SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
International Journal of Pharmaceutical Science Invention
ISSN (Online): 2319 – 6718, ISSN (Print): 2319 – 670X
www.ijpsi.org Volume 3 Issue 3‖ March. 2014 ‖ PP.12-18
www.ijpsi.org 12 | P a g e
Screening Isolation and Characterization of Cellulase Producing
Micro-Organisms from Soil.
Lekh Ram1
, Kuldeep Kaur2
and Sandeep Sharma3*
Department of Biotechnology, Arni University, kathgarh, (Indora), Kangra, H.P. India, Pin-176401
*Corresponding author- sandeep4380@gmail.com
ABSTRACT: Cellulose may be hydrolyzed using enzymes to produce glucose, which can be used for the
production of ethanol, organic acids and other chemicals. Cellulases are a group of hydrolytic enzymes capable
of hydrolyzing the most abundant organic polymer i.e. cellulose to smaller sugar components including glucose
subunits. Cellulase is expensive and contributes only 50% to the overall cost of hydrolysis due to the low
specific activity. This enzyme has enormous potential in industries and is used in food, beverages, textile,
laundry, paper and pulp industries etc. Therefore, there has been much research aimed at obtaining new
microorganisms producing cellulose enzymes with higher specific activities and greater efficiency. Presently,
work is aimed at screening and isolating cellulolytic fungi from the soil samples collected from 2 different areas
of Himachal. Total 21 fungal isolates were isolated from these soil samples, out of which four isolates were
showing the cellulase activity. The fungal isolate designated as PISS-3 isolated from Paper Industry soil sample
from HRA Mill Village Tibhi, Indora, Kangra H.P was noticed to show maximum zone of hydrolysis of carboxy-
methyl cellulose. The cellulase activity was assayed by Carboxymethyl cellulase “CMCase” (endoglucanase)
assay.
KEYWORDS: Cellulase, Fungi, CMC, DNS, Glucose, Protein estimation.
I. INTRODUCTION
Cellulose is the most common abundant, renewable biopolymer on earth and domestic waste materials
from agriculture representing about 1.5 x 1012
tons of the total annual biomass production through
photosynthesis in the topics (Klemm et al., 2002; Bhat, 2000). Cellulose is considered as one of the most
important sources of carbon on this planet and its annual biosynthesis by both land plants and marine occurs at a
rate of 0.85Ă—10 11 tonnes per annum (Nowak et al., 2005). Cellulase degradation and its subsequent utilisations
are important for global carbon sources. The value of cellulose as a renewable source of energy has made
cellulose hydrolysis the subject of intense research and industrial interest (Bhat et al., 2000). There has been
much research aimed at obtaining new microorganisms producing cellulase enzymes with higher specific
activities and greater efficiency (Subramaniyan and Prema, 2000).
Over the years, a number of organisms, in particular fungi, possessing cellulose-degrading enzymes
have been isolated and studied extensively (Bhat et al., 1997). Cellulolytic enzymes play an important role in
natural biodegradation processes in which plant lignocellulosic materials are efficiently degraded by cellulolytic
fungi, bacteria, actinomycetes and protozoa. In industry, these enzymes have found novel applications in the
production of fermentable sugars and ethanol, organic acids, detergents and other chemicals. Cellulases provide
a key opportunity for achieving tremendous benefits of biomass utilization (Wen et al., 2005).Cellulolytic
enzymes are synthesized by a number of microorganisms. Fungi and bacteria are the main natural agents of
cellulose degradation (Lederberg, 1992). The cellulose utilizing population includes aerobic and anaerobic
mesophilic bacteria, filamentous fungi, thermophilic and alkaliphilic bacteria, actinomycetes and certain
protozoa (Alexander, 1961). However, fungi are well known agents of decomposition of organic matter, in
general, and of cellulosic substrate in particular (Lynd et al., 2002). Cellulose is the major component of plant
biomass. Plants produce 4Ă—109
tons of cellulose annually.
It is a polymer of β-1,4 linked glucose units. Its crystalline structure and insoluble nature represents a
big challenge for enzymatic hydrolysis. Microorganisms are important in conversion of lignocelluloses wastes
into valuable products like biofuels produced by fermentation. Successful bioconversion of cellulosic materials
mainly depends on the nature of cellulose, sources of cellulolytic enzyme and optimal conditions for catalytic
activity and production of enzymes. For many years, cellulose degrading bacteria have been isolated and
characterized for obtaining more effective cellulases from variety of sources such as soil, decayed plant
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 13 | P a g e
materials, hot springs, organic matters, feces of ruminants and composts. Researchers keep on working to isolate
microorganisms with higher cellulase activity. Cellulose is the structural component of the primary cell wall of
green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms.
Cellulolysis is the process of breaking down cellulose into smaller polysaccharides called cellodextrins or
completely into glucose units, this is a hydrolysis reaction. Biotechnology of cellulases and hemicellulases
began in early 1980s, first in animal feed followed by food applications (Chesson, 1987; Thomke et al., 1980;
Voragen, 1992; Voragen et al., 1980, 1986). The major industrial applications of cellulases are in textile
industry for „bio-polishing‟ of fabrics and producing stonewashed look of denims, as well as in household
laundry detergents for improving fabric softness and brightness. Besides, they are used in animal feeds for
improving the nutritional quality and digestibility, in processing of fruit juices, in baking etc. Utilisation in de-
inking of paper is yet another emerging application (Tolan and Foody, 1999). The cellulases that are used so
far for the above-mentioned industrial applications are those from fungal sources (Tolan and Foody, 1999).
II. MATERIAL AND METHODS
Soil samples were collected from two different locations i.e. Paper Industry Soil Sample (PISS) taken
from HRA Mill Village Tibhi Indora Kangra H.P. and Bami Soil Sample (BSS) collected from Mandi H.P. from
a depth of 1-15 inches from the top and sieved through a 2 mm sieve constituted the soil sample. The samples
were dispensed into bags and were brought to the laboratory. Fungal isolates were isolated by serial dilution
method. 1 g of soil was transferred to 10 ml of distilled water in test tubes. Dilutions were made up to 10-6 and
0.1 ml of soil suspension was spread on to the sterilized Sabraud dextrose agar media (SDA) which contain 1%
CMC. pH of the medium was adjusted to 7. After autoclaving at 121 °C and 15 lbs pressure, 20 ml of sterile
medium were transferred to sterile Petri plates and allowed for solidification. After solidification of the medium
0.1 ml of soil suspension was spread with the help of spreader and incubated at 28 °C for 7 days. The fungal
cultures grown on the medium were subcultured for repeated times. Pure culture was transferred on to the
Sabraud dextrose agar slants and maintained at 4 °C for further studies.
Morphological Identification of isolates: Fungal isolates were identified on the basis of morphological
characteristics. For routine work of fungal identification the commonly used stain is called mounting fluid i.e.
lactophenol plus cotton blue.
Screening of cellulolytic fungi: The isolated fungal cultures were screened for their ability to produce
cellulases complex following the method of Teather & Wood (1982). Czapek-Dox medium used in this method
contained (g/l): sucrose – 30, NaNO3 – 2, K2HPO4 - 1, MgSO4 – 0.05, Kcl – 0.5, FeSO4 – 0.01, carboxy-
methyl cellulose – 1%, Agar agar - 20. pH of the medium was adjusted to 5. After autoclaving at 121°C and 15
lbs. pressure, the medium was poured into Petri plates and allowed to solidify. Cavities of 6 mm size were made
in the solidified medium and inoculated with 0.1 ml of fungal suspension prepared from 7 day old slants. The
plates were incubated at room temperature (28 ± 2 °C) for three days to allow fungal growth, then again
