Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Journal oftheFranklinInstitute348(2011)300–314 
A robustvectorcontrolforinductionmotordrives 
with anadaptivesliding-modec...
a simplercontrol.Besides,ACmachinespresentedsomedisadvantagesincomparisonwith 
DC ones,ashighercost,higherrotorinertiaand ...
variations,externaldisturbance rejection andfastdynamicresponse [20]. Theseadvantagesof 
the sliding-modecontrolmaybeemplo...
greatlysimplifiesthecontrollerdesign.Moreover,thisupperboundcanbeunknownand 
can bevariablealongthetimebecausetheslidingga...
The angle ye of therotorfluxvector(cr ) inrelationtothe d-axisofthestationaryframe 
is definedasfollows: 
ye ¼ arctan 
cqr...
Using thefield-orientationcontrolprinciple [3] the currentcomponent ids 
e is alignedin 
the directionoftherotorfluxvector...
where theparametersaredefinedas 
a ¼ 
B 
J 
; b ¼ 
KT 
J 
; f ¼ 
TL 
J 
ð17Þ 
Now,wearegoingtoconsiderthepreviousmechanica...
wherethe k is thegaindefinedpreviously, ^b 
is theestimatedswitchinggain, g is apositive 
constant, S is theslidingvariabl...
then 
_V 
ðtÞr0 ð30Þ 
It shouldbenotedthatEqs.(23),(20),(25)and(26),andtheassumptions ðA2Þ and ðA3Þ 
have beenusedinthepro...
4. Simulationresults 
In thissectionwewillstudythespeedregulationperformanceoftheproposedadaptive 
sliding-modefieldorient...
100 rad/s,thentherotorspeedismaintainedconstantandafter,attime1.3s,therotor 
deceleratesuntiltherotorspeedis80rad/s.Inthis...
this conditionattime t=2.3 sduetothetorqueincrementwhich,inturn,producesan 
incrementinthesystemuncertaintiesthatcannotbec...
Fig. 7 shows themotortorque.Asinthecaseofthecurrent(Fig. 6), themotortorque 
has ahighinitialvalueinthespeedaccelerationzo...
estimatorisbasedonstatorvoltageequationsandrotorfluxequationsinthestationary 
referenceframe.Itisproposedasavariablestruct...
[14] M.Montazeri-Gh,A.Poursamad,B.Ghalichi,Applicationofgeneticalgorithmforoptimizationofcontrol 
strategy inparallelhybri...
Nächste SlideShare
Wird geladen in …5
×

A robust vector control for induction motor drives with an adaptive sliding mode control law

A robust vector control for induction motor

  • Loggen Sie sich ein, um Kommentare anzuzeigen.

  • Gehören Sie zu den Ersten, denen das gefällt!

A robust vector control for induction motor drives with an adaptive sliding mode control law

  1. 1. Journal oftheFranklinInstitute348(2011)300–314 A robustvectorcontrolforinductionmotordrives with anadaptivesliding-modecontrollaw Oscar Barambonesa,, PatxiAlkortab aDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeVitoria,UniversidaddelPa´ıs Vasco,Nievescano12,01006 Vitoria, Spain bDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeEibar,UniversidaddelPa´ıs Vasco,Avda.Otaola,2920600 Eibar (Gipuzkoa) Received 4January2010;receivedinrevisedform24November2010;accepted30November2010 Available online7December2010 Abstract A noveladaptivesliding-modecontrolsystemisproposedinordertocontrolthespeedofan induction motordrive.Thisdesignemploystheso-calledvector(orfieldoriented)controltheoryfor the inductionmotordrives.Thesliding-modecontrolisinsensitivetouncertaintiesandpresentsan adaptive switchinggaintorelaxtherequirementfortheboundoftheseuncertainties.Theswitching gain isadaptedusingasimplealgorithmwhichdoesnotimplyahighcomputationalload.Stability analysis basedonLyapunovtheoryisalsoperformedinordertoguaranteetheclosedloopstability. Finally, simulationresultsshownotonlythattheproposedcontrollerprovideshigh-performance dynamic characteristics,butalsothatthisschemeisrobustwithrespecttoplantparametervariations and externalloaddisturbances. 2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction The inductionmotorisacomplexstructurethatconvertselectricalenergy intomechanical energy. Althoughinductionmachineswereintroducedmorethanahundredyearsago,the researchanddevelopmentinthisareaappearsto benever-ending.Traditionally,ACmachines with aconstantfrequencysinusoidalpower supplyhavebeenusedinconstant-speed applications, whereasDC machineswerepreferredforvariablespeeddrives,sincetheypresent www.elsevier.com/locate/jfranklin 0016-0032/$32.00 2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. doi:10.1016/j.jfranklin.2010.11.008 Correspondingauthor.Tel.: þ34 945013235;fax: þ34 945013270. E-mail address: ispbacao@ehu.es(O.Barambones).
