 2014 MapR Technologies 16© 2014 MapR Technologies
Hadoop 101 (External Presentation)
© 2014 MapR Technologies 17© 2014 MapR Technologies
Hadoop Hardware
© 2014 MapR Technologies 18
Typical Compute Node
• Two CPUs, each with 4-8 cores per CPU
• 32-128 GB Memory
• 6-24 hard di...
© 2014 MapR Technologies 19© 2014 MapR Technologies
Hadoop Ecosystem
© 2014 MapR Technologies 20
Ecosystem of Projects Built of Hadoop
© 2014 MapR Technologies 21© 2014 MapR Technologies
SQL On Hadoop
© 2014 MapR Technologies 22
SQL on Hadoop
• Generally data has no inherent ―schema‖
• Schema is defined by user / interpre...
© 2014 MapR Technologies 23
Key Use Cases
• Exploratory analysis on large
scale raw data
• Unknown value
• No defined sche...
© 2014 MapR Technologies 24
What is Driving the Need for SQL-on-Hadoop?
Organizations are looking for
• Reuse existing too...
© 2014 MapR Technologies 25
Drill 1.0 Hive 0.13 with Tez Impala 1.x Presto 0.56 Shark 0.8 Vertica
Latency Low Medium Low L...
© 2014 MapR Technologies 26
ENTERPRISE
DATA HUB
MARKETING
ANALYTICS
RISK
ANALYTICS
OPERATIONS
INTELLIGENCE
• Multi-structu...
© 2014 MapR Technologies 27© 2014 MapR Technologies
Other Tools & Frameworks of Note
© 2014 MapR Technologies 28
Pig
• Procedural Language
• Loops, if-then statements
© 2014 MapR Technologies 29
• Map Reduce Framwork
• Lingual: SQL-like operations
• Pattern: Machine Learning Applications
...
© 2014 MapR Technologies 30
• Python, Scala and Java
• Spark powers a stack of high-level tools including
– Shark for SQL,...
© 2014 MapR Technologies 31
• Machine Learning / Predictive Analytics
– Collaborative Filtering
– Linear / Logistic Regres...
© 2014 MapR Technologies 32
• Database on Hadoop
• Highly scalable
• Columnar – Flexible schema
• Data source for Map Redu...
© 2014 MapR Technologies 33
Q&A
@mapr maprtech
jberns@mapr.com
Engage with us!
MapR
maprtech
mapr-technologies
© 2014 MapR Technologies 34© 2014 MapR Technologies
Iot and Big Data:
Architectures & Use Cases
© 2014 MapR Technologies 35© 2014 MapR Technologies
NoSQL
© 2014 MapR Technologies 36
NoSQL Databases
• No-SQL or ―Not only‖ SQL
• Give up some of the functionality of traditional ...
© 2014 MapR Technologies 37
HBase
© 2014 MapR Technologies 38© 2014 MapR Technologies
Queues
© 2014 MapR Technologies 39
Queues
• Just like a queue at an amusement park
• First-in-first out
• Queues messages or even...
© 2014 MapR Technologies 40
Message Queue
© 2014 MapR Technologies 41© 2014 MapR Technologies
Stream Processing
© 2014 MapR Technologies 42
Stream Processing
• Handles data at high velocity
• If Hadoop is the ocean, streams are the fi...
© 2014 MapR Technologies 43
Storm
© 2014 MapR Technologies 44© 2014 MapR Technologies
Batch Processing
© 2014 MapR Technologies 45© 2014 MapR Technologies
Combination Architectures
© 2014 MapR Technologies 46
Lambda Architecture
© 2014 MapR Technologies 47
Complex Architectures Using Many Big Data Technologies
© 2014 MapR Technologies 48
Wanna Play?
• http://www.mapr.com/products/mapr-sandbox-hadoop
© 2014 MapR Technologies 49
Q&A
@mapr maprtech
jberns@mapr.com
Engage with us!
MapR
maprtech
mapr-technologies
Nächste SlideShare
Wird geladen in …5
×
Nächste SlideShare
IOT and Big Data - The Perfect Marriage
Weiter
Herunterladen, um offline zu lesen und im Vollbildmodus anzuzeigen.

