SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
Journal oftheFranklinInstitute348(2011)300–314 
A robustvectorcontrolforinductionmotordrives 
with anadaptivesliding-modecontrollaw 
Oscar Barambonesa,, PatxiAlkortab 
aDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeVitoria,UniversidaddelPa´ıs Vasco,Nievescano12,01006 
Vitoria, Spain 
bDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeEibar,UniversidaddelPa´ıs Vasco,Avda.Otaola,2920600 
Eibar (Gipuzkoa) 
Received 4January2010;receivedinrevisedform24November2010;accepted30November2010 
Available online7December2010 
Abstract 
A noveladaptivesliding-modecontrolsystemisproposedinordertocontrolthespeedofan 
induction motordrive.Thisdesignemploystheso-calledvector(orfieldoriented)controltheoryfor 
the inductionmotordrives.Thesliding-modecontrolisinsensitivetouncertaintiesandpresentsan 
adaptive switchinggaintorelaxtherequirementfortheboundoftheseuncertainties.Theswitching 
gain isadaptedusingasimplealgorithmwhichdoesnotimplyahighcomputationalload.Stability 
analysis basedonLyapunovtheoryisalsoperformedinordertoguaranteetheclosedloopstability. 
Finally, simulationresultsshownotonlythattheproposedcontrollerprovideshigh-performance 
dynamic characteristics,butalsothatthisschemeisrobustwithrespecttoplantparametervariations 
and externalloaddisturbances. 
 2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. 
1. Introduction 
The inductionmotorisacomplexstructurethatconvertselectricalenergy intomechanical 
energy. Althoughinductionmachineswereintroducedmorethanahundredyearsago,the 
researchanddevelopmentinthisareaappearsto benever-ending.Traditionally,ACmachines 
with aconstantfrequencysinusoidalpower supplyhavebeenusedinconstant-speed 
applications, whereasDC machineswerepreferredforvariablespeeddrives,sincetheypresent 
www.elsevier.com/locate/jfranklin 
0016-0032/$32.00  2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. 
doi:10.1016/j.jfranklin.2010.11.008 
Correspondingauthor.Tel.: þ34 945013235;fax: þ34 945013270. 
E-mail address: ispbacao@ehu.es(O.Barambones).
a simplercontrol.Besides,ACmachinespresentedsomedisadvantagesincomparisonwith 
DC ones,ashighercost,higherrotorinertiaand maintenanceproblems.Nevertheless,inthe 
last twoorthreedecadeswehaveseenextensiveresearchanddevelopmenteffortsinvariable- 
frequency,variable-speedAC machinedrivestechnology [1], whichhaveovercomesomeofthe 
abovedisadvantagesoftheACmotors. 
The developmentoffieldorientedcontrolinthebeginningof1970smadeitfeasibleto 
control theinductionmotorasaseparatelyexcitedDCmotor [1–3]. Inthissense,thefield- 
orientedtechniqueguaranteesthedecouplingoftorqueandfluxcontrolcommandsforthe 
inductionmotor.Thismeansthatwhenthefluxisgovernedbymeansofcontrollingthe 
current id, thetorqueisnotaffected.Similarly,whenthetorqueisgovernedbycontrolling 
the current iq, thefluxisnotaffectedand,therefore,itcanbeachievedtransientresponse 
as fastasinthecaseofDCmachines. 
On theotherhand,whendealingwithindirectfield-orientedcontrolofinduction 
motors,aknowledgeofrotorspeedisrequiredinordertoorienttheinjectedstatorcurrent 
vector andtoestablishanadequatespeedfeedbackcontrol.Althoughtheuseofaflux 
estimatorindirectfieldorientedcontroleliminatestheneedofthespeedsensorinorderto 
orient theinjectedstatorcurrentvector,thismethodisnotpractical.Thisisbecausethe 
flux estimatordoesnotworkproperlyinalowspeedregion.Thefluxestimatorpresentsa 
pole ontheoriginofthe S plane (pureintegrator),andthereforeitisverysensitivetothe 
offset ofthevoltagesensorandtheparametervariations. 
However,thespeedorpositionsensorofinductionmotorstilllimitsitsapplicationsto 
somespecialenvironmentsnotonlyduetothedifficultiesofmountingthesensor,butalso 
becauseoftheneedoflowcostandreliablesystems.Theresearchanddevelopmentworkon 
a sensorlessdriverfortheACmotorisprogressinggreatly.Muchworkhasbeendoneusing 
thefieldorientedbasedmethodapproach [4–7]. Intheseschemesthespeedisobtainedbased 
onthemeasurementofstatorvoltagesandcurrents.Ontheotherhand,theinductionmotor 
modelcanbeobtainedusingaNeuralNetworkapproach.IntheworkofAlanisetal. [8] 
a discrete-timenonlinearsystemidentificationviarecurrenthighorderneuralnetworksis 
proposed.Inthisworkasixth-orderdiscrete-timeinductionmotormodelinthestatorfixed 
referenceframeiscalculatedusingtheproposedrecurrentneuralnetworksscheme. 
Nevertheless,therobustnesstoparametervariationsandloaddisturbancesinthe 
inductionmachinesstilldeservestobefurtherstudiedand,inparticular,specialattention 
should bepaidtothelowspeedregiontransients. 
Thus, theperformanceofthefieldorientedcontrolstronglydependsonuncertainties, 
which areusuallyduetounknownparameters,parametervariations,externalload 
disturbances,unmodelledandnonlineardynamics,etc.Therefore,manystudieshavebeen 
made onthemotordrivesinordertopreservetheperformanceundertheseparameter 
variationsandexternalloaddisturbances,suchasnonlinearcontrol,optimalcontrol, 
variablestructuresystemcontrol,adaptivecontrol,neuralcontrolandfuzzycontrol 
[9–13]. Recently,thegeneticalgorithmapproachhasalsobeenusedinordertocontrolthe 
electric motors.TheworkofMontazeri-Ghetal. [14], describestheapplicationofthe 
geneticalgorithmfortheoptimizationofthecontrolparametersinparallelhybridelectric 
vehiclesdrivenbyanelectricinductionmachine. 
To overcometheabovesystemuncertainties,the variablestructurecontrolstrategyusing 
the sliding-modehasbeenfocussedonmanystudiesandresearchforthecontroloftheAC 
servo drivesysteminthepastdecade [15–19]. Thesliding-modecontrolcanoffermanygood 
properties,suchasgoodperformanceagainstunmodelled dynamics,insensitivitytoparameter 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 301
variations,externaldisturbance rejection andfastdynamicresponse [20]. Theseadvantagesof 
the sliding-modecontrolmaybeemployedinthepositionandspeedcontrolofanACservo 
system. 
The robustpropertiesofthesliding-modesystemsarealsobeenemployedinthe 
observersdesign [21]. Inthisworkanobserver-basedsliding-modecontrolproblemis 
investigatedforaclassofuncertaindeltaoperatorsystemswithnonlinearexogenous 
disturbanceandthecontrolsystemstabilityisdemonstratedusingtheLyapunovstability 
theory. IntheworkofBoiko [22] the estimationprecisionandbandwidthofsliding-mode 
observersareanalyzedinthefrequencydomainfordifferentsettingsoftheobserverdesign 
parameters.Inthispaperanexampleofsliding-modeobserverdesignforestimationofDC 
motor speedfromthemeasurementsofarmaturecurrentisconsidered. 
A position-and-velocitysensorlesscontrolforbrushlessDCmotorsusinganadaptive 
sliding modeobserverisproposedinFuruhashi [23]. Inthisworkasliding-modeobserver 
is proposedinordertoestimatethepositionandvelocityforbrushlessDCmotors.Then, 
the velocityofthesystemisregulatedusingaPIcontrol.Asensorlesssliding-modetorque 
control forinductionmotorsusedinhybridelectricvehicleapplicationsisdevelopedin 
Proca etal. [24]. Thesliding-modecontrolproposedinthisworkallowsforfastandprecise 
torque trackingoverawiderangeofspeed.Thepaperalsopresentstheidentificationand 
parameterestimationofaninductionmotormodelwithvaryingparameters.Inthepaper 
[25] a surveyofapplicationsofsecond-ordersliding-modecontroltomechanicalsystemsis 
presented.Inthispaperdifferentsecond-ordersliding-modecontrollers,previously 
presentedintheliterature,areshownandsomechallengingcontrolproblemsinvolving 
mechanicalsystemsareaddressedandsolved.Arobustsliding-modesensorlessspeed- 
control schemeofavoltage-fedinductionmotorisproposedinRashedetal. [26]. Inthis 
work asecond-orderslidingmodeisproposedinordertoreducethechatteringproblem 
that usuallyappearsinthetraditionalsliding-modecontrollers.IntheworkofAuroraand 
Ferrara [27] a sliding-modecontrolalgorithmforcurrent-fedinductionmotorsis 
presented.Inthispaperisproposedanadaptivesecond-ordersliding-modeobserverfor 
speed androtorflux,andtheloadtorqueandtherotortimeconstantarealsoestimated. 
Thehigherorderslidingmode(HOSM)proposedinthiswork,presentsomeadvantagesover 
standardsliding-modecontrolschemes,oneofthemostimportantisthechatteringreduction. 
However intheHOSManaccurateknowledgeofrotorfluxandmachineparametersisthekey 
factorinordertoobtainahigh-performanceandhigh-efficiencyinduction-motorcontrol 
scheme. Then,thesecontrolschemesrequireamorepreciseknowledgeofthesystemparameters 
or theuseofestimatorsinordertocalculatethesystemparameters,whichimpliesmore 
computationalcostthantraditionalsliding-modecontrollers. 
On theotherhand,theslidingcontrolschemesrequirepriorknowledgeoftheupperbound 
for thesystemuncertaintiessincethisboundis employed intheswitchinggaincalculation. 
It shouldbenotedthatthechoiceofsuchboundmaynotbeeasilyobtainedduetothe 
complicatedstructureoftheuncertainties inpracticalcontrolsystems [28,29]. Moreover,this 
upperboundshouldbedeterminedasaccurately aspossible,becausethevaluetobe 
considered fortheslidinggainincreaseswiththe bound,andthereforethecontroleffortwillbe 
also proportionaltothisbound.Hence,ahigh upperboundforthesystemuncertainties 
implies morecontroleffortandtheproblemofthechatteringwillbeincreased. 
In ordertosurmountthisdrawback,inthispaperisproposedanadaptivelawinorder 
to calculatetheslidinggain.Therefore,inourproposedadaptivesliding-modecontrol 
scheme wedonotneedtocalculateanupperboundofthesystemuncertainties,which 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 302
greatlysimplifiesthecontrollerdesign.Moreover,thisupperboundcanbeunknownand 
can bevariablealongthetimebecausetheslidinggainisadaptedon-line. 
In thissense,thispaperpresentsanewsensorlessvectorcontrolschemeconsistingon 
the onehandofaspeedestimationalgorithmsothatthereisnoneedforaspeedsensor 
and ontheotherhandofanadaptativevariablestructurecontrollawwithanintegral 
sliding surfacethatcompensatesfortheuncertaintiesinthesystem.Intheproposed 
adaptivesliding-modecontrolscheme,unlikethetraditionalsliding-modecontrolschemes, 
the slidinggainisnotcalculatedinadvance,becauseitisestimatedon-lineinorderto 
compensatethepresentsystemuncertaintiesthatcanbevariablesalongthetime. 
Using thisvariablestructurecontrolintheinductionmotordrive,thecontrolledspeedis 
insensitivetovariationsinthemotorparametersandloaddisturbances.Thisvariable 
structurecontrolprovidesagoodtransientresponseandexponentialconvergenceofthe 
speed trajectorytrackingdespiteparameteruncertaintiesandloadtorquedisturbances. 
The closedloopstabilityoftheproposedschemeisdemonstratedusingLyapunov 
stabilitytheory,andtheexponentialconvergenceofthecontrolledspeedisalsoprovided. 
Thisreportisorganizedasfollows.Therotor speedestimationisintroducedinSection2. 
Then, theproposedrobustspeedcontrolwithadaptativeslidinggainispresentedinSection3. 
In Section4,somesimulationresultsarepresented.Finally,concludingremarksarestatedin 
the lastsection. 
2. Rotorspeedcomputation 
Many schemesbasedonsimplifiedmotormodelshavebeendevisedtosensethespeedof 
the inductionmotorfrommeasuredterminalquantitiesforcontrolpurposes.Inorderto 
obtain anaccuratedynamicrepresentationofthemotorspeed,itisnecessarytobasethe 
calculationonthecoupledcircuitequationsofthemotor. 
Since themotorvoltagesandcurrentsaremeasuredinastationaryframeofreference,it 
is alsoconvenienttoexpresstheseequationsinthatstationaryframe. 
From thestatorvoltageequationsinthestationaryframeitisobtained [3]: 
_c 
dr ¼ 
Lr 
Lm 
vds 
Lr 
Lm 
Rs þ sLs 
d 
dt 
  