  2. 2. a simplercontrol.Besides,ACmachinespresentedsomedisadvantagesincomparisonwith DC ones,ashighercost,higherrotorinertiaand maintenanceproblems.Nevertheless,inthe last twoorthreedecadeswehaveseenextensiveresearchanddevelopmenteffortsinvariable- frequency,variable-speedAC machinedrivestechnology [1], whichhaveovercomesomeofthe abovedisadvantagesoftheACmotors. The developmentoffieldorientedcontrolinthebeginningof1970smadeitfeasibleto control theinductionmotorasaseparatelyexcitedDCmotor [1–3]. Inthissense,thefield- orientedtechniqueguaranteesthedecouplingoftorqueandfluxcontrolcommandsforthe inductionmotor.Thismeansthatwhenthefluxisgovernedbymeansofcontrollingthe current id, thetorqueisnotaffected.Similarly,whenthetorqueisgovernedbycontrolling the current iq, thefluxisnotaffectedand,therefore,itcanbeachievedtransientresponse as fastasinthecaseofDCmachines. On theotherhand,whendealingwithindirectfield-orientedcontrolofinduction motors,aknowledgeofrotorspeedisrequiredinordertoorienttheinjectedstatorcurrent vector andtoestablishanadequatespeedfeedbackcontrol.Althoughtheuseofaflux estimatorindirectfieldorientedcontroleliminatestheneedofthespeedsensorinorderto orient theinjectedstatorcurrentvector,thismethodisnotpractical.Thisisbecausethe flux estimatordoesnotworkproperlyinalowspeedregion.Thefluxestimatorpresentsa pole ontheoriginofthe S plane (pureintegrator),andthereforeitisverysensitivetothe offset ofthevoltagesensorandtheparametervariations. However,thespeedorpositionsensorofinductionmotorstilllimitsitsapplicationsto somespecialenvironmentsnotonlyduetothedifficultiesofmountingthesensor,butalso becauseoftheneedoflowcostandreliablesystems.Theresearchanddevelopmentworkon a sensorlessdriverfortheACmotorisprogressinggreatly.Muchworkhasbeendoneusing thefieldorientedbasedmethodapproach [4–7]. Intheseschemesthespeedisobtainedbased onthemeasurementofstatorvoltagesandcurrents.Ontheotherhand,theinductionmotor modelcanbeobtainedusingaNeuralNetworkapproach.IntheworkofAlanisetal. [8] a discrete-timenonlinearsystemidentificationviarecurrenthighorderneuralnetworksis proposed.Inthisworkasixth-orderdiscrete-timeinductionmotormodelinthestatorfixed referenceframeiscalculatedusingtheproposedrecurrentneuralnetworksscheme. Nevertheless,therobustnesstoparametervariationsandloaddisturbancesinthe inductionmachinesstilldeservestobefurtherstudiedand,inparticular,specialattention should bepaidtothelowspeedregiontransients. Thus, theperformanceofthefieldorientedcontrolstronglydependsonuncertainties, which areusuallyduetounknownparameters,parametervariations,externalload disturbances,unmodelledandnonlineardynamics,etc.Therefore,manystudieshavebeen made onthemotordrivesinordertopreservetheperformanceundertheseparameter variationsandexternalloaddisturbances,suchasnonlinearcontrol,optimalcontrol, variablestructuresystemcontrol,adaptivecontrol,neuralcontrolandfuzzycontrol [9–13]. Recently,thegeneticalgorithmapproachhasalsobeenusedinordertocontrolthe electric motors.TheworkofMontazeri-Ghetal. [14], describestheapplicationofthe geneticalgorithmfortheoptimizationofthecontrolparametersinparallelhybridelectric vehiclesdrivenbyanelectricinductionmachine. To overcometheabovesystemuncertainties,the variablestructurecontrolstrategyusing the sliding-modehasbeenfocussedonmanystudiesandresearchforthecontroloftheAC servo drivesysteminthepastdecade [15–19]. Thesliding-modecontrolcanoffermanygood properties,suchasgoodperformanceagainstunmodelled dynamics,insensitivitytoparameter O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 301
  3. 3. variations,externaldisturbance rejection andfastdynamicresponse [20]. Theseadvantagesof the sliding-modecontrolmaybeemployedinthepositionandspeedcontrolofanACservo system. The robustpropertiesofthesliding-modesystemsarealsobeenemployedinthe observersdesign [21]. Inthisworkanobserver-basedsliding-modecontrolproblemis investigatedforaclassofuncertaindeltaoperatorsystemswithnonlinearexogenous disturbanceandthecontrolsystemstabilityisdemonstratedusingtheLyapunovstability theory. IntheworkofBoiko [22] the estimationprecisionandbandwidthofsliding-mode observersareanalyzedinthefrequencydomainfordifferentsettingsoftheobserverdesign parameters.Inthispaperanexampleofsliding-modeobserverdesignforestimationofDC motor speedfromthemeasurementsofarmaturecurrentisconsidered. A position-and-velocitysensorlesscontrolforbrushlessDCmotorsusinganadaptive sliding modeobserverisproposedinFuruhashi [23]. Inthisworkasliding-modeobserver is