59

Teilen

Herunterladen, um offline zu lesen

IoT and Big Data - Iot Asia 2014

Herunterladen, um offline zu lesen

Presented at IoT Asia 2014 Workshop

Ähnliche Bücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Ähnliche Hörbücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

IoT and Big Data - Iot Asia 2014

  1. 1. © 2014 MapR Technologies 1© 2014 MapR Technologies The Internet of Things and Big Data: Intro
  2. 2. © 2014 MapR Technologies 2 What This Is; What This Is Not • It’s not specific to IoT – It’s not about any specific type of data or protocol – It’s not specific to any particular industry • It’s about processing big data – IoT data can be big data – IoT might be the biggest data of the coming decade – But it’s just big data – Same strategies & technologies apply
  3. 3. © 2014 MapR Technologies 3
  4. 4. © 2014 MapR Technologies 4
  5. 5. © 2014 MapR Technologies 5 When Does Data Become ―Big?‖ • When the size of the data, itself, becomes a problem • When the ―old way‖ of processing data just doesn’t work effectively • It’s ―big‖ when we have to rethink: – How we store that much data – How we move that much data – How we extract, load & transform that much data – How we explore and analyze that much data – How we process and get meaningful insights from that much data
  6. 6. © 2014 MapR Technologies 6 C’mon! What does that mean in size? • Not gigabytes • Most likely not a few terabytes • Possibly not 10’s of terabytes • Probably 100’s of terabytes • Definitely petabytes
  7. 7. © 2014 MapR Technologies 7 So How Do We Handle Big Data? • Distribute & parallelize!
  8. 8. © 2014 MapR Technologies 8 MPP Analytic Databases or Hadoop
  9. 9. © 2014 MapR Technologies 9 Big Data Analytics Bridging classic & big data worlds “Capture only what’s needed” SQL performance and structure Hadoop scale and flexibility IT delivers a platform for storing, refining, and analyzing all data sources Business explores data for questions worth answering Big Data Method Multi-structured & iterative analysis IT structures the data to answer those questions Business determines what questions to ask Classic Method Structured & Repeatable Analysis “Capture in case it’s needed”
  10. 10. © 2014 MapR Technologies 10 Philosophical Differences Traditional Methods • More power • Summarize data • Transform and store • Pre-defined schema • Move data -> compute • Less data / more complex algorithms Big Data • More machines • Keep all data • Transform on demand • Flexible / no schema • Move compute -> data • Mode data / simple algorithms
  11. 11. © 2014 MapR Technologies 11 answer = f(all data) • Save all raw data • Data immutability • Transform as needed • Result is based on the raw data
  12. 12. © 2014 MapR Technologies 12 Q&A @mapr maprtech jberns@mapr.com Engage with us! MapR maprtech mapr-technologies
  13. 13. © 2014 MapR Technologies 13© 2014 MapR Technologies Iot and Big Data: Hadoop as a Data Platform
  14. 14. © 2014 MapR Technologies 14 Hadoop: The Disruptive Technology at the Core of Big Data
  15. 15. © 2014 MapR Technologies 15 Forces of Adoption Hadoop TAM comes from disrupting enterprise data warehouse and storage spending Data IT Budgets • Gartner, "Forecast Analysis: Enterprise IT Spending by Vertical Industry Market, Worldwide, 2010-2016, 3Q12 Update.― • Wall Street Journal, ―Financial Services Companies Firms See Results from Big Data Push‖, Jan. 27, 2014 $9,000 $40,000 <$1,000 2013 ENTERPRISE STORAGE IT BUDGETS GROWING AT 2.5% 2014 2015 2016 2017 DATABASE WAREHOUSE DATA GROWING AT 40% $ PER TERABYTE HADOOP