ids ð1Þ 
_c 
qr ¼ 
Lr 
Lm 
vqs 
Lr 
Lm 
Rs þ sLs 
d 
dt 
  
iqs ð2Þ 
where c is thefluxlinkage; L is theinductance; v is thevoltage; R is theresistance; i is the 
current and s ¼ 1L2 
m=ðLrLsÞ is themotorleakagecoefficient.Thesubscripts r and s 
denoterespectivelytherotorandstatorvaluesreferredtothestator,andthesubscripts d 
and q denote the dq-axiscomponentsinthestationaryreferenceframe. 
The rotorfluxequationsinthestationaryframeare [3] 
_c 
dr ¼ 
Lm 
Tr 
idswrcqr 
1 
Tr 
cdr ð3Þ 
_c 
qr ¼ 
Lm 
Tr 
iqs þ wrcdr 
1 
Tr 
cqr ð4Þ 
where wr is therotorelectricalspeedand Tr=Lr/Rr is therotortimeconstant. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 303
The angle ye of therotorfluxvector(cr ) inrelationtothe d-axisofthestationaryframe 
is definedasfollows: 
ye ¼ arctan 
cqr 
cdr 
  
ð5Þ 
being itsderivative: 
_y 
e ¼ we ¼ 
cdr 
_c 
qrcqr 
_c 
dr 
c2 
dr þ c2 
qr 
ð6Þ 
SubstitutingEqs.(3)and(4)inEq.(6)itisobtained: 
we ¼ wr 
Lm 
Tr 
cdriqscqrids 
c2 
dr þ c2 
qr 
! 
ð7Þ 
Then, substitutingEq.(6)inEq.(7),andsolvingfor wr we obtain 
wr ¼ 
1 
c2 
r 
cdr 
_c 
qrcqr 
_c 
dr 
Lm 
Tr 
ðcdriqscqridsÞ 
  