incubated for 18 h at 50 °C which is the optimum temperature for cellulases activity. After incubation, 10 ml of
1% Congo - Red staining solution was added to the plates that were shaken at 50 rev/ min for 15 min. The
Congo - Red staining solution was then discarded, 10 ml of 1 N NaOH was added to the plates and shaken again
at 50 rev/min for 15 minutes. Finally 1 N NaOH was also discarded and the staining of the plates was analyzed
by noticing the formation of clear or yellowish zones around the fungal spore inoculated wells.
Production of Cellulases from Fungal Isolates.
The isolated fungal cultures were used to know their potential for cellulase production and activities. A
volume of 100 ml of Czapek-Dox broth medium amended with 1% cellulose was distributed into separate 250
ml conical flasks. The pH of the medium was adjusted to 5. After autoclaving at 121°C and 15 lb. pressure, the
fungal spore suspensions were inoculated into the conical flasks. The flasks were incubated at 32 °C on a rotary
shaker at 120 rpm for 3 days. After 3 days, culture filtrate was collected, centrifuged at 6000 rpm for 15 min and
supernatant was used to the estimation extracellular protein content . Not only this, it also used crude cellulase
source.
Extracellular protein content: - After 7 days of incubation, the contents of the flasks were aseptically passed
through Whatman No.1 filter paper to separate mycelial mat from culture filtrates. An aliquot of this culture
filtrates was used for estimation of extra cellular protein content according to the method of Lowry et al. (1951).
Bovine serum albumin was used as protein standard. Suitable aliquots of filtrates were mixed with 5 ml of
alkaline solution. After 30 min, 0.5 ml of appropriately diluted Folin-Ciocalteau reagent was added. The color
developed was read at 550 nm by using the spectrophotometer.Activity of Cellulase in the culture filtrates was
determined and quantified by carboxy-methyl cellulase method (Ghosh 1987). The reaction mixture with 1.0 ml
of 1% carboxymethyl cellulose in 0.2 M acetate buffer (pH 5.0) was pre-incubated at 50°C in a water bath for
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 14 | P a g e
20 minutes. An aliquot of 0.5 ml of culture filtrate with appropriate dilution was added to the reaction mixture
and incubated at 50 °C in water bath for one h. Appropriate control without enzyme was simultaneously run.
The reducing sugar produced in the reaction mixture was determined by dinitro- salicylic acid (DNS) method
(Miller 1959). 3, 5-dinitro-salicylic acid reagent was added to aliquots of the reaction mixture and the color
developed was read at wavelength 540 nm.
III. RESULTS
The soil sample contained considerable population of fungi Total 21 fungal isolates were isolated from
the two different soil samples i.e. 12 isolates from Paper Industry Soil Sample and 9 isolates from Bami Soil
Sample (fig:1, table-1). The Fungi grown on the selective media supported the growth of the fungi by using
cellulose as the carbon source (Khalid et al., 2006). The isolated strains were carefully identified by
morphological Characteristics include color of the colony and growth pattern studies. Some of the microscopic
characteristics examined under the microscope include spore formation and color. Efficient cellulase producing
fungi isolates were finally selected based on the zone of the clearing around the fungi on carboxyl methyl
cellulase agar (CMC agar) plates (Bakare et al., 2005; Immanuel et al., 2006). The appearance of the clear zone
around the colony when the Congo red solution was added (Wood and Bhat, 1988) was strong evidence that the
fungi produced cellulase in order to degrade cellulose. Out of 21 fungal isolates, only 4 isolate produced zones
of hydrolysis in CMC agar plates within 3 days and results were represented (fig.2, table.2).
Sr.
No.
Nature of Sample No. of fungal
populations
1. Paper Industrial Soil Sample(PISS) 12
2. Bami Soil Sample(BSS) 9
Table-1: showing the fungal isolates on to the medium.
Fig.1: Fungal isolates.
The fungi were isolated and screened from samples collected from paper industry and bami sample for cellulase
production by Congo red assay. Isolated fungal strains were subjected to screening. The diameter of clear zone
(fig: 2, table: 2). Isolate PISS-3 showed highest zone of clearance as 7 mm of colony diameter.
Sr. No. Culture Strains Zone of clearance(mm)
1. PISS-1 2
2. PISS-2 5
3. PISS-3 7
4. BSS-1 3
Table-2: zone of clearance around the fungal culture on screening.
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 15 | P a g e
Fig.2: Fungal culture showing cellulase activity.
Protein Estimation.
Protein content of the isolated fungi was estimated by using the Folin Lowry‟s method and optical density of the
strain was compared with the BSA standard curve (fig:3) to calculate the amount of protein (mg/ml) present in
the supernatant used in cellulase assay.
Fig.3: showing the BSA standard curve.
Table-3: Table showing the protein content present in PISS-3 fungal isolate by using BSA standard curve.
Sr. No. Fungal isolates Optical Density Protein(mg/ml)
1. PISS-3 0.050 0.1
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 16 | P a g e
The amount of protein present in the sample was found to be 0.1mg/ml.
Fig.4: showing Glucose standard curve.
Table-4: Table showing the release of glucose mg/0.5ml in the fungal isolate on comparison with the Glucose
standard curve.
Sr. No. Fungal isolates Optical Density glucose(mg/0.5ml)
1. PISS-3 0.055 1.0
The amount of glucose released by the sample was found to be 1.0mg/0.5ml.
Cellulase activity.
Cellulase activity was assayed using dinitrosalisic acid (DNS) reagent by estimation of reducing sugars
released from the sample. Sugars liberated were determined by measuring absorbance at 540 nm. Cellulase
production was estimated by using glucose standard curve. The activities of enzyme cellulases were determined
by using the following formula:
Enzyme activity = amount of glucose liberated/mg protein/30minutes (Ghose T.K. et al 1987).
Enzyme activity of the PISS-3 strain is found to be 20mg glucose librated/mg protein/30min at 32°C.
IV. DISCUSSION
As cellulose can be regarded as the most abundant and biologically renewable resource for
bioconversion, its exploitation can be maximized on hydrolysis to glucose and other soluble sugars which can be
further fermented into ethanol for use as liquid fuel. Cellulases are the enzymes responsible for the cleavage of
the β–1, 4–glycosidic linkages in cellulose. They are members of the glycoside hydrolase families of enzymes
that hydrolyze oligosaccharides and/or polysaccharides. The major goals for future Cellulase research would be:
(1) reduction in the cost of cellulase production and (2) improving the power of cellulases to make them more
effective, so that less enzyme is needed (Akpan I. et al. 1999). Degradation of cellulosic materials is a complex
process and requires participation of microbial cellulolytic enzymes. Habitats where these substrates are present
are the best sources for isolation of cellulolytic microorganisms. About one fifth of fresh water and soil samples
yield cellulose degrading fungi after enrichment but some samples did not bear such kind of fungi. This is due to
existence of microenvironments where different growth conditions for cellulose degrading microorganisms are
present. Several microorganisms have been discovered for decades which have capacity to convert cellulose into
simple sugars but the need for newly isolated cellulose degrading microorganism still continues.
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 17 | P a g e
In the present study, soil samples were collected from different places of Himachal Pradesh. Two different types
of soil samples taken from the different locations of Himachal Pradesh i.e. Paper Industry Soil Sample taken
from HRA Mill Village-Tibhi, Indora Kangra H.P. and Bami Soil Sample of soil from Mandi H.P. Current study
focuses on to the fungal isolates. The soil sample contained considerable population of the cellulase producing
fungi. The Fungi grown on the selective media supported the growth of the fungi by using cellulose as the
carbon source, for example Sabraud Dextrose Agar (SDA) with 1% of CMC. Total 21 fungal cultures were