  16. 16. © 2014 MapR Technologies 16© 2014 MapR Technologies Hadoop 101 (External Presentation)
  17. 17. © 2014 MapR Technologies 17© 2014 MapR Technologies Hadoop Hardware
  18. 18. © 2014 MapR Technologies 18 Typical Compute Node • Two CPUs, each with 4-8 cores per CPU • 32-128 GB Memory • 6-24 hard disks • 2-4 10GB Network cards
  19. 19. © 2014 MapR Technologies 19© 2014 MapR Technologies Hadoop Ecosystem
  20. 20. © 2014 MapR Technologies 20 Ecosystem of Projects Built of Hadoop
  21. 21. © 2014 MapR Technologies 21© 2014 MapR Technologies SQL On Hadoop
  22. 22. © 2014 MapR Technologies 22 SQL on Hadoop • Generally data has no inherent ―schema‖ • Schema is defined by user / interpreted from structure • Schema is applied during processing • One file can have many schemas applied • Works for many kinds of data—but not all – Temperature sensor data? Sure – Video feeds? Not really
  23. 23. © 2014 MapR Technologies 23 Key Use Cases • Exploratory analysis on large scale raw data • Unknown value • No defined schema • Variety of data types • Large-scale SQL queries on long history • Well defined schema • Known value, but high cost in existing systems 2 Big Data Analysis Big Data Exploration
  24. 24. © 2014 MapR Technologies 24 What is Driving the Need for SQL-on-Hadoop? Organizations are looking for • Reuse existing tools and skills to unlock Hadoop data to broader audience • Analysis on new types of data • More complete data analysis • More up-to-date and real-time data analysis (not just ―after the fact‖)
  25. 25. © 2014 MapR Technologies 25 Drill 1.0 Hive 0.13 with Tez Impala 1.x Presto 0.56 Shark 0.8 Vertica Latency Low Medium Low Low Medium Low Files Yes (all Hive file formats) Yes (all Hive file formats) Yes (Parquet, Sequence, …) Yes (RC, Sequence, Text) Yes (all Hive file formats) Yes (all Hive file formats) HBase/M7 Yes Yes Various issues No Yes No Schema Hive or schema- less Hive Hive Hive Hive Proprietary or Hive SQL support ANSI SQL HiveQL HiveQL (subset) ANSI SQL HiveQL ANSI SQL + advanced analytics Client support ODBC/JDBC ODBC/JDBC ODBC/JDBC ODBC/JDBC ODBC/JDBC ODBC/JDBC, ADO.NET, … Large joins Yes Yes No No No Yes Nested data Yes Limited No Limited Limited Limited Hive UDFs Yes Yes Limited No Yes No Transactions No No No No No Yes Optimizer Limited Limited Limited Limited Limited Yes Concurrency Limited Limited Limited Limited Limited Yes SQL on Hadoop: Many Options Flexibility to choose when to use which based on use case
  26. 26. © 2014 MapR Technologies 26 ENTERPRISE DATA HUB MARKETING ANALYTICS RISK ANALYTICS OPERATIONS INTELLIGENCE • Multi-structured data staging & archive • ETL / DW optimization • Mainframe optimization • Data exploration • Recommendation engines & targeting • Ad optimization • Pricing analysis • Lead scoring • Network security monitoring • Security information & event management • Fraudulent behavioral analysis • Supply chain & logistics • System log analysis • Manufacturing quality assurance • Preventative maintenance • Sensor analysis Proven Hadoop Production Success
  27. 27. © 2014 MapR Technologies 27© 2014 MapR Technologies Other Tools & Frameworks of Note
  28. 28. © 2014 MapR Technologies 28 Pig • Procedural Language • Loops, if-then statements