ð8Þ 
where c2 
r ¼ c2 
dr þ c2 
qr. 
Therefore,givenacompleteknowledgeofthemotorparameters,theinstantaneous 
speed wr can becalculatedfromthepreviousequation,wherethestatormeasuredcurrent 
and voltages,andtherotorfluxestimationobtainedfromarotorfluxobserverbasedon 
Eqs. (1)and(2)havebeenemployed. 
3. Variablestructurerobustspeedcontrolwithadaptiveslidinggain 
In general,themechanicalequationofaninductionmotorcanbewrittenas 
Jw_ m þ Bwm þ TL ¼ Te ð9Þ 
where J and B are theinertiaconstantandtheviscousfrictioncoefficientoftheinduction 
motorsystemrespectively; TL is theexternalload; wm is therotormechanicalspeedin 
angularfrequency,whichisrelatedtotherotorelectricalspeedby wm=2wr/p where p is the 
polenumbers,and Te denotesthegeneratedtorqueofaninductionmotor,definedas [3] 
Te ¼ 
3p 
4 
Lm 
Lr 
ðce 
drie 
qsce 
qrie 
dsÞ ð10Þ 
where ce 
dr and ce 
qr are therotor-fluxlinkages,thesubscript‘e’denotesthatthequantityis 
referredtothesynchronouslyrotatingreferenceframe; iqs 
e and ids 
e are thestatorcurrents, 
and p is thepolenumber. 
The relationbetweenthesynchronouslyrotatingreferenceframeandthestationary 
reference frameiscomputedbytheso-calledreversePark’stransformation: 
xa 
xb 
xc 
2 
64 
3 
75 
¼ 
cosðyeÞ sinðyeÞ 
cosðye2p=3Þ sinðye2p=3Þ 
cosðye þ 2p=3Þ sinðye þ 2p=3Þ 
2 
64 
3 
75 
xd 
xq 
 # 
ð11Þ 
where ye is theanglepositionbetweenthe d-axis ofthesynchronouslyrotatingandthe 
stationaryreferenceframes,andthequantitiesareassumedtobebalanced. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 304
Using thefield-orientationcontrolprinciple [3] the currentcomponent ids 
e is alignedin 
the directionoftherotorfluxvector cr, andthecurrentcomponent iqs 
e is alignedinthe 
directionperpendiculartoit.Undertheseconditions,itissatisfiedthat 
ce 
qr ¼ 0; ce 
dr ¼ jcrj ð12Þ 
Fig. 1 shows thevectorialdiagramoftheinductionmotorinthestationaryandinthe 
synchronouslyrotatingreferenceframes.Thesubscripts‘s’indicatesthestationaryframe 
and thesubscript‘e’indicatesthesynchronouslyrotatingreferenceframe. 
Therefore,takingintoaccountthepreviousresults,theequationofinductionmotor 
torque (10)issimplifiedto 
Te ¼ 
3p 
4 
Lm 
Lr 
ce 
drie 
qs ¼ KT ie 
qs ð13Þ 
wherethetorqueconstant, KT, isdefinedasfollows: 
KT ¼ 
3p 
4 
Lm 
Lr 
ce 
dr ð14Þ 
ce 
dr being thecommandrotorflux. 
With theabove-mentionedfieldorientation,thedynamicsoftherotorfluxisgivenby [3] 
dce 
dr 
dt 
þ 
ce 
dr 
Tr 
¼ 
Lm 
Tr 
ie 
ds ð15Þ 
Then, themechanicalequation(9)becomes 
w_ m þ awm þ f ¼ bie 
qs ð16Þ 
Fig. 1.Vectorialdiagramoftheinductionmotor. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 305
where theparametersaredefinedas 
a ¼ 
B 
J 
; b ¼ 
KT 
J 
; f ¼ 
TL 
J 
ð17Þ 
Now,wearegoingtoconsiderthepreviousmechanicalequation(16)withuncertainties 
as follows: 
w_ m ¼ ða þ DaÞwmðf þ DfÞ þ ðb þ DbÞie 
qs ð18Þ 
where theterms Da, Db and Df representtheuncertaintiesoftheterms a, b and f 
respectively.Itshouldbenotedthattheseuncertaintiesareunknown,andthattheprecise 
calculationofanupperboundis,ingeneral,ratherdifficulttoachieve. 
Let usdefinethetrackingspeederrorasfollows: 
eðtÞ ¼ wmðtÞw 
mðtÞ ð19Þ 
where wm 
n is therotorspeedcommand. 
Takingthederivativeofthepreviousequationwithrespecttotimeyields 
e_ðtÞ ¼ w_ mw_  
m ¼ aeðtÞ þ uðtÞ þ dðtÞ ð20Þ 
where thefollowingtermshavebeencollectedinthesignal u(t): 
uðtÞ ¼ bie 
qsðtÞaw 
mðtÞf ðtÞw_  
mðtÞ ð21Þ 
and theuncertaintytermshavebeencollectedinthesignal d(t), 
dðtÞ ¼ DawmðtÞDf ðtÞ þ Dbie 
qsðtÞ ð22Þ 
To compensatefortheabovedescribeduncertaintiespresentinthesystem,asliding 
adaptivecontrolschemeisproposed.Intheslidingcontroltheory,theswitchinggainmust 
be constructedsoastoattaintheslidingcondition [20,30]. Inordertomeetthisconditiona 
suitable choiceoftheslidinggainshouldbemadetocompensatefortheuncertainties.To 
select theslidinggainvector,anupperboundoftheparametervariations,unmodelled 
dynamics,noisemagnitudes,etc.shouldbegiven,butinpracticalapplicationsthereare 
situationsinwhichtheseboundsareunknown,oratleastdifficulttocalculate.Asolution 
could betochooseasufficientlyhighvaluefortheslidinggain,butthisapproachcould 
cause atoohighcontrolsignal,oratleastmorecontrolactivitythanneededinorderto 
achieve thecontrolobjective. 
One possiblewaytoovercomethisdifficultyistoestimatethegainandtoupdateitby 
means ofsomeadaptationlaw,sothattheslidingconditionisachieved. 
Now,wearegoingtoproposetheslidingvariable S(t) withanintegralcomponentas 
SðtÞ ¼ eðtÞ þ 
Z t 
0 
ða þ kÞeðtÞ dt ð23Þ 
where k is aconstantgain,and a is aparameterthatwasalreadydefinedinEq.(17). 
Then theslidingsurfaceisdefinedas 
SðtÞ ¼ eðtÞ þ 
Z t 
0 
ða þ kÞeðtÞ dt ¼ 0 ð24Þ 
Now, wearegoingtodesignavariablestructurespeedcontroller,thatincorporatesan 
adaptiveslidinggain,inordertocontroltheACmotordrive 
uðtÞ ¼ keðtÞ^b 
ðtÞg sgnðSÞ ð25Þ 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 306
wherethe k is thegaindefinedpreviously, ^b 
is theestimatedswitchinggain, g is apositive 
constant, S is theslidingvariabledefinedinEq.(23)andsgnðÞ is thesignfunction. 
The switchinggain ^b 
is adaptedaccordingtothefollowingupdatinglaw: 
_^b 
¼ gjSj; ^b 
ð0Þ ¼ 0 ð26Þ 
where g is apositiveconstantthatletuschoosetheadaptationspeedfortheslidinggain. 
In ordertoobtainthespeedtrajectorytracking,thefollowingassumptionsshouldbe 
formulated: 
ðA1Þ The gain k must bechosensothattheterm(aþk) isstrictlypositive.Thereforethe 
constant k should be k4a. 
ðA2Þ Thereexitsanunknownfinitenon-negativeswitchinggain b such that 
b4dmax þ Z; Z40 
where dmaxZjdðtÞj 8t and Z is apositiveconstant. 
Note thatthisconditiononlyimpliesthattheuncertaintiesofthesystemarebounded 
magnitudes. 
ðA3Þ The constant g must bechosensothat gZ1. 
Theorem 1. Consider theinductionmotorgivenbyEq. (18). Then, if assumptions ðA1Þ–ðA3Þ 
are verified, the controllaw (25) leads therotormechanicalspeedwm(t) so thatthespeed 
trackingerrore(t)=wm(t)wm 
n (t) tends tozeroasthetimetendstoinfinity. 
The proofofthistheoremwillbecarriedoutusingtheLyapunovstabilitytheory. 
Proof. Define theLyapunovfunctioncandidate: 
VðtÞ ¼ 
1 
2 
SðtÞSðtÞ þ 
1 
2 
~b 
ðtÞ~b 
ðtÞ ð27Þ 
where S(t) istheslidingvariabledefinedpreviouslyand ~b 
ðtÞ ¼ ^b 
ðtÞb 
Its timederivativeiscalculatedas 
_V 
ðtÞ ¼ SðtÞ_S 
ðtÞ þ ~b 
ðtÞ 
_~b 
ðtÞ 
¼ S½_e þ ða þ kÞe þ ~b 
ðtÞ 
_^b 
ðtÞ 
¼ S½ðae þ u þ dÞ þ ðke þ aeÞ þ ~bgjSj 
¼ S½u þ d þ ke þ ð^b 
bÞgjSj 
¼ S½ke^bgsgnðSÞ þ d þ ke þ ð^b 
bÞgjSj 
¼ S½d^ bgsgnðSÞ þ ^bgjSjbgjSj 
¼ dS^ bgjSj þ ^ bgjSjbgjSj ð28Þ 
rjdjjSjbgjSj 
rjdjjSjðdmax þ ZÞgjSj 
¼ jdjjSjdmaxgjSjZgjSj 
rZgjSj ð29Þ 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 307
then 
_V 
ðtÞr0 ð30Þ 
It shouldbenotedthatEqs.(23),(20),(25)and(26),andtheassumptions ðA2Þ and ðA3Þ 
have beenusedintheproof.  
UsingLyapunov’sdirectmethod,since V(t) isclearlypositive-definite, _V 
ðtÞ is negative 
semidefiniteand V(t) tendstoinfinityas S(t) and ~b 
ðtÞ tends toinfinity,thentheequilibrium 
at theorigin ½SðtÞ; ~b 
ðtÞ ¼½0; 0 is globallystable,andthereforethevariables S(t) and ~b 
ðtÞ 
are bounded.Then,since S(t) isboundedonehasthat e(t) isalsobounded. 
Besides,computingthederivativeofEq.(23),itisobtained: 
_S 
ðtÞ ¼ _eðtÞ þ ða þ kÞeðtÞ ð31Þ 
then, substitutingEq.(20)inEq.(31), 
_S 
ðtÞ ¼ aeðtÞ þ uðtÞ þ dðtÞ þ ða þ kÞeðtÞ 
¼ keðtÞ þ dðtÞ þ uðtÞ ð32Þ 
FromEq.(32)wecanconcludethat _S 
ðtÞ is boundedbecause e(t), u(t) and d(t) are 
bounded. 
Now,fromEq.(28)itisdeducedthat 
€V 
ðtÞ ¼ d_S 
ðtÞbg 
d 
dt 
jSðtÞj ð33Þ 
which isaboundedquantitybecause _S 
ðtÞ is bounded. 
Undertheseconditions,since €V 
is bounded, _V 
is auniformlycontinuousfunction,so 
Barbalat’slemmaletusconcludethat _V 
-0 as t-1, whichimpliesthat SðtÞ-0 as t-1. 
Therefore S(t) tendstozeroasthetime t tendstoinfinity.Moreover,alltrajectories 
startingofftheslidingsurface S=0 mustreachitasymptoticallyandthenwillremainonthis 
surface.Thissystem’sbehavior,onceontheslidingsurfaceisusuallycalled slidingmode [20]. 
Whentheslidingmodeoccursontheslidingsurface(24),then SðtÞ ¼ _S 
ðtÞ ¼ 0, and 
therefore thedynamicbehaviorofthetrackingproblem(20)isequivalentlygovernedby 
the followingequation: 
_S 
ðtÞ ¼ 0 ) _eðtÞ ¼ ða þ kÞeðtÞ ð34Þ 
Then, underassumption ðA1Þ, thetrackingerror e(t) convergestozeroexponentially. 
It shouldbenotedthat,atypicalmotionundersliding-modecontrolconsistsofa reaching 
phase duringwhichtrajectoriesstartingofftheslidingsurface S=0 movetowardsitand 
reachit,followedbya slidingphase duringwhichthemotionisconfinedtothissurfaceand 
wherethesystemtrackingerror,representedbythereduced-ordermodel(34),tendstozero. 
Finally,thetorquecurrentcommand, iqs 
en(t), canbeobtaineddirectlysubstitutingEq.(25) 
in Eq.(21): 
ie 
qs ðtÞ ¼ 
1 
b 
½ke^ bgsgnðSÞ þ aw 
m þ w_  
m þ f ð35Þ 
Therefore,theproposedvariablestructurespeedcontrolwithadaptiveslidinggain 
resolves thespeedtrackingproblemfortheinductionmotor,withuncertaintiesin 
mechanicalparametersandloadtorque. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 308
4. Simulationresults 
In thissectionwewillstudythespeedregulationperformanceoftheproposedadaptive 
sliding-modefieldorientedcontrolversusspeedreferenceandloadtorquevariationsby 
means ofsimulationexamples.Inparticular,theexamplepresentedconsistofarepre- 
sentativespeedreferencetrackingproblem,combinedwithloadtorquevariationsduring 
the evolutionoftheexperimentandconsideringacertaindegreeofuncertainty,inorderto 
attain acompletescopeofthebehaviorofthesystem. 
The blockdiagramoftheproposedrobustcontrolschemeispresentedin Fig. 2. 
The block‘VSCcontroller’representstheproposedadaptivesliding-modecontroller,and 
it isimplementedbyEqs.(23),(35),and(26).Theblock‘limiter’limitsthecurrentapplied 
to themotorwindingssothatitremainswithinthelimitvalue,anditisimplementedbya 
saturationfunction.Theblock‘ dqe-abc’ makestheconversionbetweenthesynchro- 
nouslyrotatingandstationaryreferenceframes,andisimplementedbyEq.(11).Theblock 
‘currentcontroller’consistsofathreehysteresis-bandcurrentPWMcontrol,whichis 
basicallyaninstantaneousfeedbackcurrentcontrolmethodofPWMwheretheactual 
current(iabc) continuallytracksthecommandcurrent(iabc 
n ) withinahysteresisband.The 
block‘PWMinverter’isasixIGBT-diodebridgeinverterwith780VDCvoltagesource. 
The block‘fieldweakening’givesthefluxcommandbasedonrotorspeed,sothatthePWM 
controllerdoesnotsaturate.Theblock‘ids 
en calculation’providesthecurrentreference ids 
en 
fromtherotorfluxreferencethroughEq.(15).Theblock‘wr estimator’representsthe 
proposedrotorspeedandsynchronousspeedestimator,anditisimplementedbyEqs.(8) 
and (6)respectively.Finally,theblock‘IM’representstheinductionmotor. 
The inductionmotorusedinthiscasestudyisa50HP,460V,fourpole,60Hzmotor 
having thefollowingparameters: Rs ¼ 0:087 O, Rr ¼ 0:228 O, Ls=35.5 mH, Lr=35.5 mH, 
and Lm=34.7 mH. 
The systemhasthefollowingmechanicalparameters: J=1.357kgm2 and B=0.05 N 
m s.Itisassumedthatthereisanuncertaintyaround20%inthesystemparameters,which 
will beovercomebytheproposedslidingcontrol. 