isolated from soil samples. The isolated fungi was purified by repeated sub-culturing on the Sabraud Dextrose
Agar medium at regular intervals and incubating at 29°C. Morphological identification of the fungal isolates
were performed by fungal staining of the cultures. Efficient cellulase producing fungi isolates were finally
selected based on the zone of the clearance around the fungi. The appearance of the clear zone around the
colony when the Congo red solution was added was a strong evidence that the fungi produced cellulase inorder
to degrade cellulose. Among all these 21 fungal isolates only four fungal isolates (PISS-1, PISS-2, PISS-3, BSS-
1) were showing the cellulase activity on screening with congo red. Out these four fungal isolate PISS-3 have
greater cellulase producing capability as it shows maximum zone i.e 7mm of clear zone around the fungal
culture.
The cellulase activity of fungal isolate PISS-3 was analyzed by evaluating the cellulase liberated in
CMC solution through DNS method. The cellulase activity of fungal isolate was mathematically calculated by
using the data of protein content (mg/ml) present in the supernatant of isolates which was estimated by Folin
Lowrey‟s method. BSA Standard curve was used for determining the amount of protein present in the culture
sample. The O.D. of the sample was compared with the standard curve of the BSA protein. The amount of
protein present in the sample PISS-3 strain was estimated to be 0.1mg/ml. Cellulase activity of the enzyme was
measured by cellulase assay. Cellulase Assay was done by DNS method (3, 5-dinitrosalicylic acid) and the
activity of the enzyme was expressed in mg/ml/min. It was calculated by the following formula:Enzyme activity
= amount of glucose liberated/mg protein/30minutes.In the previous studies made on cellulase by Lone M.A. et
al. (2012), the cellulase activity of A. niger mtc872 was 59.25mg glucose liberated/mg protein/30minutes. But
in our work the enzyme activity of the PISS-3 isolate was found to be 20mg glucose librated/mg protein/30min
at 32°C. Future work of the present work includes increases the cellulase production by modifying the substrate
and production conduction, purification of enzyme in order to gain higher specific activity of cellulase by the
help of sophisticated purification procedures including Salt precipitation, Dialysis & Ion Exchange
chromatography.
V. CONCLUSION
Cellulases are one of the most widely used enzymes required for the preparation of fermented foods.
Apart from food and starch industries, in which demand for them is increasing continuously, they are also used
in various other industries such as paper, pulp and textile etc. with increase in its application spectrum, the
demand is for the enzyme with specificity. Present research is focused on to the isolation characterization of
fungal isolates from the soil sample. In the present study, soil samples were collected from the different
locations of Himachal Pradesh, India. Two different type of soil samples taken from the different locations of
Himachal Pradesh i.e Paper Industry Soil Sample taken from HRA Mill Village Tibhi Indora Kangra H.P. and
Bami Soil Sample from Mandi H.P. There were 21 fungal isolates were isolated from these two soil samples.
Out of these 21 isolates of fungus only 3 isolates were showing the positive result for cellulase activity. Testing
of cellulase isolates for cellulase activity was performed by performing Congo red staining of the isolates of the
fungus. Morphological identification of the fungal isolates were done by fungal staining. The fungal isolate
showing greater zone of clearance on screening was used further for production process. Production of the
Cellulase by inoculating the isolate on to the Czepak Dox Broth for 72 hours. BSA standard curve was used for
the estimation of the protein in the culture sample. Different dilutions of the BSA were used for the preparation
of BSA standard curve. By comparing the O.D. of the culture sample with the standard graph of the BSA the
concentration of Cellulase mg per ml of the sample was calculated. The amount of protein present in the sample
PISS-3 strain was estimated to be 0.1mg/ml. The standard curve for glucose was prepared by using O.D. of the
different dilution of glucose with citrate buffer. The amount of release of glucose mg per ml of the sample was
calculated by DNS method. The amount of glucose present in the sample was found to be 1mg/ml. Enzyme
activity of the PISS-3 strain was found to be 20mg glucose librated/mg protein/30min at 32°C. At last we
conclude the PISS-3 fungal isolate is important for industrial use.
ACKNOWLEDGEMENT
Authors are thankful to Hon‟ble Vice Chancellor and Management of Arni University for providing necessary research facilities.
Screening Isolation And Characterization Of Cellulase…
www.ijpsi.org 18 | P a g e
REFERENCES
[1] Akpan I, Bankole M.O., Adesemowo A.M. and Latunde-Dada G.O., Trop. Sci., 1999, 39, 77-79.
[2] Bakare. M.K., Adewale I.O., Ajayi A., and Shonukan O.O., purification and characterization of a thermostable endoglucanase
from Aspergillus niger, African Journal of Biotechnology, 2005, 9, pp. 898.
[3] Bhat, M.K., Cellulases and related enzymes in biotechnology. In Biotechnology Advances vol.18,2000 pp. 355-383.
[4] Bhat, M.K. and Bhat, S., Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv., 1997, 15:
583–620.
[5] Chesson A., Supplementary enzymes to improve the utilization of pigs and poultry diets. In: Haresign W Cole DJA editors
Recent advances in animal nutrition London: Butterworths, 1987, 71–89.
[6] Ghose TK., Pure Apple. Chem., 1987, 59, 257-268.
[7] Immanuel, G., Dhanusa, Prema, P., and Palavesam, A., “Effect of different growth parameters on endoglucanase enzyme activity
by bacteria isolated from coir retting effluents of estuarine environment,” International Journal Environment Science
Technology.2006, 3(1), 25-34.
[8] Khalid, Yang, W.J., Kishwar, N., Rajput, Z.I. & Arijo, A.G., Study of cellulolytic soil fungi and two nova species and new
medium. J. Zhejiang Univ. Sci. B, 2006, 7(6): 459-466.
[9] Klemm D, Schmauder H.P., Heinze T., Biopolymers, vol VI, edited by E.Vandamme, S De Beats and A Steinb chel (Wiley-
VCH, Weinheim), 2002, pp. 290 – 292.
[10] Lederberg J., Cellulases. In: Encyclopaedia of Microbiology (Vol. 1; A-C). Academic Press, Inc. 1992.
[11] Lynd LR, Weimer PJ, Van Zyl WH & Pretorious IS, Microbial cellulose utilization: Fundamentals and Biotechnology,
Microbiology. Microbial Mol Bio Rev. 2002, 66: 506-577.
[12] Lone MA, Wani MR, Bhat NA, and Resmi MA., Evaluation of cellulase enzyme secreted by some common and stirring
Rhizosphere fungi of Juglans Regia L. by DNS method. In Journal of Enzyme Research. 2012,Vol 3, issue 1, 18-22.
[13] Nowak, J., Florek, M., Kwiatek, W., Lekki, J., Chevallier, P. and Zieba E, Composite structure of wood cells in petrified wood.
Mater Sci Eng, 2005, C25:119–30.
[14] Subramniyan, S. and Prema, P., Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 2000,
183: 1-7.
[15] Thomke S., Rundgreen M., Hesselman K. The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting
of the European Association of Animal Production, Commission on Animal Production, Munich, Germany. 1980, 5.
[16] Tolan, J.S and Foody, B., Cellulase from submerged fermentation. In: Advances in Biochemical Engineering: Biotechnology Vol
65. Recent Progress in Bioconversion of Lignocellulosics. (Tsao, G.T, Ed.), SpringerVerlag, Berlin, 1999 pp. 41–67.
[17] Teather, R. M., and P. J. Wood. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic
bacteria from the bovine rumen. Appl. Environ. Microbiol.1982, 43:777-780.
[18] Voragen AGJ, Heutink R, Pilinik W, Solubilization of apple cell walls with polysaccharide degrading enzymes. J Appl Biochem.
1980, 2:452–68.
[19] Voragen AGJ, Wolters H, Verdonschot-Kroef T, Rombouts FM, Pilnik W, Effect of juice-releasing enzymes on juice quality. In:
International Fruit Juice Symposium, The Hague (NL), May 1986. Zurich: Juris Druck Verlag, 1986, 453–62.
[20] Wen , Z., Liao, W. and Chen, S., Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 2005,
96: 491- 499.
[21] Wood, T.M. and Bhat, K.M., Methods of measuring cellulase activities. Methods in Ezymology.1988, 160: 87-117.