  29. 29. © 2014 MapR Technologies 29 • Map Reduce Framwork • Lingual: SQL-like operations • Pattern: Machine Learning Applications • Scalding: Cascading for Scala • Cascalog: Cascading for Clojure
  30. 30. © 2014 MapR Technologies 30 • Python, Scala and Java • Spark powers a stack of high-level tools including – Shark for SQL, – MLlib for machine learning, – GraphX, and – Spark Streaming. • You can combine these frameworks seamlessly in the same application.
  31. 31. © 2014 MapR Technologies 31 • Machine Learning / Predictive Analytics – Collaborative Filtering – Linear / Logistic Regression – Naïve Bayes – Random Forests – K-Mean Clustering – Canopy Clustering – Principal Component Analysis
  32. 32. © 2014 MapR Technologies 32 • Database on Hadoop • Highly scalable • Columnar – Flexible schema • Data source for Map Reduce and Spark jobs
  33. 33. © 2014 MapR Technologies 33 Q&A @mapr maprtech jberns@mapr.com Engage with us! MapR maprtech mapr-technologies
  34. 34. © 2014 MapR Technologies 34© 2014 MapR Technologies Iot and Big Data: Architectures & Use Cases
  35. 35. © 2014 MapR Technologies 35© 2014 MapR Technologies NoSQL
  36. 36. © 2014 MapR Technologies 36 NoSQL Databases • No-SQL or ―Not only‖ SQL • Give up some of the functionality of traditional relational databases for speed and scalability • Types – Key-Value – Columnar – Document – Graph • NoSQL databases favor flexible schemas
  37. 37. © 2014 MapR Technologies 37 HBase
  38. 38. © 2014 MapR Technologies 38© 2014 MapR Technologies Queues
  39. 39. © 2014 MapR Technologies 39 Queues • Just like a queue at an amusement park • First-in-first out • Queues messages or events
  40. 40. © 2014 MapR Technologies 40 Message Queue
  41. 41. © 2014 MapR Technologies 41© 2014 MapR Technologies Stream Processing
  42. 42. © 2014 MapR Technologies 42 Stream Processing • Handles data at high velocity • If Hadoop is the ocean, streams are the firehose • Processing in near real-time
  43. 43. © 2014 MapR Technologies 43 Storm
  44. 44. © 2014 MapR Technologies 44© 2014 MapR Technologies Batch Processing
  45. 45. © 2014 MapR Technologies 45© 2014 MapR Technologies Combination Architectures
  46. 46. © 2014 MapR Technologies 46 Lambda Architecture
  47. 47. © 2014 MapR Technologies 47 Complex Architectures Using Many Big Data Technologies
  48. 48. © 2014 MapR Technologies 48 Wanna Play? • http://www.mapr.com/products/mapr-sandbox-hadoop
  49. 49. © 2014 MapR Technologies 49 Q&A @mapr maprtech jberns@mapr.com Engage with us! MapR maprtech mapr-technologies
  • DawnDolcyPhD

    Dec. 11, 2017
  • WilleamMah

    Oct. 17, 2017
  • 2scorpian

    May. 14, 2017
  • shijielee

    Feb. 14, 2016
  • longfei.dong

    Nov. 23, 2015
  • abhtia

    Jul. 5, 2015
  • luchetb

    Jun. 21, 2015
  • landz

    Jun. 15, 2015
  • utahung

    Jun. 14, 2015
  • BaojianZheng

    Jun. 2, 2015
  • Mohamedbouchehab

    Jun. 1, 2015
  • Tomz

    May. 30, 2015
  • sadebola

    May. 24, 2015
  • THLIN1

    May. 23, 2015
  • leosace

    Apr. 30, 2015
  • yakki0320

    Apr. 23, 2015
  • sallyamohamed90

    Apr. 10, 2015
  • storyjiho

    Apr. 9, 2015
  • SuhwanRim

    Apr. 8, 2015
  • MonetChiang

    Apr. 6, 2015

Presented at IoT Asia 2014 Workshop

Aufrufe

Aufrufe insgesamt

13.731

Auf Slideshare

0

Aus Einbettungen

0

Anzahl der Einbettungen

101

Befehle

Downloads

1.217

Geteilt

0

Kommentare

0

Likes

59

×