The followingvalueshavebeenchosenforthecontrollerparameters: k=45 and g ¼ 30. 
In thisexamplethemotorstartsfromastandstillstateandwewanttherotorspeedto 
follow aspeedcommandthatstartsfromzeroandacceleratesuntiltherotorspeedis 
Fig. 2.Blockdiagramoftheproposedadaptivesliding-modecontrol. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 309
100 rad/s,thentherotorspeedismaintainedconstantandafter,attime1.3s,therotor 
deceleratesuntiltherotorspeedis80rad/s.Inthissimulationexample,thesystemstarts 
with aninitialloadtorque TL=0 Nmandattime t=2.3 stheloadtorquestepsfrom 
TL=0 to200Nm,andasbefore,itisassumedthatthereisanuncertaintyaround20%in 
the loadtorque. 
Fig. 3 shows thedesiredrotorspeed(dashedline)andtherealrotorspeed(solidline). 
As itmaybeobserved,afteratransitorytimeinwhichtheslidinggainisadapted,therotor 
speed tracksthedesiredspeedinspiteofsystemuncertainties.However,attime t=2.3 sa 
small speederrorcanbeobserved.Thiserrorappearsbecauseatorqueincrementoccursat 
this time,sothatthecontrolsystemlosestheso-called‘slidingmode’becausetheactual 
sliding gainistoosmallinordertoovercomethenewuncertaintyintroducedinthesystem 
due tothenewtorque.Butthen,afterashorttimetheslidinggainisadaptedonceagainso 
that thisgaincancompensateforthesystemuncertaintieswhicheliminatestherotor 
speed error. 
Fig. 4 presentsthetimeevolutionoftheestimatedslidinggain.Theslidinggainstarts 
from zeroandthenitisincreaseduntilitsvalueishighenoughtocompensateforthe 
system uncertainties.Besides,theslidingremainsconstantbecausethesystemuncertainties 
remain constantaswell.Later,attime2.3s,thereisanincrementinthesystem 
uncertaintiescausedbytheincrementintheloadtorque.Therefore,theslidingshouldbe 
adapted onceagaininordertoovercomethenewsystemuncertainties.Asitcanbeseenin 
the figureaftertheslidinggainisadapted,itremainsconstantagain,sincethesystem 
uncertaintiesremainconstantaswell. 
It shouldbenotedthattheadaptiveslidinggainallowstoemployasmallerslidinggain, 
so thatthevalueoftheslidinggaindonothavetobechosenhighenoughtocompensate 
for allpossiblesystemuncertainties,becausewiththeproposedadaptiveschemethesliding 
gain isadapted(ifitisnecessary)whenanewuncertaintyappearsinthesysteminorderto 
surmount thisuncertainty. 
Fig. 5 shows thetimeevolutionoftheslidingvariable.Inthisfigureitcanbeseenthat 
the systemreachtheslidingcondition(S(t)=0) attime t=0.13 s,butthenthesystemloses 
0 0.511.522.53 
0 
20 
40 
60 
80 
100 
120 
Time (s) 
Rotor Speed (rad/s) 
wm * 
wm 
Fig. 3.Referenceandrealrotorspeedsignals(wm 
n , wm). 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 310
this conditionattime t=2.3 sduetothetorqueincrementwhich,inturn,producesan 
incrementinthesystemuncertaintiesthatcannotbecompensatedbytheactualvalueof 
the slidinggain.However,afteratransitorytimeinwhichtheslidinggainisadaptedin 
order tocompensatethenewsystemuncertainty,thesystemreachesthesliding 
conditionagain. 
Fig. 6 showsthecurrentofonestatorwinding.Thisfigureshowsthatintheinitialstate, 
the currentsignalpresentsahighvaluebecauseahightorqueisnecessarytoincrementthe 
rotor speedduetotherotorinertia.Then,intheconstant-speedregion,themotortorque 
only hastocompensatethefrictionandtherefore,thecurrentislower.Finally,attime 
t=2.3 sthecurrentincreasesbecausetheloadtorquehasbeenincreased. 
0 0.511.522.53 
−0.5 
0 
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
Time (s) 
Sliding Variable 
Fig. 5.Slidingvariable. 
0 0.511.522.53 
0 
2 
4 
6 
8 
10 
12 
14 
Time (s) 
Sliding Gain 
Fig. 4.Estimatedslidinggain ð^b 
Þ. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 311
Fig. 7 shows themotortorque.Asinthecaseofthecurrent(Fig. 6), themotortorque 
has ahighinitialvalueinthespeedaccelerationzoneandthenthevaluedecreasesina 
constant region.Later,attime t=1.3 s,themotortorquedecreasesagaininorderto 
reduce therotorspeed.Finally,attime t=2.3 sthemotortorqueincreasesinorderto 
compensatetheloadtorqueincrement.Inthisfigureitmaybeseenthatinthemotor 
torque appearstheso-calledchatteringphenomenon,howeverthishighfrequencychanges 
in thetorquewillbefilteredbythemechanicalsysteminertia. 
5. Conclusions 
In thispapersensorlessrobustvectorcontrolforinductionmotordriveswithan 
adaptivevariablesliding-modevectorcontrollawhasbeenpresented.Therotorspeed 
0 0.511.522.53 
−500 
−400 
−300 
−200 
−100 
0 
100 
200 
300 
400 
500 
Time (s) 
Stator Current 
Fig. 6.Statorcurrent(isa). 
0 0.511.522.53 
−100 
−50 
0 
50 
100 
150 
200 
250 
300 
Motor Torque (N) 
Time (s) 
Fig. 7.Motortorque(Te). 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 312
estimatorisbasedonstatorvoltageequationsandrotorfluxequationsinthestationary 
referenceframe.Itisproposedasavariablestructurecontrolwhichusesanintegralsliding 
surfacetorelaxtherequirementoftheaccelerationsignal,thatisusualinconventional 
sliding-modespeedcontroltechniques.Duetothenatureoftheslidingcontrolthiscontrol 
scheme isrobustunderuncertaintiescausedbyparametererrorsorbychangesintheload 
torque. Moreover,theproposedvariablestructurecontrolincorporatesandadaptive 
algorithmtocalculatetheslidinggainvalue.Theadaptationoftheslidinggain,ontheone 
hand avoidstheneedofcomputingtheupperboundofthesystemuncertainties,andon 
the otherhandallowstoemployassmallerslidinggainaspossibletoovercometheactual 
system uncertainties.Thenthecontrolsignalofourproposedvariablestructurecontrol 
schemes willbesmallerthanthecontrolsignalsofthetraditionalvariablestructurecontrol 
schemes,becauseinthesetraditionalschemestheslidinggainvalueshouldbechosenhigh 
enoughtoovercomeallthepossibleuncertaintiesthatcouldappearinthesystemalong 
the time. 
The closedloopstabilityofthedesignpresentedinthispaperhasbeenprovedthought 
Lyapunovstabilitytheory.Finally,bymeansofsimulationexamples,ithasbeenshown 
that theproposedcontrolschemeperformsreasonablywellinpractice,andthatthespeed 
trackingobjectiveisachievedunderuncertaintiesintheparametersandloadtorque. 
Acknowledgments 
The authorsareverygratefultotheBasqueGovernmentbythesupportofthiswork 
through theprojectS-PE09UN12andtotheUPV/EHUbyitssupportthroughproject 
GUI07/08. 
References 
[1] W.Leonhard,ControlofElectricalDrives,Springer,Berlin,1996. 
[2] P.Vas,VectorControlofACMachines,OxfordSciencePublications,Oxford,1994. 
[3] B.K.Bose,ModernPowerElectronicsandACDrives,PrenticeHall,NewJersey,2001. 
[4] R.Beguenane,M.A.Ouhrouche,A.M.Trzynadlowski,Anewschemeforsensorlessinductionmotorcontrol 
drives operatinginlowspeedregion,MathematicsandComputersinSimulation71(2006)109–120. 
[5] S.Sunter,Slipenergyrecoveryofarotor-sidefieldorientedcontrolledwoundrotorinductionmotorfedby 
matrix converter,JournaloftheFranklinInstitute345(2008)419–435. 
[6] M.Comanescu,Aninduction-motorspeedestimatorbasedonintegralsliding-modecurrentcontrol,IEEE 
Transactions onIndustrialElectronics56(9)(2009)3414–3423. 
[7] M.I.Marei,M.F.Shaaban,A.A.El-Sattar,Aspeedestimationunitforinductionmotorsbasedonadaptive 
linear combiner,EnergyConversionandManagement50(2009)1664–1670. 
[8] A.Y.Alanis,E.N.Sanchez,A.G.Loukianov,E.A.Hernandez,Discrete-timerecurrenthighorderneural 
networks fornonlinearidentification,JournaloftheFranklinInstitute347(2010)1253–1265. 
[9] T-J.Ren,T-C.Chen,Robustspeed-controlledinductionmotordrivebasedonrecurrentneuralnetwork, 
Electric PowerSystemResearch76(2006)1064–1074. 
[10] M.Montanari,S.Peresada,A.Tilli,Aspeed-sensorlessindirectfield-orientedcontrolforinductionmotors 
based onhighgainspeedestimation,Automatica42(2006)1637–1650. 
[11] R.Marino,P.Tomei,C.M.Verrelli,Anadaptivetrackingcontrolfromcurrentmeasurementsforinduction 
motors withuncertainloadtorqueandrotorresistance,Automatica44(2008)2593–2599. 
[12] J.B.Oliveira,A.D.Araujo,S.M.Dias,Controllingthespeedofathree-phaseinductionmotorusinga 
simplified indirectadaptiveslidingmodescheme,ControlEngineeringPractice18(2010)577–584. 
[13] M.A.Fnaiech,F.Betin,G.A.Capolino,F.Fnaiech,Fuzzylogicandsliding-modecontrolsappliedtosix- 
phase inductionmachinewithopenphases,IEEETransactionsonIndustrialElectronics57(1)(2010) 
354–364. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 313
[14] M.Montazeri-Gh,A.Poursamad,B.Ghalichi,Applicationofgeneticalgorithmforoptimizationofcontrol 
strategy inparallelhybridelectricvehicles,JournaloftheFranklinInstitute343(2006)420–435. 
[15] A.Benchaib,C.Edwards,Nonlinearslidingmodecontrolofaninductionmotor,InternationalJournalof 
Adaptive ControlandSignalProcesing14(2000)201–221. 
[16] O.Barambones,A.J.Garrido,Asensorlessvariablestructurecontrolofinductionmotordrives,Electric 
Power SystemsResearch72(2004)21–32. 
[17] R.Yazdanpanah,J.Soltani,G.R.ArabMarkadeh,Nonlineartorqueandstatorfluxcontrollerforinduction 
motor drivebasedonadaptiveinput–outputfeedbacklinearizationandslidingmodecontrol,Energy 
ConversionandManagement49(2008)541–550. 
[18] B.Castillo-Toledo,S.DiGennaro,A.G.Loukianov,J.Rivera,Discretetimeslidingmodecontrolwith 
applicationtoinductionmotors,Automatica44(2008)3036–3045. 
[19] T.Orowska-Kowalska,M.Kami nski, K.Szabat,Implementationofasliding-modecontrollerwithan 
integral functionandfuzzygainvaluefortheelectricaldrivewithanelasticjoint,IEEETransactionson 
Industrial Electronics57(4)(2010)1309–1317. 
[20] V.I.Utkin,Slidingmodecontroldesignprinciplesandapplicationstoelectricdrives,IEEETransactionson 
Industrial Electronics40(1993)26–36. 
[21] H.Yang,Y.Xia,P.Shi,Observer-basedslidingmodecontrolforaclassofdiscretesystemsviadelta 
operator approach,JournaloftheFranklinInstitute347(2010)1199–1213. 
[22] I.Boiko,Frequencydomainprecisionanalysisanddesignofslidingmodeobservers,JournaloftheFranklin 
Institute 347(2010)899–909. 
[23] T.Furuhashi,S.Sangwongwanich,S.Okuma,Aposition-and-velocitysensorlesscontrolforbrushlessDC 
motors usinganadaptiveslidingmodeobserver,IEEETransactionsonIndustrialElectronics39(1992) 
89–95. 
[24] A.B.Proca,A.Keyhani,J.M.Miller,Sensorlesssliding-modecontrolofinductionmotorsusingoperating 
condition dependentmodels,IEEETransactionsonEnergyConversion18(2003)205–212. 
[25] G.Bartolini,A.Pisano,E.Punta,E.Usai,Asurveyofapplicationsofsecond-orderslidingmodecontrolto 
mechanicalsystems,InternationalJournalofControl76(2003)875–892. 
[26] M.Rashed,K.B.Goh,M.W.Dunnigan,P.F.A.MacConnell,A.F.Stronach,B.W.Williams,Sensorless 
second-ordersliding-modespeedcontrolofavoltage-fedinduction-motordriveusingnonlinearstate 
feedback, IEEProceedingsElectricPowerApplications152(2005)1127–1136. 
[27] C.Aurora,A.Ferrara,Aslidingmodeobserverforsensorlessinductionmotorspeedregulation, 
InternationalJournalofSystemsScience38(2007)913–929. 
[28] Y.Xia,Z.Zhu,C.Li,H.Yang,Q.Zhu,Robustadaptiveslidingmodecontrolforuncertaindiscrete-time 
systems withtimedelay,JournaloftheFranklinInstitute347(1)(2010)339–357. 
[29] M.C.Pai,Designofadaptiveslidingmodecontrollerforrobusttrackingandmodelfollowing,Journalofthe 
Franklin Institute347(2010)1838–1849. 
[30] J.J.E.Slotine,W.Li,AppliedNonlinearControl,Prentice-Hall,EnglewoodCliffs,NJ,USA,1991. 
O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 314