proposedinordertoestimatethepositionandvelocityforbrushlessDCmotors.Then, the velocityofthesystemisregulatedusingaPIcontrol.Asensorlesssliding-modetorque control forinductionmotorsusedinhybridelectricvehicleapplicationsisdevelopedin Proca etal. [24]. Thesliding-modecontrolproposedinthisworkallowsforfastandprecise torque trackingoverawiderangeofspeed.Thepaperalsopresentstheidentificationand parameterestimationofaninductionmotormodelwithvaryingparameters.Inthepaper [25] a surveyofapplicationsofsecond-ordersliding-modecontroltomechanicalsystemsis presented.Inthispaperdifferentsecond-ordersliding-modecontrollers,previously presentedintheliterature,areshownandsomechallengingcontrolproblemsinvolving mechanicalsystemsareaddressedandsolved.Arobustsliding-modesensorlessspeed- control schemeofavoltage-fedinductionmotorisproposedinRashedetal. [26]. Inthis work asecond-orderslidingmodeisproposedinordertoreducethechatteringproblem that usuallyappearsinthetraditionalsliding-modecontrollers.IntheworkofAuroraand Ferrara [27] a sliding-modecontrolalgorithmforcurrent-fedinductionmotorsis presented.Inthispaperisproposedanadaptivesecond-ordersliding-modeobserverfor speed androtorflux,andtheloadtorqueandtherotortimeconstantarealsoestimated. Thehigherorderslidingmode(HOSM)proposedinthiswork,presentsomeadvantagesover standardsliding-modecontrolschemes,oneofthemostimportantisthechatteringreduction. However intheHOSManaccurateknowledgeofrotorfluxandmachineparametersisthekey factorinordertoobtainahigh-performanceandhigh-efficiencyinduction-motorcontrol scheme. Then,thesecontrolschemesrequireamorepreciseknowledgeofthesystemparameters or theuseofestimatorsinordertocalculatethesystemparameters,whichimpliesmore computationalcostthantraditionalsliding-modecontrollers. On theotherhand,theslidingcontrolschemesrequirepriorknowledgeoftheupperbound for thesystemuncertaintiessincethisboundis employed intheswitchinggaincalculation. It shouldbenotedthatthechoiceofsuchboundmaynotbeeasilyobtainedduetothe complicatedstructureoftheuncertainties inpracticalcontrolsystems [28,29]. Moreover,this upperboundshouldbedeterminedasaccurately aspossible,becausethevaluetobe considered fortheslidinggainincreaseswiththe bound,andthereforethecontroleffortwillbe also proportionaltothisbound.Hence,ahigh upperboundforthesystemuncertainties implies morecontroleffortandtheproblemofthechatteringwillbeincreased. In ordertosurmountthisdrawback,inthispaperisproposedanadaptivelawinorder to calculatetheslidinggain.Therefore,inourproposedadaptivesliding-modecontrol scheme wedonotneedtocalculateanupperboundofthesystemuncertainties,which O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 302
  4. 4. greatlysimplifiesthecontrollerdesign.Moreover,thisupperboundcanbeunknownand can bevariablealongthetimebecausetheslidinggainisadaptedon-line. In thissense,thispaperpresentsanewsensorlessvectorcontrolschemeconsistingon the onehandofaspeedestimationalgorithmsothatthereisnoneedforaspeedsensor and ontheotherhandofanadaptativevariablestructurecontrollawwithanintegral sliding surfacethatcompensatesfortheuncertaintiesinthesystem.Intheproposed adaptivesliding-modecontrolscheme,unlikethetraditionalsliding-modecontrolschemes, the slidinggainisnotcalculatedinadvance,becauseitisestimatedon-lineinorderto compensatethepresentsystemuncertaintiesthatcanbevariablesalongthetime. Using thisvariablestructurecontrolintheinductionmotordrive,thecontrolledspeedis insensitivetovariationsinthemotorparametersandloaddisturbances.Thisvariable structurecontrolprovidesagoodtransientresponseandexponentialconvergenceofthe speed trajectorytrackingdespiteparameteruncertaintiesandloadtorquedisturbances. The closedloopstabilityoftheproposedschemeisdemonstratedusingLyapunov stabilitytheory,andtheexponentialconvergenceofthecontrolledspeedisalsoprovided. Thisreportisorganizedasfollows.Therotor speedestimationisintroducedinSection2. Then, theproposedrobustspeedcontrolwithadaptativeslidinggainispresentedinSection3. In Section4,somesimulationresultsarepresented.Finally,concludingremarksarestatedin the lastsection. 