Weitere ähnliche Inhalte

Was ist angesagt?

Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...
Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...
Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...YogeshIJTSRD
 
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...IOSR Journals
 
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...ijtsrd
 
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...Alexander Decker
 
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungi
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungiLignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungi
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungiJayan Eranga
 
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...Study of ligninolytic bacteria isolation and characterization from dhamdha ag...
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...eSAT Journals
 
Screening, identification and isolation of cellulolytic fungi
Screening, identification and isolation of cellulolytic fungiScreening, identification and isolation of cellulolytic fungi
Screening, identification and isolation of cellulolytic fungiDr. sreeremya S
 
Cassava Retting Water An Alternative Source for Industrial Cellulase Enzyme
Cassava Retting Water An Alternative Source for Industrial Cellulase EnzymeCassava Retting Water An Alternative Source for Industrial Cellulase Enzyme
Cassava Retting Water An Alternative Source for Industrial Cellulase EnzymeYogeshIJTSRD
 
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...IJEAB
 
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powder
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powderEfficacy of hibiscus cannabinus l. (kenaf) crude seed powder
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powderAlexander Decker
 
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...iosrjce
 
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...iosrjce
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...IJEAB
 
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331Oladayo Abiodun
 

Was ist angesagt? (20)

Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...
Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...
Qualitative Phytochemical Screening and In Vitro Assessment of Antioxidant an...
 
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...
Study on the Use of Agricultural Wastes for Cellulase Production by Using Asp...
 
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...
Isolation and Screening for Citric Acid Production by Aspergillus Niger Using...
 
