Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

WhereScape, the pioneer in data warehouse automation software

2.976 Aufrufe

Veröffentlicht am

Presented by Frederik Naessens (WhereScape) at the Data Vault and Data Warehouse Automation meetup of @itworks

Veröffentlicht in: Daten & Analysen
  • Als Erste(r) kommentieren

WhereScape, the pioneer in data warehouse automation software

  2. 2. Data vault automation conference – Utrecht – 6 October 2011 Why this presentation?
  3. 3. COMPANY BACKGROUND • Founded in 2000 in Auckland, New Zealand by data warehouse experts • 120+ Employees • US – Global Head Office, Portland • UK – European Head Office, Reading • NZ – Development, Auckland Supported Targets:
  4. 4. USA: Wells Fargo Bank NIKE GE Aviation IPC Subway Juniper Networks Nordstrom Delta Credit Union Med Assets Europe Tesco Vodafone AON Xerox HSBC MAN Investments Network Rail Sainsbury’s Zurich Insurance Volkswagen Asia Pacific MGM Macau Abano International Singtel Optus Ericsson Vietnam Telstra AU Reserve Bank of Australia Ministry of Defence Westfield QBE Insurance Energy Australia AstraZeneca Air New Zealand Telecom Vodafone Xero Vodafone Qatar ABSA Barclays Bank GLOBAL CUSTOMER BASE 700+ WORLDWIDE
  6. 6. WHAT WE DO Profiles, Plans, Designs Right. Builds, Documents, Automates Now.
  7. 7. VALUE PROPOSITION • 1st integrated development environment (IDE) that manages the entire data warehouse lifecycle (Plan & Build) • Builds data warehouses 10-100 times faster than a traditional approaches • Data driven approach de-risks projects and automatically applies best practice whilst auto documenting… DATA WAREHOUSE AUTOMATION
  8. 8. REQUIREMENTS DW framework Profile Logical Model Physical Model DB Architecture Storage Mgmt Index Mgmt OLAP Design ETL Mapping ETL Dev Version Control Workflow Deployment Maintenance Word/Excel Mainly in-house solutions Informatica Microstrategy IBM Clear Case Trillium AbInitio DataStage TOAD PowerDesigner Enterprise Architect Cognos JIRA SSMS SSIS SSAS SVN IBM Clear Quest Change tool Change tool Change tool Change tool Change tool Change tool Informatica ERwin DB Management Tools DataStage Documentation TRADITIONAL APPROACH Over complicated Inefficient
  9. 9. DW Framework Profile Physical Model DB Architecture Storage Mgmt Index Mgmt OLAP Design ETL Mapping ETL Dev Version Control Workflow Deployment Maintenance Logical Model Documentation METADATA WhereScape RED WhereScape 3D THE WHERESCAPE WAY Simplification Automation
  10. 10. MANAGING AN EDW/BI ENVIRONMENT IS CHALLENGING • Too many development tools & skills • Siloed with a high cost of change
  11. 11. MANAGING AN EDW/BI ENVIRONMENT JUST GOT EASIER • One tool, one skillset, low cost of change • Non-proprietary & Non-disruptive
  12. 12. SQL • I set-based SQL • Scale with your RDBMS or Big Data platform • Easy migration path to other technologies • You’re in control, no black boxes • Don’t we all talk SQL? DATA WAREHOUSE AUTOMATION 😀
  13. 13. PROCESS • Different activities warrant different approaches • Model-driven development vs. • Data-driven development • Bring the agile back in our profession • Break down the barriers between profiles • Don’t limit yourself to “coding only” activities DATA WAREHOUSE AUTOMATION
  14. 14. “A 3 year project has now been completed in 6 months thanks to WhereScape and agile development.”
  15. 15. Discovery—Rapidly create working solutions, which are put in front of business stakeholders for review in sprints no longer than 30 days. Production Build — Becomes an assembly process, closely following standards and commoditized implementation patterns
  16. 16. Red line shows current date
  17. 17. THE DATA QUADRANT MODEL RONALD D. DAMHOF Development Style Systematic Opportunistic I II III IV Research, Innovation & Design “Shadow IT, Incubation, Ad-hoc, Once off” Push/Supply/Source driven Pull/Demand/Product driven Data Push/Pull Point ContextFacts
  18. 18. SCOPE • End-to-end • Full life cycle -> identify your bottlenecks • Analysis: source profiling • DevOps / CI • Test Automation • Documentation • Any modeling style? DATA WAREHOUSE AUTOMATION
  20. 20. CLASSIC KIMBALL Star Schema
  21. 21. HISTORICAL ODS + CLASSIC KIMBALL Data Store Star Schema
  22. 22. NORMALIZED EDW 3NF Star Schema
  23. 23. RAW + BUSINESS DATAVAULT Data Vault Data Vault
  24. 24. RAW DATAVAULT + STAR SCHEMA Data Vault Star Schema
  25. 25. DATA LAKE + STAR SCHEMA Star Schema
  26. 26. COMPETITION • Very few automation software packages • Traditional ETL suites • Set of templates • But typical: PPP DATA WAREHOUSE AUTOMATION
  27. 27. • Teradata is an important platform
  28. 28. THANK YOU Frederik Naessens Frederik.naessens@wherescape.com +32 473 826080