2. Rotorspeedcomputation Many schemesbasedonsimplifiedmotormodelshavebeendevisedtosensethespeedof the inductionmotorfrommeasuredterminalquantitiesforcontrolpurposes.Inorderto obtain anaccuratedynamicrepresentationofthemotorspeed,itisnecessarytobasethe calculationonthecoupledcircuitequationsofthemotor. Since themotorvoltagesandcurrentsaremeasuredinastationaryframeofreference,it is alsoconvenienttoexpresstheseequationsinthatstationaryframe. From thestatorvoltageequationsinthestationaryframeitisobtained [3]: _c dr ¼ Lr Lm vds Lr Lm Rs þ sLs d dt ids ð1Þ _c qr ¼ Lr Lm vqs Lr Lm Rs þ sLs d dt iqs ð2Þ where c is thefluxlinkage; L is theinductance; v is thevoltage; R is theresistance; i is the current and s ¼ 1L2 m=ðLrLsÞ is themotorleakagecoefficient.Thesubscripts r and s denoterespectivelytherotorandstatorvaluesreferredtothestator,andthesubscripts d and q denote the dq-axiscomponentsinthestationaryreferenceframe. The rotorfluxequationsinthestationaryframeare [3] _c dr ¼ Lm Tr idswrcqr 1 Tr cdr ð3Þ _c qr ¼ Lm Tr iqs þ wrcdr 1 Tr cqr ð4Þ where wr is therotorelectricalspeedand Tr=Lr/Rr is therotortimeconstant. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 303
  5. 5. The angle ye of therotorfluxvector(cr ) inrelationtothe d-axisofthestationaryframe is definedasfollows: ye ¼ arctan cqr cdr ð5Þ being itsderivative: _y e ¼ we ¼ cdr _c qrcqr _c dr c2 dr þ c2 qr ð6Þ SubstitutingEqs.(3)and(4)inEq.(6)itisobtained: we ¼ wr Lm Tr cdriqscqrids c2 dr þ c2 qr ! ð7Þ Then, substitutingEq.(6)inEq.(7),andsolvingfor wr we obtain wr ¼ 1 c2 r cdr _c qrcqr _c dr Lm Tr ðcdriqscqridsÞ ð8Þ where c2 r ¼ c2 dr þ c2 qr. Therefore,givenacompleteknowledgeofthemotorparameters,theinstantaneous speed wr can becalculatedfromthepreviousequation,wherethestatormeasuredcurrent and voltages,andtherotorfluxestimationobtainedfromarotorfluxobserverbasedon Eqs. (1)and(2)havebeenemployed. 3. Variablestructurerobustspeedcontrolwithadaptiveslidinggain In general,themechanicalequationofaninductionmotorcanbewrittenas Jw_ m þ Bwm þ TL ¼ Te ð9Þ where J and B are theinertiaconstantandtheviscousfrictioncoefficientoftheinduction motorsystemrespectively; TL is theexternalload; wm is therotormechanicalspeedin angularfrequency,whichisrelatedtotherotorelectricalspeedby wm=2wr/p where p is the polenumbers,and Te denotesthegeneratedtorqueofaninductionmotor,definedas [3] Te ¼ 3p 4 Lm Lr ðce drie qsce qrie dsÞ ð10Þ where ce dr and ce qr are therotor-fluxlinkages,thesubscript‘e’denotesthatthequantityis referredtothesynchronouslyrotatingreferenceframe; iqs e and ids e are thestatorcurrents, and p is thepolenumber. The relationbetweenthesynchronouslyrotatingreferenceframeandthestationary reference frameiscomputedbytheso-calledreversePark’stransformation: xa xb xc 2 64 3 75 ¼ cosðyeÞ sinðyeÞ cosðye2p=3Þ sinðye2p=3Þ cosðye þ 2p=3Þ sinðye þ 2p=3Þ 2 64 3 75 xd xq # ð11Þ where ye is theanglepositionbetweenthe d-axis ofthesynchronouslyrotatingandthe stationaryreferenceframes,andthequantitiesareassumedtobebalanced. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 304
  6. 6. Using thefield-orientationcontrolprinciple [3] the currentcomponent ids e is alignedin the directionoftherotorfluxvector cr, andthecurrentcomponent iqs e is alignedinthe directionperpendiculartoit.Undertheseconditions,itissatisfiedthat ce qr ¼ 0; ce dr ¼ jcrj ð12Þ Fig. 1 shows thevectorialdiagramoftheinductionmotorinthestationaryandinthe synchronouslyrotatingreferenceframes.Thesubscripts‘s’indicatesthestationaryframe and thesubscript‘e’indicatesthesynchronouslyrotatingreferenceframe. Therefore,takingintoaccountthepreviousresults,theequationofinductionmotor torque (10)issimplifiedto Te ¼ 3p 4 Lm Lr ce drie qs ¼ KT ie qs ð13Þ wherethetorqueconstant, KT, isdefinedasfollows: KT ¼ 3p 4 Lm Lr ce dr ð14Þ ce dr being thecommandrotorflux. With theabove-mentionedfieldorientation,thedynamicsoftherotorfluxisgivenby [3] dce dr dt þ ce dr Tr ¼ Lm Tr ie ds ð15Þ Then, themechanicalequation(9)becomes w_ m þ awm þ f ¼ bie qs ð16Þ Fig. 1.Vectorialdiagramoftheinductionmotor. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 305
  7. 7. where theparametersaredefinedas a ¼ B J ; b ¼ KT J ; f ¼ TL J ð17Þ Now,wearegoingtoconsiderthepreviousmechanicalequation(16)withuncertainties as follows: w_ m ¼ ða þ DaÞwmðf þ DfÞ þ ðb þ DbÞie qs ð18Þ where theterms Da, Db and Df representtheuncertaintiesoftheterms a, b and f respectively.Itshouldbenotedthattheseuncertaintiesareunknown,andthattheprecise calculationofanupperboundis,ingeneral,ratherdifficulttoachieve. Let usdefinethetrackingspeederrorasfollows: eðtÞ ¼ wmðtÞw mðtÞ ð19Þ where wm n is therotorspeedcommand. Takingthederivativeofthepreviousequationwithrespecttotimeyields e_ðtÞ ¼ w_ mw_ m ¼ aeðtÞ þ uðtÞ þ dðtÞ ð20Þ where thefollowingtermshavebeencollectedinthesignal u(t): uðtÞ ¼ bie qsðtÞaw mðtÞf ðtÞw_ mðtÞ ð21Þ and theuncertaintytermshavebeencollectedinthesignal d(t), dðtÞ ¼ DawmðtÞDf ðtÞ þ Dbie qsðtÞ ð22Þ To