Weitere ähnliche Inhalte

Andere mochten auch

Viviendo el Sonido, tu comunidad de salud auditiva
Viviendo el Sonido, tu comunidad de salud auditivaViviendo el Sonido, tu comunidad de salud auditiva
Viviendo el Sonido, tu comunidad de salud auditivaViviendoelsonido
 
Growing a Fiercely Loyal, Engaged, Instagram Following
Growing a Fiercely Loyal, Engaged, Instagram FollowingGrowing a Fiercely Loyal, Engaged, Instagram Following
Growing a Fiercely Loyal, Engaged, Instagram FollowingDigital Megaphone
 
Company profile Sohm International
Company profile Sohm InternationalCompany profile Sohm International
Company profile Sohm Internationalsohminternational
 
User manual acer 1.0_a_a
User manual acer 1.0_a_aUser manual acer 1.0_a_a
User manual acer 1.0_a_aPaula Greend
 
Caso clinico juan
Caso clinico juanCaso clinico juan
Caso clinico juancrisfdez993
 
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Management
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood ManagementSocialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Management
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Managementcomspace GmbH & Co. KG
 
Para que conozcas las heras
Para que conozcas las herasPara que conozcas las heras
Para que conozcas las herasSilbea
 
Topic detection & tracking
Topic detection & trackingTopic detection & tracking
Topic detection & trackingGeorge Ang
 
Alcohol, Tabac I Drogues
Alcohol, Tabac I  DroguesAlcohol, Tabac I  Drogues
Alcohol, Tabac I DroguesJosepLluc
 
Presentacion Amee Taller
Presentacion Amee TallerPresentacion Amee Taller
Presentacion Amee Tallerguestd38c0f5
 
Yoriento en Expocontact 10
Yoriento en Expocontact 10Yoriento en Expocontact 10
Yoriento en Expocontact 10expocontact
 
Walt Disney Vs Codigo Da Vinci Diapositivas
Walt Disney Vs Codigo Da Vinci DiapositivasWalt Disney Vs Codigo Da Vinci Diapositivas
Walt Disney Vs Codigo Da Vinci Diapositivasdenisse
 

Andere mochten auch (20)

Resume, IT PM
Resume, IT PMResume, IT PM
Resume, IT PM
 
Calidad total
Calidad totalCalidad total
Calidad total
 
Viviendo el Sonido, tu comunidad de salud auditiva
Viviendo el Sonido, tu comunidad de salud auditivaViviendo el Sonido, tu comunidad de salud auditiva
Viviendo el Sonido, tu comunidad de salud auditiva
 
Growing a Fiercely Loyal, Engaged, Instagram Following
Growing a Fiercely Loyal, Engaged, Instagram FollowingGrowing a Fiercely Loyal, Engaged, Instagram Following
Growing a Fiercely Loyal, Engaged, Instagram Following
 
Company profile Sohm International
Company profile Sohm InternationalCompany profile Sohm International
Company profile Sohm International
 
Kathiravan-T
Kathiravan-TKathiravan-T
Kathiravan-T
 
User manual acer 1.0_a_a
User manual acer 1.0_a_aUser manual acer 1.0_a_a
User manual acer 1.0_a_a
 
Caso clinico juan
Caso clinico juanCaso clinico juan
Caso clinico juan
 
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Management
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood ManagementSocialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Management
Socialmediaweek Hamburg 2015 - 6 Learnings zum Thema Feelgood Management
 
Para que conozcas las heras
Para que conozcas las herasPara que conozcas las heras
Para que conozcas las heras
 
NST booklet AIESEC in Austria
NST booklet AIESEC in AustriaNST booklet AIESEC in Austria
NST booklet AIESEC in Austria
 
SafetyPoints Client Profiles
SafetyPoints Client ProfilesSafetyPoints Client Profiles
SafetyPoints Client Profiles
 