Evaluation of Proteolytic Activity of Some Euphorbian Garden Plants
Evaluation of Proteolytic Activity of Some Euphorbian Garden PlantsEvaluation of Proteolytic Activity of Some Euphorbian Garden Plants
Evaluation of Proteolytic Activity of Some Euphorbian Garden Plants
 
B047011017
B047011017B047011017
B047011017
 
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...
Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacteria...
 
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungi
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungiLignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungi
Lignolytic fungi, magical fungi, kingdom fungi/ soil enzyme generating fungi
 
Isolation, Screening and Characterisation of Polyhydroxyalkanoate Producing B...
Isolation, Screening and Characterisation of Polyhydroxyalkanoate Producing B...Isolation, Screening and Characterisation of Polyhydroxyalkanoate Producing B...
Isolation, Screening and Characterisation of Polyhydroxyalkanoate Producing B...
 
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...Study of ligninolytic bacteria isolation and characterization from dhamdha ag...
Study of ligninolytic bacteria isolation and characterization from dhamdha ag...
 
Screening, identification and isolation of cellulolytic fungi
Screening, identification and isolation of cellulolytic fungiScreening, identification and isolation of cellulolytic fungi
Screening, identification and isolation of cellulolytic fungi
 
Cassava Retting Water An Alternative Source for Industrial Cellulase Enzyme
Cassava Retting Water An Alternative Source for Industrial Cellulase EnzymeCassava Retting Water An Alternative Source for Industrial Cellulase Enzyme
Cassava Retting Water An Alternative Source for Industrial Cellulase Enzyme
 
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...
Isolation and Characterization of Bacteria and Fungi Associated With Biodegra...
 
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powder
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powderEfficacy of hibiscus cannabinus l. (kenaf) crude seed powder
Efficacy of hibiscus cannabinus l. (kenaf) crude seed powder
 
Laccase sources and their applications in environmental pollution
Laccase sources and their applications in environmental pollutionLaccase sources and their applications in environmental pollution
Laccase sources and their applications in environmental pollution
 
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...
Enhancing the Nutritive Values of Agrowastes for Animal Feed Production Using...
 
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...
Potential of Secondary Metabolites Isolated From Clausena dentata in Endosulf...
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
 
Polysacccharide
PolysacccharidePolysacccharide
Polysacccharide
 
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331
The Effect of Fura De Nunu on Selected Clinical Isolates of Bacteria-331
 
Procedia food science
Procedia food scienceProcedia food science
Procedia food science
 

Andere mochten auch

Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...IJMER
 
Bioactivity screening of soil bacteria against human pathogens
Bioactivity screening of soil bacteria against human pathogensBioactivity screening of soil bacteria against human pathogens
Bioactivity screening of soil bacteria against human pathogenspharmaindexing
 
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...inventionjournals
 
M.Sc. Project Viva Voce
M.Sc. Project Viva VoceM.Sc. Project Viva Voce
M.Sc. Project Viva VoceUrvija Apparao
 
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...Editor IJCATR
 
Screening and isolation of medicinally important L-asparaginase enzyme from a...
Screening and isolation of medicinally important L-asparaginase enzyme from a...Screening and isolation of medicinally important L-asparaginase enzyme from a...
Screening and isolation of medicinally important L-asparaginase enzyme from a...pharmaindexing
 
Screening and Production of Protease Enzyme from Marine Microorganism and Its...
Screening and Production of Protease Enzyme from Marine Microorganism and Its...Screening and Production of Protease Enzyme from Marine Microorganism and Its...
Screening and Production of Protease Enzyme from Marine Microorganism and Its...iosrjce
 
ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM PLANTS AND OTHER ...
ISOLATION AND IDENTIFICATION OF LACTIC  ACID BACTERIA FROM PLANTS AND OTHER  ...ISOLATION AND IDENTIFICATION OF LACTIC  ACID BACTERIA FROM PLANTS AND OTHER  ...
ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM PLANTS AND OTHER ...American Research Thoughts
 
Characterization of Microbial Isolates from the Manufacturing Process Stream
Characterization of Microbial Isolates from the Manufacturing Process StreamCharacterization of Microbial Isolates from the Manufacturing Process Stream
Characterization of Microbial Isolates from the Manufacturing Process StreamRobert Westney
 
Strain improvt25 (2)
Strain improvt25 (2)Strain improvt25 (2)
Strain improvt25 (2)Sazzad Khan
 
Lab 6 isolation of antibiotic producer from soil
Lab 6 isolation of antibiotic producer from soilLab 6 isolation of antibiotic producer from soil
Lab 6 isolation of antibiotic producer from soilHama Nabaz
 
Strain improvement through genetic engineering
Strain improvement through genetic engineeringStrain improvement through genetic engineering
Strain improvement through genetic engineeringSulov Saha
 
STRAIN IMPROVEMENT AND ITS APPLICATIONS
STRAIN IMPROVEMENT AND ITS APPLICATIONSSTRAIN IMPROVEMENT AND ITS APPLICATIONS
STRAIN IMPROVEMENT AND ITS APPLICATIONSnoolu chandrika
 
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...QIAGEN
 
Antibacterial activity of Isolated Phytochemicals
Antibacterial activity of Isolated PhytochemicalsAntibacterial activity of Isolated Phytochemicals
Antibacterial activity of Isolated Phytochemicalsmaninder1991
 
application of microbiology in pharma qc industry
application of microbiology in pharma qc industryapplication of microbiology in pharma qc industry
application of microbiology in pharma qc industryRudra Chakraborty
 
Secondary metabolite production
Secondary metabolite productionSecondary metabolite production
Secondary metabolite productionAakilasahul3010
 

Andere mochten auch (20)

Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...
Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...
Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...
 
Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...
 
Bioactivity screening of soil bacteria against human pathogens
Bioactivity screening of soil bacteria against human pathogensBioactivity screening of soil bacteria against human pathogens
Bioactivity screening of soil bacteria against human pathogens
 
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
 
M.Sc. Project Viva Voce
M.Sc. Project Viva VoceM.Sc. Project Viva Voce
M.Sc. Project Viva Voce
 
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...
Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane...
 
Screening and isolation of medicinally important L-asparaginase enzyme from a...
Screening and isolation of medicinally important L-asparaginase enzyme from a...Screening and isolation of medicinally important L-asparaginase enzyme from a...
Screening and isolation of medicinally important L-asparaginase enzyme from a...
 