compensatefortheabovedescribeduncertaintiespresentinthesystem,asliding adaptivecontrolschemeisproposed.Intheslidingcontroltheory,theswitchinggainmust be constructedsoastoattaintheslidingcondition [20,30]. Inordertomeetthisconditiona suitable choiceoftheslidinggainshouldbemadetocompensatefortheuncertainties.To select theslidinggainvector,anupperboundoftheparametervariations,unmodelled dynamics,noisemagnitudes,etc.shouldbegiven,butinpracticalapplicationsthereare situationsinwhichtheseboundsareunknown,oratleastdifficulttocalculate.Asolution could betochooseasufficientlyhighvaluefortheslidinggain,butthisapproachcould cause atoohighcontrolsignal,oratleastmorecontrolactivitythanneededinorderto achieve thecontrolobjective. One possiblewaytoovercomethisdifficultyistoestimatethegainandtoupdateitby means ofsomeadaptationlaw,sothattheslidingconditionisachieved. Now,wearegoingtoproposetheslidingvariable S(t) withanintegralcomponentas SðtÞ ¼ eðtÞ þ Z t 0 ða þ kÞeðtÞ dt ð23Þ where k is aconstantgain,and a is aparameterthatwasalreadydefinedinEq.(17). Then theslidingsurfaceisdefinedas SðtÞ ¼ eðtÞ þ Z t 0 ða þ kÞeðtÞ dt ¼ 0 ð24Þ Now, wearegoingtodesignavariablestructurespeedcontroller,thatincorporatesan adaptiveslidinggain,inordertocontroltheACmotordrive uðtÞ ¼ keðtÞ^b ðtÞg sgnðSÞ ð25Þ O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 306
  8. 8. wherethe k is thegaindefinedpreviously, ^b is theestimatedswitchinggain, g is apositive constant, S is theslidingvariabledefinedinEq.(23)andsgnðÞ is thesignfunction. The switchinggain ^b is adaptedaccordingtothefollowingupdatinglaw: _^b ¼ gjSj; ^b ð0Þ ¼ 0 ð26Þ where g is apositiveconstantthatletuschoosetheadaptationspeedfortheslidinggain. In ordertoobtainthespeedtrajectorytracking,thefollowingassumptionsshouldbe formulated: ðA1Þ The gain k must bechosensothattheterm(aþk) isstrictlypositive.Thereforethe constant k should be k4a. ðA2Þ Thereexitsanunknownfinitenon-negativeswitchinggain b such that b4dmax þ Z; Z40 where dmaxZjdðtÞj 8t and Z is apositiveconstant. Note thatthisconditiononlyimpliesthattheuncertaintiesofthesystemarebounded magnitudes. ðA3Þ The constant g must bechosensothat gZ1. Theorem 1. Consider theinductionmotorgivenbyEq. (18). Then, if assumptions ðA1Þ–ðA3Þ are verified, the controllaw (25) leads therotormechanicalspeedwm(t) so thatthespeed trackingerrore(t)=wm(t)wm n (t) tends tozeroasthetimetendstoinfinity. The proofofthistheoremwillbecarriedoutusingtheLyapunovstabilitytheory. Proof. Define theLyapunovfunctioncandidate: VðtÞ ¼ 1 2 SðtÞSðtÞ þ 1 2 ~b ðtÞ~b ðtÞ ð27Þ where S(t) istheslidingvariabledefinedpreviouslyand ~b ðtÞ ¼ ^b ðtÞb Its timederivativeiscalculatedas _V ðtÞ ¼ SðtÞ_S ðtÞ þ ~b ðtÞ _~b ðtÞ ¼ S½_e þ ða þ kÞe þ ~b ðtÞ _^b ðtÞ ¼ S½ðae þ u þ dÞ þ ðke þ aeÞ þ ~bgjSj ¼ S½u þ d þ ke þ ð^b bÞgjSj ¼ S½ke^bgsgnðSÞ þ d þ ke þ ð^b bÞgjSj ¼ S½d^ bgsgnðSÞ þ ^bgjSjbgjSj ¼ dS^ bgjSj þ ^ bgjSjbgjSj ð28Þ rjdjjSjbgjSj rjdjjSjðdmax þ ZÞgjSj ¼ jdjjSjdmaxgjSjZgjSj rZgjSj ð29Þ O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 307
  9. 9. then _V ðtÞr0 ð30Þ It shouldbenotedthatEqs.(23),(20),(25)and(26),andtheassumptions ðA2Þ and ðA3Þ have beenusedintheproof. UsingLyapunov’sdirectmethod,since V(t) isclearlypositive-definite, _V ðtÞ is negative semidefiniteand V(t) tendstoinfinityas S(t) and ~b ðtÞ tends toinfinity,thentheequilibrium at theorigin ½SðtÞ; ~b ðtÞ ¼½0; 0 is globallystable,andthereforethevariables S(t) and ~b ðtÞ are bounded.Then,since S(t) isboundedonehasthat e(t) isalsobounded. Besides,computingthederivativeofEq.(23),itisobtained: _S ðtÞ ¼ _eðtÞ þ ða þ kÞeðtÞ ð31Þ then, substitutingEq.(20)inEq.(31), _S ðtÞ ¼ aeðtÞ þ uðtÞ þ dðtÞ þ ða þ kÞeðtÞ ¼ keðtÞ þ dðtÞ þ uðtÞ ð32Þ FromEq.(32)wecanconcludethat _S ðtÞ is boundedbecause e(t), u(t) and d(t) are bounded. Now,fromEq.(28)itisdeducedthat €V ðtÞ ¼ d_S ðtÞbg d dt jSðtÞj ð33Þ which isaboundedquantitybecause _S ðtÞ is bounded. Undertheseconditions,since €V is bounded, _V is auniformlycontinuousfunction,so Barbalat’slemmaletusconcludethat _V -0 as t-1, whichimpliesthat SðtÞ-0 as t-1. Therefore S(t) tendstozeroasthetime t tendstoinfinity.Moreover,alltrajectories startingofftheslidingsurface S=0 mustreachitasymptoticallyandthenwillremainonthis surface.Thissystem’sbehavior,onceontheslidingsurfaceisusuallycalled slidingmode [20]. Whentheslidingmodeoccursontheslidingsurface(24),then SðtÞ ¼ _S ðtÞ ¼ 0, and therefore thedynamicbehaviorofthetrackingproblem(20)isequivalentlygovernedby the followingequation: _S ðtÞ ¼ 0 ) _eðtÞ ¼ ða þ kÞeðtÞ ð34Þ Then, underassumption ðA1Þ, thetrackingerror e(t) convergestozeroexponentially. It shouldbenotedthat,atypicalmotionundersliding-modecontrolconsistsofa reaching phase duringwhichtrajectoriesstartingofftheslidingsurface S=0 movetowardsitand reachit,followedbya slidingphase duringwhichthemotionisconfinedtothissurfaceand wherethesystemtrackingerror,representedbythereduced-ordermodel(34),tendstozero. Finally,thetorquecurrentcommand, iqs en(t), canbeobtaineddirectlysubstitutingEq.