STARTUP-ESOPs
STARTUP-ESOPsSTARTUP-ESOPs
STARTUP-ESOPs
 
Secadores a gas y eléctricos
Secadores a gas y eléctricosSecadores a gas y eléctricos
Secadores a gas y eléctricos
 
Topic detection & tracking
Topic detection & trackingTopic detection & tracking
Topic detection & tracking
 
Alcohol, Tabac I Drogues
Alcohol, Tabac I  DroguesAlcohol, Tabac I  Drogues
Alcohol, Tabac I Drogues
 
Programa impulsa t v4
Programa impulsa t v4Programa impulsa t v4
Programa impulsa t v4
 
Presentacion Amee Taller
Presentacion Amee TallerPresentacion Amee Taller
Presentacion Amee Taller
 
Yoriento en Expocontact 10
Yoriento en Expocontact 10Yoriento en Expocontact 10
Yoriento en Expocontact 10
 
Walt Disney Vs Codigo Da Vinci Diapositivas
Walt Disney Vs Codigo Da Vinci DiapositivasWalt Disney Vs Codigo Da Vinci Diapositivas
Walt Disney Vs Codigo Da Vinci Diapositivas
 

Ähnlich wie A robust vector control for induction motor drives with an adaptive sliding mode control law

A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...
A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...
A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...IJECEIAES
 
A New Induction Motor Adaptive Robust Vector Control based on Backstepping
A New Induction Motor Adaptive Robust Vector Control based on Backstepping A New Induction Motor Adaptive Robust Vector Control based on Backstepping
A New Induction Motor Adaptive Robust Vector Control based on Backstepping IJECEIAES
 
Adaptive Variable Structure Controller Application to Induction Motor Drive
Adaptive Variable Structure Controller Application to Induction Motor DriveAdaptive Variable Structure Controller Application to Induction Motor Drive
Adaptive Variable Structure Controller Application to Induction Motor DriveIJERA Editor
 
Implementation of pi, fuzzy & ann controllers to improve dynamic response...
Implementation of pi, fuzzy & ann controllers to improve dynamic response...Implementation of pi, fuzzy & ann controllers to improve dynamic response...
Implementation of pi, fuzzy & ann controllers to improve dynamic response...eSAT Journals
 
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...High Performance Speed Control of Single-Phase Induction Motors Using Switchi...
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...IJPEDS-IAES
 
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...IRJET Journal
 
A High Gain Observer Based Sensorless Nonlinear Control of Induction Machine
A High Gain Observer Based Sensorless Nonlinear Control of Induction MachineA High Gain Observer Based Sensorless Nonlinear Control of Induction Machine
A High Gain Observer Based Sensorless Nonlinear Control of Induction MachineIJPEDS-IAES
 
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...IAES-IJPEDS
 
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...IAES-IJPEDS
 
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...IJPEDS-IAES
 
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...IRJET Journal
 
IRJET- An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...
IRJET-  	  An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...IRJET-  	  An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...
IRJET- An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...IRJET Journal
 
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...IJPEDS-IAES
 
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...IAEME Publication
 

Ähnlich wie A robust vector control for induction motor drives with an adaptive sliding mode control law (20)

A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...
A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...
A Novel Technique for Tuning PI-controller in Switched Reluctance Motor Drive...
 
A New Induction Motor Adaptive Robust Vector Control based on Backstepping
A New Induction Motor Adaptive Robust Vector Control based on Backstepping A New Induction Motor Adaptive Robust Vector Control based on Backstepping
A New Induction Motor Adaptive Robust Vector Control based on Backstepping
 
G43013539
G43013539G43013539
G43013539
 
A Concise Review of Control Techniques for Reliable and Efficient Control of...
A Concise Review of Control Techniques for Reliable and  Efficient Control of...A Concise Review of Control Techniques for Reliable and  Efficient Control of...
A Concise Review of Control Techniques for Reliable and Efficient Control of...
 
MRAS-based Sensorless Speed Integral Backstepping Control for Induction Machi...
MRAS-based Sensorless Speed Integral Backstepping Control for Induction Machi...MRAS-based Sensorless Speed Integral Backstepping Control for Induction Machi...
MRAS-based Sensorless Speed Integral Backstepping Control for Induction Machi...
 
Adaptive Variable Structure Controller Application to Induction Motor Drive
Adaptive Variable Structure Controller Application to Induction Motor DriveAdaptive Variable Structure Controller Application to Induction Motor Drive
Adaptive Variable Structure Controller Application to Induction Motor Drive
 
Implementation of pi, fuzzy & ann controllers to improve dynamic response...
Implementation of pi, fuzzy & ann controllers to improve dynamic response...Implementation of pi, fuzzy & ann controllers to improve dynamic response...
Implementation of pi, fuzzy & ann controllers to improve dynamic response...
 
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...High Performance Speed Control of Single-Phase Induction Motors Using Switchi...
High Performance Speed Control of Single-Phase Induction Motors Using Switchi...
 
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...
IRJET - Effect of Changing Membership Functions in the Operation of Fuzzy Con...
 
vehicle steer by wire
vehicle steer by wirevehicle steer by wire
vehicle steer by wire
 
A High Gain Observer Based Sensorless Nonlinear Control of Induction Machine
A High Gain Observer Based Sensorless Nonlinear Control of Induction MachineA High Gain Observer Based Sensorless Nonlinear Control of Induction Machine
A High Gain Observer Based Sensorless Nonlinear Control of Induction Machine
 
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor wit...
 
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...
Effect of Parametric Variations and Voltage Unbalance on Adaptive Speed Estim...
 
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...
Total Harmonic Distortion Analysis of a Four Switch 3-Phase Inverter Fed Spee...
 
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...
IRJET-Comparison between Scalar & Vector Control Technique for Induction Moto...
 
IRJET- An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...
IRJET-  	  An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...IRJET-  	  An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...
IRJET- An Adaptive Neuro Fuzzy based SMO for Speed Estimation of Sensorle...
 
Amtech Drive Solution Newsletter
Amtech Drive Solution NewsletterAmtech Drive Solution Newsletter
Amtech Drive Solution Newsletter
 
Real time implementation of anti-windup PI controller for speed control of in...
Real time implementation of anti-windup PI controller for speed control of in...Real time implementation of anti-windup PI controller for speed control of in...
Real time implementation of anti-windup PI controller for speed control of in...
 
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...
Low cost Real Time Centralized Speed Control of DC Motor Using Lab View -NI U...
 
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
ENHANCEMENT OF STATIC & DYNAMIC RESPONSE OF THE THREE PHASE INDUCTION MOTOR U...
 

Kürzlich hochgeladen

Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organizationchnrketan
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书rnrncn29
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 

Kürzlich hochgeladen (20)

Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organization
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 

A robust vector control for induction motor drives with an adaptive sliding mode control law