Screening and Production of Protease Enzyme from Marine Microorganism and Its...
Screening and Production of Protease Enzyme from Marine Microorganism and Its...Screening and Production of Protease Enzyme from Marine Microorganism and Its...
Screening and Production of Protease Enzyme from Marine Microorganism and Its...
 
ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM PLANTS AND OTHER ...
ISOLATION AND IDENTIFICATION OF LACTIC  ACID BACTERIA FROM PLANTS AND OTHER  ...ISOLATION AND IDENTIFICATION OF LACTIC  ACID BACTERIA FROM PLANTS AND OTHER  ...
ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM PLANTS AND OTHER ...
 
248 ritu
248 ritu248 ritu
248 ritu
 
Characterization of Microbial Isolates from the Manufacturing Process Stream
Characterization of Microbial Isolates from the Manufacturing Process StreamCharacterization of Microbial Isolates from the Manufacturing Process Stream
Characterization of Microbial Isolates from the Manufacturing Process Stream
 
Strain improvt25 (2)
Strain improvt25 (2)Strain improvt25 (2)
Strain improvt25 (2)
 
Lab 6 isolation of antibiotic producer from soil
Lab 6 isolation of antibiotic producer from soilLab 6 isolation of antibiotic producer from soil
Lab 6 isolation of antibiotic producer from soil
 
Strain improvement through genetic engineering
Strain improvement through genetic engineeringStrain improvement through genetic engineering
Strain improvement through genetic engineering
 
STRAIN IMPROVEMENT AND ITS APPLICATIONS
STRAIN IMPROVEMENT AND ITS APPLICATIONSSTRAIN IMPROVEMENT AND ITS APPLICATIONS
STRAIN IMPROVEMENT AND ITS APPLICATIONS
 
Ppt3
Ppt3Ppt3
Ppt3
 
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...
Microbiome Identification to Characterization: Pathogen Detection Webinar Ser...
 
Antibacterial activity of Isolated Phytochemicals
Antibacterial activity of Isolated PhytochemicalsAntibacterial activity of Isolated Phytochemicals
Antibacterial activity of Isolated Phytochemicals
 
application of microbiology in pharma qc industry
application of microbiology in pharma qc industryapplication of microbiology in pharma qc industry
application of microbiology in pharma qc industry
 
Secondary metabolite production
Secondary metabolite productionSecondary metabolite production
Secondary metabolite production
 

Ă„hnlich wie C033012018

Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...inventionjournals
 
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...inventionjournals
 
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...Ahmed Shawky
 
Plant tissue culture
Plant tissue culturePlant tissue culture
Plant tissue cultureMegha Shah
 
Algal Bioassay Studies in Waste Water
Algal Bioassay Studies in Waste WaterAlgal Bioassay Studies in Waste Water
Algal Bioassay Studies in Waste Wateriosrjce
 
Analysis and Applications of Fungal Materials
Analysis and Applications of Fungal MaterialsAnalysis and Applications of Fungal Materials
Analysis and Applications of Fungal MaterialsChristopher Perez
 
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...ijtsrd
 
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Innspub Net
 
03 f ijab 12-1261, 019-026
03 f ijab 12-1261, 019-02603 f ijab 12-1261, 019-026
03 f ijab 12-1261, 019-026IJAB1999
 
Isolation of Pure culture of Bacteria. Enzymes of Bacteria
Isolation of Pure culture of Bacteria. Enzymes of BacteriaIsolation of Pure culture of Bacteria. Enzymes of Bacteria
Isolation of Pure culture of Bacteria. Enzymes of BacteriaEneutron
 
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICA
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICABIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICA
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICADr Dama
 
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...IJEABJ
 
Studies on cellulose degrading microorganisms associated with rumen of rumina...
Studies on cellulose degrading microorganisms associated with rumen of rumina...Studies on cellulose degrading microorganisms associated with rumen of rumina...
Studies on cellulose degrading microorganisms associated with rumen of rumina...Premier Publishers
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Alexander Decker
 
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Alexander Decker
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDFpoovel4788
 
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation Agent
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation AgentIRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation Agent
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation AgentIRJET Journal
 
Microbial and physico chemical analyses of five major dump sites and nearby w...
Microbial and physico chemical analyses of five major dump sites and nearby w...Microbial and physico chemical analyses of five major dump sites and nearby w...
Microbial and physico chemical analyses of five major dump sites and nearby w...Alexander Decker
 

Ă„hnlich wie C033012018 (20)

Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
 
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
Isolation, Screening and Selection of Fungal Strains for Potential Cellulase ...
 
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...
Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachloro...
 
Plant tissue culture
Plant tissue culturePlant tissue culture
Plant tissue culture
 
Algal Bioassay Studies in Waste Water
Algal Bioassay Studies in Waste WaterAlgal Bioassay Studies in Waste Water
Algal Bioassay Studies in Waste Water
 
Analysis and Applications of Fungal Materials
Analysis and Applications of Fungal MaterialsAnalysis and Applications of Fungal Materials
Analysis and Applications of Fungal Materials
 
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...
Study on Characterization of Various Biofilms Prepared by Starch Isolated fro...
 
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
Evaluation of Different Growing Substrates on Lettuce (Lactuca sativa) under ...
 
03 f ijab 12-1261, 019-026
03 f ijab 12-1261, 019-02603 f ijab 12-1261, 019-026
03 f ijab 12-1261, 019-026
 
Isolation of Pure culture of Bacteria. Enzymes of Bacteria
Isolation of Pure culture of Bacteria. Enzymes of BacteriaIsolation of Pure culture of Bacteria. Enzymes of Bacteria
Isolation of Pure culture of Bacteria. Enzymes of Bacteria
 
IJAIEM-2014-01-10-022
IJAIEM-2014-01-10-022IJAIEM-2014-01-10-022
IJAIEM-2014-01-10-022
 
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICA
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICABIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICA
BIOCHEMICAL STUDIES OF HOUSEFLY, MUSCA DOMESTICA
 
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
 
Studies on cellulose degrading microorganisms associated with rumen of rumina...
Studies on cellulose degrading microorganisms associated with rumen of rumina...Studies on cellulose degrading microorganisms associated with rumen of rumina...
Studies on cellulose degrading microorganisms associated with rumen of rumina...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
 
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
Assessment and characterization of rhizo bacteria in petroleum–polluted soil ...
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF
 
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation Agent
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation AgentIRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation Agent
IRJET- Scavenging Efficiency of Azolla Pinnata in Effluent as Remediation Agent
 
Microbial and physico chemical analyses of five major dump sites and nearby w...
Microbial and physico chemical analyses of five major dump sites and nearby w...Microbial and physico chemical analyses of five major dump sites and nearby w...
Microbial and physico chemical analyses of five major dump sites and nearby w...
 