(25) in Eq.(21): ie qs ðtÞ ¼ 1 b ½ke^ bgsgnðSÞ þ aw m þ w_ m þ f ð35Þ Therefore,theproposedvariablestructurespeedcontrolwithadaptiveslidinggain resolves thespeedtrackingproblemfortheinductionmotor,withuncertaintiesin mechanicalparametersandloadtorque. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 308
  10. 10. 4. Simulationresults In thissectionwewillstudythespeedregulationperformanceoftheproposedadaptive sliding-modefieldorientedcontrolversusspeedreferenceandloadtorquevariationsby means ofsimulationexamples.Inparticular,theexamplepresentedconsistofarepre- sentativespeedreferencetrackingproblem,combinedwithloadtorquevariationsduring the evolutionoftheexperimentandconsideringacertaindegreeofuncertainty,inorderto attain acompletescopeofthebehaviorofthesystem. The blockdiagramoftheproposedrobustcontrolschemeispresentedin Fig. 2. The block‘VSCcontroller’representstheproposedadaptivesliding-modecontroller,and it isimplementedbyEqs.(23),(35),and(26).Theblock‘limiter’limitsthecurrentapplied to themotorwindingssothatitremainswithinthelimitvalue,anditisimplementedbya saturationfunction.Theblock‘ dqe-abc’ makestheconversionbetweenthesynchro- nouslyrotatingandstationaryreferenceframes,andisimplementedbyEq.(11).Theblock ‘currentcontroller’consistsofathreehysteresis-bandcurrentPWMcontrol,whichis basicallyaninstantaneousfeedbackcurrentcontrolmethodofPWMwheretheactual current(iabc) continuallytracksthecommandcurrent(iabc n ) withinahysteresisband.The block‘PWMinverter’isasixIGBT-diodebridgeinverterwith780VDCvoltagesource. The block‘fieldweakening’givesthefluxcommandbasedonrotorspeed,sothatthePWM controllerdoesnotsaturate.Theblock‘ids en calculation’providesthecurrentreference ids en fromtherotorfluxreferencethroughEq.(15).Theblock‘wr estimator’representsthe proposedrotorspeedandsynchronousspeedestimator,anditisimplementedbyEqs.(8) and (6)respectively.Finally,theblock‘IM’representstheinductionmotor. The inductionmotorusedinthiscasestudyisa50HP,460V,fourpole,60Hzmotor having thefollowingparameters: Rs ¼ 0:087 O, Rr ¼ 0:228 O, Ls=35.5 mH, Lr=35.5 mH, and Lm=34.7 mH. The systemhasthefollowingmechanicalparameters: J=1.357kgm2 and B=0.05 N m s.Itisassumedthatthereisanuncertaintyaround20%inthesystemparameters,which will beovercomebytheproposedslidingcontrol. The followingvalueshavebeenchosenforthecontrollerparameters: k=45 and g ¼ 30. In thisexamplethemotorstartsfromastandstillstateandwewanttherotorspeedto follow aspeedcommandthatstartsfromzeroandacceleratesuntiltherotorspeedis Fig. 2.Blockdiagramoftheproposedadaptivesliding-modecontrol. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 309
  11. 11. 100 rad/s,thentherotorspeedismaintainedconstantandafter,attime1.3s,therotor deceleratesuntiltherotorspeedis80rad/s.Inthissimulationexample,thesystemstarts with aninitialloadtorque TL=0 Nmandattime t=2.3 stheloadtorquestepsfrom TL=0 to200Nm,andasbefore,itisassumedthatthereisanuncertaintyaround20%in the loadtorque. Fig. 3 shows thedesiredrotorspeed(dashedline)andtherealrotorspeed(solidline). As itmaybeobserved,afteratransitorytimeinwhichtheslidinggainisadapted,therotor speed tracksthedesiredspeedinspiteofsystemuncertainties.However,attime t=2.3 sa small speederrorcanbeobserved.Thiserrorappearsbecauseatorqueincrementoccursat this time,sothatthecontrolsystemlosestheso-called‘slidingmode’becausetheactual sliding gainistoosmallinordertoovercomethenewuncertaintyintroducedinthesystem due tothenewtorque.Butthen,afterashorttimetheslidinggainisadaptedonceagainso that thisgaincancompensateforthesystemuncertaintieswhicheliminatestherotor speed error. Fig. 4 presentsthetimeevolutionoftheestimatedslidinggain.Theslidinggainstarts from zeroandthenitisincreaseduntilitsvalueishighenoughtocompensateforthe system uncertainties.Besides,theslidingremainsconstantbecausethesystemuncertainties remain constantaswell.Later,attime2.3s,thereisanincrementinthesystem uncertaintiescausedbytheincrementintheloadtorque.Therefore,theslidingshouldbe adapted onceagaininordertoovercomethenewsystemuncertainties.Asitcanbeseenin the