  • 1. Journal oftheFranklinInstitute348(2011)300–314 A robustvectorcontrolforinductionmotordrives with anadaptivesliding-modecontrollaw Oscar Barambonesa,, PatxiAlkortab aDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeVitoria,UniversidaddelPa´ıs Vasco,Nievescano12,01006 Vitoria, Spain bDpto. Ingenier´ıa deSistemasyAutom atica, EUIdeEibar,UniversidaddelPa´ıs Vasco,Avda.Otaola,2920600 Eibar (Gipuzkoa) Received 4January2010;receivedinrevisedform24November2010;accepted30November2010 Available online7December2010 Abstract A noveladaptivesliding-modecontrolsystemisproposedinordertocontrolthespeedofan induction motordrive.Thisdesignemploystheso-calledvector(orfieldoriented)controltheoryfor the inductionmotordrives.Thesliding-modecontrolisinsensitivetouncertaintiesandpresentsan adaptive switchinggaintorelaxtherequirementfortheboundoftheseuncertainties.Theswitching gain isadaptedusingasimplealgorithmwhichdoesnotimplyahighcomputationalload.Stability analysis basedonLyapunovtheoryisalsoperformedinordertoguaranteetheclosedloopstability. Finally, simulationresultsshownotonlythattheproposedcontrollerprovideshigh-performance dynamic characteristics,butalsothatthisschemeisrobustwithrespecttoplantparametervariations and externalloaddisturbances. 2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction The inductionmotorisacomplexstructurethatconvertselectricalenergy intomechanical energy. Althoughinductionmachineswereintroducedmorethanahundredyearsago,the researchanddevelopmentinthisareaappearsto benever-ending.Traditionally,ACmachines with aconstantfrequencysinusoidalpower supplyhavebeenusedinconstant-speed applications, whereasDC machineswerepreferredforvariablespeeddrives,sincetheypresent www.elsevier.com/locate/jfranklin 0016-0032/$32.00 2010 TheFranklinInstitute.PublishedbyElsevierLtd.Allrightsreserved. doi:10.1016/j.jfranklin.2010.11.008 Correspondingauthor.Tel.: þ34 945013235;fax: þ34 945013270. E-mail address: ispbacao@ehu.es(O.Barambones).
  • 2. a simplercontrol.Besides,ACmachinespresentedsomedisadvantagesincomparisonwith DC ones,ashighercost,higherrotorinertiaand maintenanceproblems.Nevertheless,inthe last twoorthreedecadeswehaveseenextensiveresearchanddevelopmenteffortsinvariable- frequency,variable-speedAC machinedrivestechnology [1], whichhaveovercomesomeofthe abovedisadvantagesoftheACmotors. The developmentoffieldorientedcontrolinthebeginningof1970smadeitfeasibleto control theinductionmotorasaseparatelyexcitedDCmotor [1–3]. Inthissense,thefield- orientedtechniqueguaranteesthedecouplingoftorqueandfluxcontrolcommandsforthe inductionmotor.Thismeansthatwhenthefluxisgovernedbymeansofcontrollingthe current id, thetorqueisnotaffected.Similarly,whenthetorqueisgovernedbycontrolling the current iq, thefluxisnotaffectedand,therefore,itcanbeachievedtransientresponse as fastasinthecaseofDCmachines. On theotherhand,whendealingwithindirectfield-orientedcontrolofinduction motors,aknowledgeofrotorspeedisrequiredinordertoorienttheinjectedstatorcurrent vector andtoestablishanadequatespeedfeedbackcontrol.Althoughtheuseofaflux estimatorindirectfieldorientedcontroleliminatestheneedofthespeedsensorinorderto orient theinjectedstatorcurrentvector,thismethodisnotpractical.Thisisbecausethe flux estimatordoesnotworkproperlyinalowspeedregion.Thefluxestimatorpresentsa pole ontheoriginofthe S plane (pureintegrator),andthereforeitisverysensitivetothe offset ofthevoltagesensorandtheparametervariations. However,thespeedorpositionsensorofinductionmotorstilllimitsitsapplicationsto somespecialenvironmentsnotonlyduetothedifficultiesofmountingthesensor,butalso becauseoftheneedoflowcostandreliablesystems.Theresearchanddevelopmentworkon a sensorlessdriverfortheACmotorisprogressinggreatly.Muchworkhasbeendoneusing thefieldorientedbasedmethodapproach [4–7]. Intheseschemesthespeedisobtainedbased onthemeasurementofstatorvoltagesandcurrents.Ontheotherhand,theinductionmotor modelcanbeobtainedusingaNeuralNetworkapproach.IntheworkofAlanisetal. [8] a discrete-timenonlinearsystemidentificationviarecurrenthighorderneuralnetworksis proposed.Inthisworkasixth-orderdiscrete-timeinductionmotormodelinthestatorfixed referenceframeiscalculatedusingtheproposedrecurrentneuralnetworksscheme. Nevertheless,therobustnesstoparametervariationsandloaddisturbancesinthe inductionmachinesstilldeservestobefurtherstudiedand,inparticular,specialattention should bepaidtothelowspeedregiontransients. Thus, theperformanceofthefieldorientedcontrolstronglydependsonuncertainties, which areusuallyduetounknownparameters,parametervariations,externalload disturbances,unmodelledandnonlineardynamics,etc.Therefore,manystudieshavebeen made onthemotordrivesinordertopreservetheperformanceundertheseparameter variationsandexternalloaddisturbances,suchasnonlinearcontrol,optimalcontrol, variablestructuresystemcontrol,adaptivecontrol,neuralcontrolandfuzzycontrol [9–13]. Recently,thegeneticalgorithmapproachhasalsobeenusedinordertocontrolthe electric motors.TheworkofMontazeri-Ghetal. [14], describestheapplicationofthe geneticalgorithmfortheoptimizationofthecontrolparametersinparallelhybridelectric vehiclesdrivenbyanelectricinductionmachine. To overcometheabovesystemuncertainties,the variablestructurecontrolstrategyusing the sliding-modehasbeenfocussedonmanystudiesandresearchforthecontroloftheAC servo drivesysteminthepastdecade [15–19]. Thesliding-modecontrolcanoffermanygood properties,suchasgoodperformanceagainstunmodelled dynamics,insensitivitytoparameter O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 301
  • 3. variations,externaldisturbance rejection andfastdynamicresponse [20]. Theseadvantagesof the sliding-modecontrolmaybeemployedinthepositionandspeedcontrolofanACservo system. The robustpropertiesofthesliding-modesystemsarealsobeenemployedinthe observersdesign [21]. Inthisworkanobserver-basedsliding-modecontrolproblemis investigatedforaclassofuncertaindeltaoperatorsystemswithnonlinearexogenous disturbanceandthecontrolsystemstabilityisdemonstratedusingtheLyapunovstability theory. IntheworkofBoiko [22] the estimationprecisionandbandwidthofsliding-mode observersareanalyzedinthefrequencydomainfordifferentsettingsoftheobserverdesign parameters.Inthispaperanexampleofsliding-modeobserverdesignforestimationofDC motor speedfromthemeasurementsofarmaturecurrentisconsidered. A position-and-velocitysensorlesscontrolforbrushlessDCmotorsusinganadaptive sliding modeobserverisproposedinFuruhashi [23]. Inthisworkasliding-modeobserver is proposedinordertoestimatethepositionandvelocityforbrushlessDCmotors.Then, the velocityofthesystemisregulatedusingaPIcontrol.Asensorlesssliding-modetorque control forinductionmotorsusedinhybridelectricvehicleapplicationsisdevelopedin Proca etal. [24]. Thesliding-modecontrolproposedinthisworkallowsforfastandprecise torque trackingoverawiderangeofspeed.Thepaperalsopresentstheidentificationand parameterestimationofaninductionmotormodelwithvaryingparameters.Inthepaper [25] a surveyofapplicationsofsecond-ordersliding-modecontroltomechanicalsystemsis presented.Inthispaperdifferentsecond-ordersliding-modecontrollers,previously presentedintheliterature,areshownandsomechallengingcontrolproblemsinvolving mechanicalsystemsareaddressedandsolved.Arobustsliding-modesensorlessspeed- control schemeofavoltage-fedinductionmotorisproposedinRashedetal. [26]. Inthis work asecond-orderslidingmodeisproposedinordertoreducethechatteringproblem that usuallyappearsinthetraditionalsliding-modecontrollers.IntheworkofAuroraand Ferrara [27] a sliding-modecontrolalgorithmforcurrent-fedinductionmotorsis presented.Inthispaperisproposedanadaptivesecond-ordersliding-modeobserverfor speed androtorflux,andtheloadtorqueandtherotortimeconstantarealsoestimated. Thehigherorderslidingmode(HOSM)proposedinthiswork,presentsomeadvantagesover standardsliding-modecontrolschemes,oneofthemostimportantisthechatteringreduction. However intheHOSManaccurateknowledgeofrotorfluxandmachineparametersisthekey factorinordertoobtainahigh-performanceandhigh-efficiencyinduction-motorcontrol scheme. Then,thesecontrolschemesrequireamorepreciseknowledgeofthesystemparameters or theuseofestimatorsinordertocalculatethesystemparameters,whichimpliesmore computationalcostthantraditionalsliding-modecontrollers. On theotherhand,theslidingcontrolschemesrequirepriorknowledgeoftheupperbound for thesystemuncertaintiessincethisboundis employed intheswitchinggaincalculation. It shouldbenotedthatthechoiceofsuchboundmaynotbeeasilyobtainedduetothe complicatedstructureoftheuncertainties inpracticalcontrolsystems [28,29]. Moreover,this upperboundshouldbedeterminedasaccurately aspossible,becausethevaluetobe considered fortheslidinggainincreaseswiththe bound,andthereforethecontroleffortwillbe also proportionaltothisbound.Hence,ahigh upperboundforthesystemuncertainties implies morecontroleffortandtheproblemofthechatteringwillbeincreased. In ordertosurmountthisdrawback,inthispaperisproposedanadaptivelawinorder to calculatetheslidinggain.Therefore,inourproposedadaptivesliding-modecontrol scheme wedonotneedtocalculateanupperboundofthesystemuncertainties,which O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 302
  • 4. greatlysimplifiesthecontrollerdesign.Moreover,thisupperboundcanbeunknownand can bevariablealongthetimebecausetheslidinggainisadaptedon-line. In thissense,thispaperpresentsanewsensorlessvectorcontrolschemeconsistingon the onehandofaspeedestimationalgorithmsothatthereisnoneedforaspeedsensor and ontheotherhandofanadaptativevariablestructurecontrollawwithanintegral sliding surfacethatcompensatesfortheuncertaintiesinthesystem.Intheproposed adaptivesliding-modecontrolscheme,unlikethetraditionalsliding-modecontrolschemes, the slidinggainisnotcalculatedinadvance,becauseitisestimatedon-lineinorderto compensatethepresentsystemuncertaintiesthatcanbevariablesalongthetime. Using thisvariablestructurecontrolintheinductionmotordrive,thecontrolledspeedis insensitivetovariationsinthemotorparametersandloaddisturbances.Thisvariable structurecontrolprovidesagoodtransientresponseandexponentialconvergenceofthe speed trajectorytrackingdespiteparameteruncertaintiesandloadtorquedisturbances. The closedloopstabilityoftheproposedschemeisdemonstratedusingLyapunov stabilitytheory,andtheexponentialconvergenceofthecontrolledspeedisalsoprovided. Thisreportisorganizedasfollows.Therotor speedestimationisintroducedinSection2. Then, theproposedrobustspeedcontrolwithadaptativeslidinggainispresentedinSection3. In Section4,somesimulationresultsarepresented.Finally,concludingremarksarestatedin the lastsection. 2. Rotorspeedcomputation Many schemesbasedonsimplifiedmotormodelshavebeendevisedtosensethespeedof the inductionmotorfrommeasuredterminalquantitiesforcontrolpurposes.Inorderto obtain anaccuratedynamicrepresentationofthemotorspeed,itisnecessarytobasethe calculationonthecoupledcircuitequationsofthemotor. Since themotorvoltagesandcurrentsaremeasuredinastationaryframeofreference,it is alsoconvenienttoexpresstheseequationsinthatstationaryframe. From thestatorvoltageequationsinthestationaryframeitisobtained [3]: _c dr ¼ Lr Lm vds Lr Lm Rs þ sLs d dt ids ð1Þ _c qr ¼ Lr Lm vqs Lr Lm Rs þ sLs d dt iqs ð2Þ where c is thefluxlinkage; L is theinductance; v is thevoltage; R is theresistance; i is the current and s ¼ 1L2 m=ðLrLsÞ is themotorleakagecoefficient.Thesubscripts r and s denoterespectivelytherotorandstatorvaluesreferredtothestator,andthesubscripts d and q denote the dq-axiscomponentsinthestationaryreferenceframe. The rotorfluxequationsinthestationaryframeare [3] _c dr ¼ Lm Tr idswrcqr 1 Tr cdr ð3Þ _c qr ¼ Lm Tr iqs þ wrcdr 1 Tr cqr ð4Þ where wr is therotorelectricalspeedand Tr=Lr/Rr is therotortimeconstant. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 303
  • 5. The angle ye of therotorfluxvector(cr ) inrelationtothe d-axisofthestationaryframe is definedasfollows: ye ¼ arctan cqr cdr ð5Þ being itsderivative: _y e ¼ we ¼ cdr _c qrcqr _c dr c2 dr þ c2 qr ð6Þ SubstitutingEqs.(3)and(4)inEq.(6)itisobtained: we ¼ wr Lm Tr cdriqscqrids c2 dr þ c2 qr ! ð7Þ Then, substitutingEq.(6)inEq.(7),andsolvingfor wr we obtain wr ¼ 1 c2 r cdr _c qrcqr _c dr Lm Tr ðcdriqscqridsÞ ð8Þ where c2 r ¼ c2 dr þ c2 qr. Therefore,givenacompleteknowledgeofthemotorparameters,theinstantaneous speed wr can becalculatedfromthepreviousequation,wherethestatormeasuredcurrent and voltages,andtherotorfluxestimationobtainedfromarotorfluxobserverbasedon Eqs. (1)and(2)havebeenemployed. 3. Variablestructurerobustspeedcontrolwithadaptiveslidinggain In general,themechanicalequationofaninductionmotorcanbewrittenas Jw_ m þ Bwm þ TL ¼ Te ð9Þ where J and B are theinertiaconstantandtheviscousfrictioncoefficientoftheinduction motorsystemrespectively; TL is theexternalload; wm is therotormechanicalspeedin angularfrequency,whichisrelatedtotherotorelectricalspeedby wm=2wr/p where p is the polenumbers,and Te denotesthegeneratedtorqueofaninductionmotor,definedas [3] Te ¼ 3p 4 Lm Lr ðce drie qsce qrie dsÞ ð10Þ where ce dr and ce qr are therotor-fluxlinkages,thesubscript‘e’denotesthatthequantityis referredtothesynchronouslyrotatingreferenceframe; iqs e and ids e are thestatorcurrents, and p is thepolenumber. The relationbetweenthesynchronouslyrotatingreferenceframeandthestationary reference frameiscomputedbytheso-calledreversePark’stransformation: xa xb xc 2 64 3 75 ¼ cosðyeÞ sinðyeÞ cosðye2p=3Þ sinðye2p=3Þ cosðye þ 2p=3Þ sinðye þ 2p=3Þ 2 64 3 75 xd xq # ð11Þ where ye is theanglepositionbetweenthe d-axis ofthesynchronouslyrotatingandthe stationaryreferenceframes,andthequantitiesareassumedtobebalanced. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 304
  • 6. Using thefield-orientationcontrolprinciple [3] the currentcomponent ids e is alignedin the directionoftherotorfluxvector cr, andthecurrentcomponent iqs e is alignedinthe directionperpendiculartoit.Undertheseconditions,itissatisfiedthat ce qr ¼ 0; ce dr ¼ jcrj ð12Þ Fig. 1 shows thevectorialdiagramoftheinductionmotorinthestationaryandinthe synchronouslyrotatingreferenceframes.Thesubscripts‘s’indicatesthestationaryframe and thesubscript‘e’indicatesthesynchronouslyrotatingreferenceframe. Therefore,takingintoaccountthepreviousresults,theequationofinductionmotor torque (10)issimplifiedto Te ¼ 3p 4 Lm Lr ce drie qs ¼ KT ie qs ð13Þ wherethetorqueconstant, KT, isdefinedasfollows: KT ¼ 3p 4 Lm Lr ce dr ð14Þ ce dr being thecommandrotorflux. With theabove-mentionedfieldorientation,thedynamicsoftherotorfluxisgivenby [3] dce dr dt þ ce dr Tr ¼ Lm Tr ie ds ð15Þ Then, themechanicalequation(9)becomes w_ m þ awm þ f ¼ bie qs ð16Þ Fig. 1.Vectorialdiagramoftheinductionmotor. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 305
  • 7. where theparametersaredefinedas a ¼ B J ; b ¼ KT J ; f ¼ TL J ð17Þ Now,wearegoingtoconsiderthepreviousmechanicalequation(16)withuncertainties as follows: w_ m ¼ ða þ DaÞwmðf þ DfÞ þ ðb þ DbÞie qs ð18Þ where theterms Da, Db and Df representtheuncertaintiesoftheterms a, b and f respectively.Itshouldbenotedthattheseuncertaintiesareunknown,andthattheprecise calculationofanupperboundis,ingeneral,ratherdifficulttoachieve. Let usdefinethetrackingspeederrorasfollows: eðtÞ ¼ wmðtÞw mðtÞ ð19Þ where wm n is therotorspeedcommand. Takingthederivativeofthepreviousequationwithrespecttotimeyields e_ðtÞ ¼ w_ mw_ m ¼ aeðtÞ þ uðtÞ þ dðtÞ ð20Þ where thefollowingtermshavebeencollectedinthesignal u(t): uðtÞ ¼ bie qsðtÞaw mðtÞf ðtÞw_ mðtÞ ð21Þ and theuncertaintytermshavebeencollectedinthesignal d(t), dðtÞ ¼ DawmðtÞDf ðtÞ þ Dbie qsðtÞ ð22Þ To compensatefortheabovedescribeduncertaintiespresentinthesystem,asliding adaptivecontrolschemeisproposed.Intheslidingcontroltheory,theswitchinggainmust be constructedsoastoattaintheslidingcondition [20,30]. Inordertomeetthisconditiona suitable choiceoftheslidinggainshouldbemadetocompensatefortheuncertainties.To select theslidinggainvector,anupperboundoftheparametervariations,unmodelled dynamics,noisemagnitudes,etc.shouldbegiven,butinpracticalapplicationsthereare situationsinwhichtheseboundsareunknown,oratleastdifficulttocalculate.Asolution could betochooseasufficientlyhighvaluefortheslidinggain,butthisapproachcould cause atoohighcontrolsignal,oratleastmorecontrolactivitythanneededinorderto achieve thecontrolobjective. One possiblewaytoovercomethisdifficultyistoestimatethegainandtoupdateitby means ofsomeadaptationlaw,sothattheslidingconditionisachieved. Now,wearegoingtoproposetheslidingvariable S(t) withanintegralcomponentas SðtÞ ¼ eðtÞ þ Z t 0 ða þ kÞeðtÞ dt ð23Þ where k is aconstantgain,and a is aparameterthatwasalreadydefinedinEq.(17). Then theslidingsurfaceisdefinedas SðtÞ ¼ eðtÞ þ Z t 0 ða þ kÞeðtÞ dt ¼ 0 ð24Þ Now, wearegoingtodesignavariablestructurespeedcontroller,thatincorporatesan adaptiveslidinggain,inordertocontroltheACmotordrive uðtÞ ¼ keðtÞ^b ðtÞg sgnðSÞ ð25Þ O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 306