KĂĽrzlich hochgeladen

97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...narwatsonia7
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...rajnisinghkjn
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Suratnarwatsonia7
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...saminamagar
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsMedicoseAcademics
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 

KĂĽrzlich hochgeladen (20)

97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
Russian Call Girls Gunjur Mugalur Road : 7001305949 High Profile Model Escort...
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes Functions
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 

C033012018

  • 1. International Journal of Pharmaceutical Science Invention ISSN (Online): 2319 – 6718, ISSN (Print): 2319 – 670X www.ijpsi.org Volume 3 Issue 3‖ March. 2014 ‖ PP.12-18 www.ijpsi.org 12 | P a g e Screening Isolation and Characterization of Cellulase Producing Micro-Organisms from Soil. Lekh Ram1 , Kuldeep Kaur2 and Sandeep Sharma3* Department of Biotechnology, Arni University, kathgarh, (Indora), Kangra, H.P. India, Pin-176401 *Corresponding author- sandeep4380@gmail.com ABSTRACT: Cellulose may be hydrolyzed using enzymes to produce glucose, which can be used for the production of ethanol, organic acids and other chemicals. Cellulases are a group of hydrolytic enzymes capable of hydrolyzing the most abundant organic polymer i.e. cellulose to smaller sugar components including glucose subunits. Cellulase is expensive and contributes only 50% to the overall cost of hydrolysis due to the low specific activity. This enzyme has enormous potential in industries and is used in food, beverages, textile, laundry, paper and pulp industries etc. Therefore, there has been much research aimed at obtaining new microorganisms producing cellulose enzymes with higher specific activities and greater efficiency. Presently, work is aimed at screening and isolating cellulolytic fungi from the soil samples collected from 2 different areas of Himachal. Total 21 fungal isolates were isolated from these soil samples, out of which four isolates were showing the cellulase activity. The fungal isolate designated as PISS-3 isolated from Paper Industry soil sample from HRA Mill Village Tibhi, Indora, Kangra H.P was noticed to show maximum zone of hydrolysis of carboxy- methyl cellulose. The cellulase activity was assayed by Carboxymethyl cellulase “CMCase” (endoglucanase) assay. KEYWORDS: Cellulase, Fungi, CMC, DNS, Glucose, Protein estimation. I. INTRODUCTION Cellulose is the most common abundant, renewable biopolymer on earth and domestic waste materials from agriculture representing about 1.5 x 1012 tons of the total annual biomass production through photosynthesis in the topics (Klemm et al., 2002; Bhat, 2000). Cellulose is considered as one of the most important sources of carbon on this planet and its annual biosynthesis by both land plants and marine occurs at a rate of 0.85Ă—10 11 tonnes per annum (Nowak et al., 2005). Cellulase degradation and its subsequent utilisations are important for global carbon sources. The value of cellulose as a renewable source of energy has made cellulose hydrolysis the subject of intense research and industrial interest (Bhat et al., 2000). There has been much research aimed at obtaining new microorganisms producing cellulase enzymes with higher specific activities and greater efficiency (Subramaniyan and Prema, 2000). Over the years, a number of organisms, in particular fungi, possessing cellulose-degrading enzymes have been isolated and studied extensively (Bhat et al., 1997). Cellulolytic enzymes play an important role in natural biodegradation processes in which plant lignocellulosic materials are efficiently degraded by cellulolytic fungi, bacteria, actinomycetes and protozoa. In industry, these enzymes have found novel applications in the production of fermentable sugars and ethanol, organic acids, detergents and other chemicals. Cellulases provide a key opportunity for achieving tremendous benefits of biomass utilization (Wen et al., 2005).Cellulolytic enzymes are synthesized by a number of microorganisms. Fungi and bacteria are the main natural agents of cellulose degradation (Lederberg, 1992). The cellulose utilizing population includes aerobic and anaerobic mesophilic bacteria, filamentous fungi, thermophilic and alkaliphilic bacteria, actinomycetes and certain protozoa (Alexander, 1961). However, fungi are well known agents of decomposition of organic matter, in general, and of cellulosic substrate in particular (Lynd et al., 2002). Cellulose is the major component of plant biomass. Plants produce 4Ă—109 tons of cellulose annually. It is a polymer of β-1,4 linked glucose units. Its crystalline structure and insoluble nature represents a big challenge for enzymatic hydrolysis. Microorganisms are important in conversion of lignocelluloses wastes into valuable products like biofuels produced by fermentation. Successful bioconversion of cellulosic materials mainly depends on the nature of cellulose, sources of cellulolytic enzyme and optimal conditions for catalytic activity and production of enzymes. For many years, cellulose degrading bacteria have been isolated and characterized for obtaining more effective cellulases from variety of sources such as soil, decayed plant
  • 2. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 13 | P a g e materials, hot springs, organic matters, feces of ruminants and composts. Researchers keep on working to isolate microorganisms with higher cellulase activity. Cellulose is the structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulolysis is the process of breaking down cellulose into smaller polysaccharides called cellodextrins or completely into glucose units, this is a hydrolysis reaction. Biotechnology of cellulases and hemicellulases began in early 1980s, first in animal feed followed by food applications (Chesson, 1987; Thomke et al., 1980; Voragen, 1992; Voragen et al., 1980, 1986). The major industrial applications of cellulases are in textile industry for „bio-polishing‟ of fabrics and producing stonewashed look of denims, as well as in household laundry detergents for improving fabric softness and brightness. Besides, they are used in animal feeds for improving the nutritional quality and digestibility, in processing of fruit juices, in baking etc. Utilisation in de- inking of paper is yet another emerging application (Tolan and Foody, 1999). The cellulases that are used so far for the above-mentioned industrial applications are those from fungal sources (Tolan and Foody, 1999). II. MATERIAL AND METHODS Soil samples were collected from two different locations i.e. Paper Industry Soil Sample (PISS) taken from HRA Mill Village Tibhi Indora Kangra H.P. and Bami Soil Sample (BSS) collected from Mandi H.P. from a depth of 1-15 inches from the top and sieved through a 2 mm sieve constituted the soil sample. The samples were dispensed into bags and were brought to the laboratory. Fungal isolates were isolated by serial dilution method. 