figureaftertheslidinggainisadapted,itremainsconstantagain,sincethesystem uncertaintiesremainconstantaswell. It shouldbenotedthattheadaptiveslidinggainallowstoemployasmallerslidinggain, so thatthevalueoftheslidinggaindonothavetobechosenhighenoughtocompensate for allpossiblesystemuncertainties,becausewiththeproposedadaptiveschemethesliding gain isadapted(ifitisnecessary)whenanewuncertaintyappearsinthesysteminorderto surmount thisuncertainty. Fig. 5 shows thetimeevolutionoftheslidingvariable.Inthisfigureitcanbeseenthat the systemreachtheslidingcondition(S(t)=0) attime t=0.13 s,butthenthesystemloses 0 0.511.522.53 0 20 40 60 80 100 120 Time (s) Rotor Speed (rad/s) wm * wm Fig. 3.Referenceandrealrotorspeedsignals(wm n , wm). O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 310
  12. 12. this conditionattime t=2.3 sduetothetorqueincrementwhich,inturn,producesan incrementinthesystemuncertaintiesthatcannotbecompensatedbytheactualvalueof the slidinggain.However,afteratransitorytimeinwhichtheslidinggainisadaptedin order tocompensatethenewsystemuncertainty,thesystemreachesthesliding conditionagain. Fig. 6 showsthecurrentofonestatorwinding.Thisfigureshowsthatintheinitialstate, the currentsignalpresentsahighvaluebecauseahightorqueisnecessarytoincrementthe rotor speedduetotherotorinertia.Then,intheconstant-speedregion,themotortorque only hastocompensatethefrictionandtherefore,thecurrentislower.Finally,attime t=2.3 sthecurrentincreasesbecausetheloadtorquehasbeenincreased. 0 0.511.522.53 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (s) Sliding Variable Fig. 5.Slidingvariable. 0 0.511.522.53 0 2 4 6 8 10 12 14 Time (s) Sliding Gain Fig. 4.Estimatedslidinggain ð^b Þ. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 311
  13. 13. Fig. 7 shows themotortorque.Asinthecaseofthecurrent(Fig. 6), themotortorque has ahighinitialvalueinthespeedaccelerationzoneandthenthevaluedecreasesina constant region.Later,attime t=1.3 s,themotortorquedecreasesagaininorderto reduce therotorspeed.Finally,attime t=2.3 sthemotortorqueincreasesinorderto compensatetheloadtorqueincrement.Inthisfigureitmaybeseenthatinthemotor torque appearstheso-calledchatteringphenomenon,howeverthishighfrequencychanges in thetorquewillbefilteredbythemechanicalsysteminertia. 5. Conclusions In thispapersensorlessrobustvectorcontrolforinductionmotordriveswithan adaptivevariablesliding-modevectorcontrollawhasbeenpresented.Therotorspeed 0 0.511.522.53 −500 −400 −300 −200 −100 0 100 200 300 400 500 Time (s) Stator Current Fig. 6.Statorcurrent(isa). 0 0.511.522.53 −100 −50 0 50 100 150 200 250 300 Motor Torque (N) Time (s) Fig. 7.Motortorque(Te). O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 312
  14. 14. estimatorisbasedonstatorvoltageequationsandrotorfluxequationsinthestationary referenceframe.Itisproposedasavariablestructurecontrolwhichusesanintegralsliding surfacetorelaxtherequirementoftheaccelerationsignal,thatisusualinconventional sliding-modespeedcontroltechniques.Duetothenatureoftheslidingcontrolthiscontrol scheme isrobustunderuncertaintiescausedbyparametererrorsorbychangesintheload torque. Moreover,theproposedvariablestructurecontrolincorporatesandadaptive algorithmtocalculatetheslidinggainvalue.Theadaptationoftheslidinggain,ontheone hand avoidstheneedofcomputingtheupperboundofthesystemuncertainties,andon the otherhandallowstoemployassmallerslidinggainaspossibletoovercometheactual system uncertainties.Thenthecontrolsignalofourproposedvariablestructurecontrol schemes willbesmallerthanthecontrolsignalsofthetraditionalvariablestructurecontrol schemes,becauseinthesetraditionalschemestheslidinggainvalueshouldbechosenhigh enoughtoovercomeallthepossibleuncertaintiesthatcouldappearinthesystemalong the time. The closedloopstabilityofthedesignpresentedinthispaperhasbeenprovedthought Lyapunovstabilitytheory.Finally,bymeansofsimulationexamples,ithasbeenshown that theproposedcontrolschemeperformsreasonablywellinpractice,andthatthespeed trackingobjectiveisachievedunderuncertaintiesintheparametersandloadtorque. Acknowledgments The authorsareverygratefultotheBasqueGovernmentbythesupportofthiswork through theprojectS-PE09UN12andtotheUPV/EHUbyitssupportthroughproject GUI07/08. References [1] W.Leonhard,ControlofElectricalDrives,Springer,Berlin,1996. [2] P.Vas,VectorControlofACMachines,OxfordSciencePublications,Oxford,1994. [3] B.K.Bose,ModernPowerElectronicsandACDrives,PrenticeHall,NewJersey,2001. [4] R.Beguenane,M.A.Ouhrouche,A.M.Trzynadlowski,Anewschemeforsensorlessinductionmotorcontrol