  • 8. wherethe k is thegaindefinedpreviously, ^b is theestimatedswitchinggain, g is apositive constant, S is theslidingvariabledefinedinEq.(23)andsgnðÞ is thesignfunction. The switchinggain ^b is adaptedaccordingtothefollowingupdatinglaw: _^b ¼ gjSj; ^b ð0Þ ¼ 0 ð26Þ where g is apositiveconstantthatletuschoosetheadaptationspeedfortheslidinggain. In ordertoobtainthespeedtrajectorytracking,thefollowingassumptionsshouldbe formulated: ðA1Þ The gain k must bechosensothattheterm(aþk) isstrictlypositive.Thereforethe constant k should be k4a. ðA2Þ Thereexitsanunknownfinitenon-negativeswitchinggain b such that b4dmax þ Z; Z40 where dmaxZjdðtÞj 8t and Z is apositiveconstant. Note thatthisconditiononlyimpliesthattheuncertaintiesofthesystemarebounded magnitudes. ðA3Þ The constant g must bechosensothat gZ1. Theorem 1. Consider theinductionmotorgivenbyEq. (18). Then, if assumptions ðA1Þ–ðA3Þ are verified, the controllaw (25) leads therotormechanicalspeedwm(t) so thatthespeed trackingerrore(t)=wm(t)wm n (t) tends tozeroasthetimetendstoinfinity. The proofofthistheoremwillbecarriedoutusingtheLyapunovstabilitytheory. Proof. Define theLyapunovfunctioncandidate: VðtÞ ¼ 1 2 SðtÞSðtÞ þ 1 2 ~b ðtÞ~b ðtÞ ð27Þ where S(t) istheslidingvariabledefinedpreviouslyand ~b ðtÞ ¼ ^b ðtÞb Its timederivativeiscalculatedas _V ðtÞ ¼ SðtÞ_S ðtÞ þ ~b ðtÞ _~b ðtÞ ¼ S½_e þ ða þ kÞe þ ~b ðtÞ _^b ðtÞ ¼ S½ðae þ u þ dÞ þ ðke þ aeÞ þ ~bgjSj ¼ S½u þ d þ ke þ ð^b bÞgjSj ¼ S½ke^bgsgnðSÞ þ d þ ke þ ð^b bÞgjSj ¼ S½d^ bgsgnðSÞ þ ^bgjSjbgjSj ¼ dS^ bgjSj þ ^ bgjSjbgjSj ð28Þ rjdjjSjbgjSj rjdjjSjðdmax þ ZÞgjSj ¼ jdjjSjdmaxgjSjZgjSj rZgjSj ð29Þ O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 307
  • 9. then _V ðtÞr0 ð30Þ It shouldbenotedthatEqs.(23),(20),(25)and(26),andtheassumptions ðA2Þ and ðA3Þ have beenusedintheproof. UsingLyapunov’sdirectmethod,since V(t) isclearlypositive-definite, _V ðtÞ is negative semidefiniteand V(t) tendstoinfinityas S(t) and ~b ðtÞ tends toinfinity,thentheequilibrium at theorigin ½SðtÞ; ~b ðtÞ ¼½0; 0 is globallystable,andthereforethevariables S(t) and ~b ðtÞ are bounded.Then,since S(t) isboundedonehasthat e(t) isalsobounded. Besides,computingthederivativeofEq.(23),itisobtained: _S ðtÞ ¼ _eðtÞ þ ða þ kÞeðtÞ ð31Þ then, substitutingEq.(20)inEq.(31), _S ðtÞ ¼ aeðtÞ þ uðtÞ þ dðtÞ þ ða þ kÞeðtÞ ¼ keðtÞ þ dðtÞ þ uðtÞ ð32Þ FromEq.(32)wecanconcludethat _S ðtÞ is boundedbecause e(t), u(t) and d(t) are bounded. Now,fromEq.(28)itisdeducedthat €V ðtÞ ¼ d_S ðtÞbg d dt jSðtÞj ð33Þ which isaboundedquantitybecause _S ðtÞ is bounded. Undertheseconditions,since €V is bounded, _V is auniformlycontinuousfunction,so Barbalat’slemmaletusconcludethat _V -0 as t-1, whichimpliesthat SðtÞ-0 as t-1. Therefore S(t) tendstozeroasthetime t tendstoinfinity.Moreover,alltrajectories startingofftheslidingsurface S=0 mustreachitasymptoticallyandthenwillremainonthis surface.Thissystem’sbehavior,onceontheslidingsurfaceisusuallycalled slidingmode [20]. Whentheslidingmodeoccursontheslidingsurface(24),then SðtÞ ¼ _S ðtÞ ¼ 0, and therefore thedynamicbehaviorofthetrackingproblem(20)isequivalentlygovernedby the followingequation: _S ðtÞ ¼ 0 ) _eðtÞ ¼ ða þ kÞeðtÞ ð34Þ Then, underassumption ðA1Þ, thetrackingerror e(t) convergestozeroexponentially. It shouldbenotedthat,atypicalmotionundersliding-modecontrolconsistsofa reaching phase duringwhichtrajectoriesstartingofftheslidingsurface S=0 movetowardsitand reachit,followedbya slidingphase duringwhichthemotionisconfinedtothissurfaceand wherethesystemtrackingerror,representedbythereduced-ordermodel(34),tendstozero. Finally,thetorquecurrentcommand, iqs en(t), canbeobtaineddirectlysubstitutingEq.(25) in Eq.(21): ie qs ðtÞ ¼ 1 b ½ke^ bgsgnðSÞ þ aw m þ w_ m þ f ð35Þ Therefore,theproposedvariablestructurespeedcontrolwithadaptiveslidinggain resolves thespeedtrackingproblemfortheinductionmotor,withuncertaintiesin mechanicalparametersandloadtorque. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 308
  • 10. 4. Simulationresults In thissectionwewillstudythespeedregulationperformanceoftheproposedadaptive sliding-modefieldorientedcontrolversusspeedreferenceandloadtorquevariationsby means ofsimulationexamples.Inparticular,theexamplepresentedconsistofarepre- sentativespeedreferencetrackingproblem,combinedwithloadtorquevariationsduring the evolutionoftheexperimentandconsideringacertaindegreeofuncertainty,inorderto attain acompletescopeofthebehaviorofthesystem. The blockdiagramoftheproposedrobustcontrolschemeispresentedin Fig. 2. The block‘VSCcontroller’representstheproposedadaptivesliding-modecontroller,and it isimplementedbyEqs.(23),(35),and(26).Theblock‘limiter’limitsthecurrentapplied to themotorwindingssothatitremainswithinthelimitvalue,anditisimplementedbya saturationfunction.Theblock‘ dqe-abc’ makestheconversionbetweenthesynchro- nouslyrotatingandstationaryreferenceframes,andisimplementedbyEq.(11).Theblock ‘currentcontroller’consistsofathreehysteresis-bandcurrentPWMcontrol,whichis basicallyaninstantaneousfeedbackcurrentcontrolmethodofPWMwheretheactual current(iabc) continuallytracksthecommandcurrent(iabc n ) withinahysteresisband.The block‘PWMinverter’isasixIGBT-diodebridgeinverterwith780VDCvoltagesource. The block‘fieldweakening’givesthefluxcommandbasedonrotorspeed,sothatthePWM controllerdoesnotsaturate.Theblock‘ids en calculation’providesthecurrentreference ids en fromtherotorfluxreferencethroughEq.(15).Theblock‘wr estimator’representsthe proposedrotorspeedandsynchronousspeedestimator,anditisimplementedbyEqs.(8) and (6)respectively.Finally,theblock‘IM’representstheinductionmotor. The inductionmotorusedinthiscasestudyisa50HP,460V,fourpole,60Hzmotor having thefollowingparameters: Rs ¼ 0:087 O, Rr ¼ 0:228 O, Ls=35.5 mH, Lr=35.5 mH, and Lm=34.7 mH. The systemhasthefollowingmechanicalparameters: J=1.357kgm2 and B=0.05 N m s.Itisassumedthatthereisanuncertaintyaround20%inthesystemparameters,which will beovercomebytheproposedslidingcontrol. The followingvalueshavebeenchosenforthecontrollerparameters: k=45 and g ¼ 30. In thisexamplethemotorstartsfromastandstillstateandwewanttherotorspeedto follow aspeedcommandthatstartsfromzeroandacceleratesuntiltherotorspeedis Fig. 2.Blockdiagramoftheproposedadaptivesliding-modecontrol. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 309
  • 11. 100 rad/s,thentherotorspeedismaintainedconstantandafter,attime1.3s,therotor deceleratesuntiltherotorspeedis80rad/s.Inthissimulationexample,thesystemstarts with aninitialloadtorque TL=0 Nmandattime t=2.3 stheloadtorquestepsfrom TL=0 to200Nm,andasbefore,itisassumedthatthereisanuncertaintyaround20%in the loadtorque. Fig. 3 shows thedesiredrotorspeed(dashedline)andtherealrotorspeed(solidline). As itmaybeobserved,afteratransitorytimeinwhichtheslidinggainisadapted,therotor speed tracksthedesiredspeedinspiteofsystemuncertainties.However,attime t=2.3 sa small speederrorcanbeobserved.Thiserrorappearsbecauseatorqueincrementoccursat this time,sothatthecontrolsystemlosestheso-called‘slidingmode’becausetheactual sliding gainistoosmallinordertoovercomethenewuncertaintyintroducedinthesystem due tothenewtorque.Butthen,afterashorttimetheslidinggainisadaptedonceagainso that thisgaincancompensateforthesystemuncertaintieswhicheliminatestherotor speed error. Fig. 4 presentsthetimeevolutionoftheestimatedslidinggain.Theslidinggainstarts from zeroandthenitisincreaseduntilitsvalueishighenoughtocompensateforthe system uncertainties.Besides,theslidingremainsconstantbecausethesystemuncertainties remain constantaswell.Later,attime2.3s,thereisanincrementinthesystem uncertaintiescausedbytheincrementintheloadtorque.Therefore,theslidingshouldbe adapted onceagaininordertoovercomethenewsystemuncertainties.Asitcanbeseenin the figureaftertheslidinggainisadapted,itremainsconstantagain,sincethesystem uncertaintiesremainconstantaswell. It shouldbenotedthattheadaptiveslidinggainallowstoemployasmallerslidinggain, so thatthevalueoftheslidinggaindonothavetobechosenhighenoughtocompensate for allpossiblesystemuncertainties,becausewiththeproposedadaptiveschemethesliding gain isadapted(ifitisnecessary)whenanewuncertaintyappearsinthesysteminorderto surmount thisuncertainty. Fig. 5 shows thetimeevolutionoftheslidingvariable.Inthisfigureitcanbeseenthat the systemreachtheslidingcondition(S(t)=0) attime t=0.13 s,butthenthesystemloses 0 0.511.522.53 0 20 40 60 80 100 120 Time (s) Rotor Speed (rad/s) wm * wm Fig. 3.Referenceandrealrotorspeedsignals(wm n , wm). O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 310
  • 12. this conditionattime t=2.3 sduetothetorqueincrementwhich,inturn,producesan incrementinthesystemuncertaintiesthatcannotbecompensatedbytheactualvalueof the slidinggain.However,afteratransitorytimeinwhichtheslidinggainisadaptedin order tocompensatethenewsystemuncertainty,thesystemreachesthesliding conditionagain. Fig. 6 showsthecurrentofonestatorwinding.Thisfigureshowsthatintheinitialstate, the currentsignalpresentsahighvaluebecauseahightorqueisnecessarytoincrementthe rotor speedduetotherotorinertia.Then,intheconstant-speedregion,themotortorque only hastocompensatethefrictionandtherefore,thecurrentislower.Finally,attime t=2.3 sthecurrentincreasesbecausetheloadtorquehasbeenincreased. 0 0.511.522.53 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (s) Sliding Variable Fig. 5.Slidingvariable. 0 0.511.522.53 0 2 4 6 8 10 12 14 Time (s) Sliding Gain Fig. 4.Estimatedslidinggain ð^b Þ. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 311
  • 13. Fig. 7 shows themotortorque.Asinthecaseofthecurrent(Fig. 6), themotortorque has ahighinitialvalueinthespeedaccelerationzoneandthenthevaluedecreasesina constant region.Later,attime t=1.3 s,themotortorquedecreasesagaininorderto reduce therotorspeed.Finally,attime t=2.3 sthemotortorqueincreasesinorderto compensatetheloadtorqueincrement.Inthisfigureitmaybeseenthatinthemotor torque appearstheso-calledchatteringphenomenon,howeverthishighfrequencychanges in thetorquewillbefilteredbythemechanicalsysteminertia. 5. Conclusions In thispapersensorlessrobustvectorcontrolforinductionmotordriveswithan adaptivevariablesliding-modevectorcontrollawhasbeenpresented.Therotorspeed 0 0.511.522.53 −500 −400 −300 −200 −100 0 100 200 300 400 500 Time (s) Stator Current Fig. 6.Statorcurrent(isa). 0 0.511.522.53 −100 −50 0 50 100 150 200 250 300 Motor Torque (N) Time (s) Fig. 7.Motortorque(Te). O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 312
  • 14. estimatorisbasedonstatorvoltageequationsandrotorfluxequationsinthestationary referenceframe.Itisproposedasavariablestructurecontrolwhichusesanintegralsliding surfacetorelaxtherequirementoftheaccelerationsignal,thatisusualinconventional sliding-modespeedcontroltechniques.Duetothenatureoftheslidingcontrolthiscontrol scheme isrobustunderuncertaintiescausedbyparametererrorsorbychangesintheload torque. Moreover,theproposedvariablestructurecontrolincorporatesandadaptive algorithmtocalculatetheslidinggainvalue.Theadaptationoftheslidinggain,ontheone hand avoidstheneedofcomputingtheupperboundofthesystemuncertainties,andon the otherhandallowstoemployassmallerslidinggainaspossibletoovercometheactual system uncertainties.Thenthecontrolsignalofourproposedvariablestructurecontrol schemes willbesmallerthanthecontrolsignalsofthetraditionalvariablestructurecontrol schemes,becauseinthesetraditionalschemestheslidinggainvalueshouldbechosenhigh enoughtoovercomeallthepossibleuncertaintiesthatcouldappearinthesystemalong the time. The closedloopstabilityofthedesignpresentedinthispaperhasbeenprovedthought Lyapunovstabilitytheory.Finally,bymeansofsimulationexamples,ithasbeenshown that theproposedcontrolschemeperformsreasonablywellinpractice,andthatthespeed trackingobjectiveisachievedunderuncertaintiesintheparametersandloadtorque. Acknowledgments The authorsareverygratefultotheBasqueGovernmentbythesupportofthiswork through theprojectS-PE09UN12andtotheUPV/EHUbyitssupportthroughproject GUI07/08. References [1] W.Leonhard,ControlofElectricalDrives,Springer,Berlin,1996. [2] P.Vas,VectorControlofACMachines,OxfordSciencePublications,Oxford,1994. [3] B.K.Bose,ModernPowerElectronicsandACDrives,PrenticeHall,NewJersey,2001. [4] R.Beguenane,M.A.Ouhrouche,A.M.Trzynadlowski,Anewschemeforsensorlessinductionmotorcontrol drives operatinginlowspeedregion,MathematicsandComputersinSimulation71(2006)109–120. [5] S.Sunter,Slipenergyrecoveryofarotor-sidefieldorientedcontrolledwoundrotorinductionmotorfedby matrix converter,JournaloftheFranklinInstitute345(2008)419–435. [6] M.Comanescu,Aninduction-motorspeedestimatorbasedonintegralsliding-modecurrentcontrol,IEEE Transactions onIndustrialElectronics56(9)(2009)3414–3423. [7] M.I.Marei,M.F.Shaaban,A.A.El-Sattar,Aspeedestimationunitforinductionmotorsbasedonadaptive linear combiner,EnergyConversionandManagement50(2009)1664–1670. [8] A.Y.Alanis,E.N.Sanchez,A.G.Loukianov,E.A.Hernandez,Discrete-timerecurrenthighorderneural networks fornonlinearidentification,JournaloftheFranklinInstitute347(2010)1253–1265. [9] T-J.Ren,T-C.Chen,Robustspeed-controlledinductionmotordrivebasedonrecurrentneuralnetwork, Electric PowerSystemResearch76(2006)1064–1074. [10] M.Montanari,S.Peresada,A.Tilli,Aspeed-sensorlessindirectfield-orientedcontrolforinductionmotors based onhighgainspeedestimation,Automatica42(2006)1637–1650. [11] R.Marino,P.Tomei,C.M.Verrelli,Anadaptivetrackingcontrolfromcurrentmeasurementsforinduction motors withuncertainloadtorqueandrotorresistance,Automatica44(2008)2593–2599. [12] J.B.Oliveira,A.D.Araujo,S.M.Dias,Controllingthespeedofathree-phaseinductionmotorusinga simplified indirectadaptiveslidingmodescheme,ControlEngineeringPractice18(2010)577–584. [13] M.A.Fnaiech,F.Betin,G.A.Capolino,F.Fnaiech,Fuzzylogicandsliding-modecontrolsappliedtosix- phase inductionmachinewithopenphases,IEEETransactionsonIndustrialElectronics57(1)(2010) 354–364. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 313
  • 15. [14] M.Montazeri-Gh,A.Poursamad,B.Ghalichi,Applicationofgeneticalgorithmforoptimizationofcontrol strategy inparallelhybridelectricvehicles,JournaloftheFranklinInstitute343(2006)420–435. [15] A.Benchaib,C.Edwards,Nonlinearslidingmodecontrolofaninductionmotor,InternationalJournalof Adaptive ControlandSignalProcesing14(2000)201–221. [16] O.Barambones,A.J.Garrido,Asensorlessvariablestructurecontrolofinductionmotordrives,Electric Power SystemsResearch72(2004)21–32. [17] R.Yazdanpanah,J.Soltani,G.R.ArabMarkadeh,Nonlineartorqueandstatorfluxcontrollerforinduction motor drivebasedonadaptiveinput–outputfeedbacklinearizationandslidingmodecontrol,Energy ConversionandManagement49(2008)541–550. [18] B.Castillo-Toledo,S.DiGennaro,A.G.Loukianov,J.Rivera,Discretetimeslidingmodecontrolwith applicationtoinductionmotors,Automatica44(2008)3036–3045. [19] T.Orowska-Kowalska,M.Kami nski, K.Szabat,Implementationofasliding-modecontrollerwithan integral functionandfuzzygainvaluefortheelectricaldrivewithanelasticjoint,IEEETransactionson Industrial Electronics57(4)(2010)1309–1317. [20] V.I.Utkin,Slidingmodecontroldesignprinciplesandapplicationstoelectricdrives,IEEETransactionson Industrial Electronics40(1993)26–36. [21] H.Yang,Y.Xia,P.Shi,Observer-basedslidingmodecontrolforaclassofdiscretesystemsviadelta operator approach,JournaloftheFranklinInstitute347(2010)1199–1213. [22] I.Boiko,Frequencydomainprecisionanalysisanddesignofslidingmodeobservers,JournaloftheFranklin Institute 347(2010)899–909. [23] T.Furuhashi,S.Sangwongwanich,S.Okuma,Aposition-and-velocitysensorlesscontrolforbrushlessDC motors usinganadaptiveslidingmodeobserver,IEEETransactionsonIndustrialElectronics39(1992) 89–95. [24] A.B.Proca,A.Keyhani,J.M.Miller,Sensorlesssliding-modecontrolofinductionmotorsusingoperating condition dependentmodels,IEEETransactionsonEnergyConversion18(2003)205–212. [25] G.Bartolini,A.Pisano,E.Punta,E.Usai,Asurveyofapplicationsofsecond-orderslidingmodecontrolto mechanicalsystems,InternationalJournalofControl76(2003)875–892. [26] M.Rashed,K.B.Goh,M.W.Dunnigan,P.F.A.MacConnell,A.F.Stronach,B.W.Williams,Sensorless second-ordersliding-modespeedcontrolofavoltage-fedinduction-motordriveusingnonlinearstate feedback, IEEProceedingsElectricPowerApplications152(2005)1127–1136. [27] C.Aurora,A.Ferrara,Aslidingmodeobserverforsensorlessinductionmotorspeedregulation, InternationalJournalofSystemsScience38(2007)913–929. [28] Y.Xia,Z.Zhu,C.Li,H.Yang,Q.Zhu,Robustadaptiveslidingmodecontrolforuncertaindiscrete-time systems withtimedelay,JournaloftheFranklinInstitute347(1)(2010)339–357. [29] M.C.Pai,Designofadaptiveslidingmodecontrollerforrobusttrackingandmodelfollowing,Journalofthe Franklin Institute347(2010)1838–1849. [30] J.J.E.Slotine,W.Li,AppliedNonlinearControl,Prentice-Hall,EnglewoodCliffs,NJ,USA,1991. O. Barambones,P.Alkorta/JournaloftheFranklinInstitute348(2011)300–314 314