drives operatinginlowspeedregion,MathematicsandComputersinSimulation71(2006)109–120. [5] S.Sunter,Slipenergyrecoveryofarotor-sidefieldorientedcontrolledwoundrotorinductionmotorfedby matrix converter,JournaloftheFranklinInstitute345(2008)419–435. [6] M.Comanescu,Aninduction-motorspeedestimatorbasedonintegralsliding-modecurrentcontrol,IEEE Transactions onIndustrialElectronics56(9)(2009)3414–3423. [7] M.I.Marei,M.F.Shaaban,A.A.El-Sattar,Aspeedestimationunitforinductionmotorsbasedonadaptive linear combiner,EnergyConversionandManagement50(2009)1664–1670. [8] A.Y.Alanis,E.N.Sanchez,A.G.Loukianov,E.A.Hernandez,Discrete-timerecurrenthighorderneural networks fornonlinearidentification,JournaloftheFranklinInstitute347(2010)1253–1265. [9] T-J.Ren,T-C.Chen,Robustspeed-controlledinductionmotordrivebasedonrecurrentneuralnetwork, Electric PowerSystemResearch76(2006)1064–1074. [10] M.Montanari,S.Peresada,A.Tilli,Aspeed-sensorlessindirectfield-orientedcontrolforinductionmotors based onhighgainspeedestimation,Automatica42(2006)1637–1650. [11] R.Marino,P.Tomei,C.M.Verrelli,Anadaptivetrackingcontrolfromcurrentmeasurementsforinduction motors withuncertainloadtorqueandrotorresistance,Automatica44(2008)2593–2599. [12] J.B.Oliveira,A.D.Araujo,S.M.Dias,Controllingthespeedofathree-phaseinductionmotorusinga simplified indirectadaptiveslidingmodescheme,ControlEngineeringPractice18(2010)577–584. [13] M.A.Fnaiech,F.Betin,G.A.Capolino,F.Fnaiech,Fuzzylogicandsliding-modecontrolsappliedtosix- phase inductionmachinewithopenphases,IEEETransactionsonIndustrialElectronics57(1)(2010) 354–364. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 313
  15. 15. [14] M.Montazeri-Gh,A.Poursamad,B.Ghalichi,Applicationofgeneticalgorithmforoptimizationofcontrol strategy inparallelhybridelectricvehicles,JournaloftheFranklinInstitute343(2006)420–435. [15] A.Benchaib,C.Edwards,Nonlinearslidingmodecontrolofaninductionmotor,InternationalJournalof Adaptive ControlandSignalProcesing14(2000)201–221. [16] O.Barambones,A.J.Garrido,Asensorlessvariablestructurecontrolofinductionmotordrives,Electric Power SystemsResearch72(2004)21–32. [17] R.Yazdanpanah,J.Soltani,G.R.ArabMarkadeh,Nonlineartorqueandstatorfluxcontrollerforinduction motor drivebasedonadaptiveinput–outputfeedbacklinearizationandslidingmodecontrol,Energy ConversionandManagement49(2008)541–550. [18] B.Castillo-Toledo,S.DiGennaro,A.G.Loukianov,J.Rivera,Discretetimeslidingmodecontrolwith applicationtoinductionmotors,Automatica44(2008)3036–3045. [19] T.Orowska-Kowalska,M.Kami nski, K.Szabat,Implementationofasliding-modecontrollerwithan integral functionandfuzzygainvaluefortheelectricaldrivewithanelasticjoint,IEEETransactionson Industrial Electronics57(4)(2010)1309–1317. [20] V.I.Utkin,Slidingmodecontroldesignprinciplesandapplicationstoelectricdrives,IEEETransactionson Industrial Electronics40(1993)26–36. [21] H.Yang,Y.Xia,P.Shi,Observer-basedslidingmodecontrolforaclassofdiscretesystemsviadelta operator approach,JournaloftheFranklinInstitute347(2010)1199–1213. [22] I.Boiko,Frequencydomainprecisionanalysisanddesignofslidingmodeobservers,JournaloftheFranklin Institute 347(2010)899–909. [23] T.Furuhashi,S.Sangwongwanich,S.Okuma,Aposition-and-velocitysensorlesscontrolforbrushlessDC motors usinganadaptiveslidingmodeobserver,IEEETransactionsonIndustrialElectronics39(1992) 89–95. [24] A.B.Proca,A.Keyhani,J.M.Miller,Sensorlesssliding-modecontrolofinductionmotorsusingoperating condition dependentmodels,IEEETransactionsonEnergyConversion18(2003)205–212. [25] G.Bartolini,A.Pisano,E.Punta,E.Usai,Asurveyofapplicationsofsecond-orderslidingmodecontrolto mechanicalsystems,InternationalJournalofControl76(2003)875–892. [26] M.Rashed,K.B.Goh,M.W.Dunnigan,P.F.A.MacConnell,A.F.Stronach,B.W.Williams,Sensorless second-ordersliding-modespeedcontrolofavoltage-fedinduction-motordriveusingnonlinearstate feedback, IEEProceedingsElectricPowerApplications152(2005)1127–1136. [27] C.Aurora,A.Ferrara,Aslidingmodeobserverforsensorlessinductionmotorspeedregulation, InternationalJournalofSystemsScience38(2007)913–929. [28] Y.Xia,Z.Zhu,C.Li,H.Yang,Q.Zhu,Robustadaptiveslidingmodecontrolforuncertaindiscrete-time systems withtimedelay,JournaloftheFranklinInstitute347(1)(2010)339–357. [29] M.C.Pai,Designofadaptiveslidingmodecontrollerforrobusttrackingandmodelfollowing,Journalofthe Franklin Institute347(2010)1838–1849. [30] J.J.E.Slotine,W.Li,AppliedNonlinearControl,Prentice-Hall,EnglewoodCliffs,NJ,USA,1991. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 314

×