1 g of soil was transferred to 10 ml of distilled water in test tubes. Dilutions were made up to 10-6 and 0.1 ml of soil suspension was spread on to the sterilized Sabraud dextrose agar media (SDA) which contain 1% CMC. pH of the medium was adjusted to 7. After autoclaving at 121 °C and 15 lbs pressure, 20 ml of sterile medium were transferred to sterile Petri plates and allowed for solidification. After solidification of the medium 0.1 ml of soil suspension was spread with the help of spreader and incubated at 28 °C for 7 days. The fungal cultures grown on the medium were subcultured for repeated times. Pure culture was transferred on to the Sabraud dextrose agar slants and maintained at 4 °C for further studies. Morphological Identification of isolates: Fungal isolates were identified on the basis of morphological characteristics. For routine work of fungal identification the commonly used stain is called mounting fluid i.e. lactophenol plus cotton blue. Screening of cellulolytic fungi: The isolated fungal cultures were screened for their ability to produce cellulases complex following the method of Teather & Wood (1982). Czapek-Dox medium used in this method contained (g/l): sucrose – 30, NaNO3 – 2, K2HPO4 - 1, MgSO4 – 0.05, Kcl – 0.5, FeSO4 – 0.01, carboxy- methyl cellulose – 1%, Agar agar - 20. pH of the medium was adjusted to 5. After autoclaving at 121°C and 15 lbs. pressure, the medium was poured into Petri plates and allowed to solidify. Cavities of 6 mm size were made in the solidified medium and inoculated with 0.1 ml of fungal suspension prepared from 7 day old slants. The plates were incubated at room temperature (28 ± 2 °C) for three days to allow fungal growth, then again incubated for 18 h at 50 °C which is the optimum temperature for cellulases activity. After incubation, 10 ml of 1% Congo - Red staining solution was added to the plates that were shaken at 50 rev/ min for 15 min. The Congo - Red staining solution was then discarded, 10 ml of 1 N NaOH was added to the plates and shaken again at 50 rev/min for 15 minutes. Finally 1 N NaOH was also discarded and the staining of the plates was analyzed by noticing the formation of clear or yellowish zones around the fungal spore inoculated wells. Production of Cellulases from Fungal Isolates. The isolated fungal cultures were used to know their potential for cellulase production and activities. A volume of 100 ml of Czapek-Dox broth medium amended with 1% cellulose was distributed into separate 250 ml conical flasks. The pH of the medium was adjusted to 5. After autoclaving at 121°C and 15 lb. pressure, the fungal spore suspensions were inoculated into the conical flasks. The flasks were incubated at 32 °C on a rotary shaker at 120 rpm for 3 days. After 3 days, culture filtrate was collected, centrifuged at 6000 rpm for 15 min and supernatant was used to the estimation extracellular protein content . Not only this, it also used crude cellulase source. Extracellular protein content: - After 7 days of incubation, the contents of the flasks were aseptically passed through Whatman No.1 filter paper to separate mycelial mat from culture filtrates. An aliquot of this culture filtrates was used for estimation of extra cellular protein content according to the method of Lowry et al. (1951). Bovine serum albumin was used as protein standard. Suitable aliquots of filtrates were mixed with 5 ml of alkaline solution. After 30 min, 0.5 ml of appropriately diluted Folin-Ciocalteau reagent was added. The color developed was read at 550 nm by using the spectrophotometer.Activity of Cellulase in the culture filtrates was determined and quantified by carboxy-methyl cellulase method (Ghosh 1987). The reaction mixture with 1.0 ml of 1% carboxymethyl cellulose in 0.2 M acetate buffer (pH 5.0) was pre-incubated at 50°C in a water bath for
  • 3. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 14 | P a g e 20 minutes. An aliquot of 0.5 ml of culture filtrate with appropriate dilution was added to the reaction mixture and incubated at 50 °C in water bath for one h. Appropriate control without enzyme was simultaneously run. The reducing sugar produced in the reaction mixture was determined by dinitro- salicylic acid (DNS) method (Miller 1959). 3, 5-dinitro-salicylic acid reagent was added to aliquots of the reaction mixture and the color developed was read at wavelength 540 nm. III. RESULTS The soil sample contained considerable population of fungi Total 21 fungal isolates were isolated from the two different soil samples i.e. 12 isolates from Paper Industry Soil Sample and 9 isolates from Bami Soil Sample (fig:1, table-1). The Fungi grown on the selective media supported the growth of the fungi by using cellulose as the carbon source (Khalid et al., 2006). The isolated strains were carefully identified by morphological Characteristics include color of the colony and growth pattern studies. Some of the microscopic characteristics examined under the microscope include spore formation and color. Efficient cellulase producing fungi isolates were finally selected based on the zone of the clearing around the fungi on carboxyl methyl cellulase agar (CMC agar) plates (Bakare et al., 2005; Immanuel et al., 2006). The appearance of the clear zone around the colony when the Congo red solution was added (Wood and Bhat, 1988) was strong evidence that the fungi produced cellulase in order to degrade cellulose. Out of 21 fungal isolates, only 4 isolate produced zones of hydrolysis in CMC agar plates within 3 days and results were represented (fig.2, table.2). Sr. No. Nature of Sample No. of fungal populations 1. Paper Industrial Soil Sample(PISS) 12 2. Bami Soil Sample(BSS) 9 Table-1: showing the fungal isolates on to the medium. Fig.1: Fungal isolates. The fungi were isolated and screened from samples collected from paper industry and bami sample for cellulase production by Congo red assay. Isolated fungal strains were subjected to screening. The diameter of clear zone (fig: 2, table: 2). Isolate PISS-3 showed highest zone of clearance as 7 mm of colony diameter. Sr. No. Culture Strains Zone of clearance(mm) 1. PISS-1 2 2. PISS-2 5 3. PISS-3 7 4. BSS-1 3 Table-2: zone of clearance around the fungal culture on screening.
  • 4. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 15 | P a g e Fig.2: Fungal culture showing cellulase activity. Protein Estimation. Protein content of the isolated fungi was estimated by using the Folin Lowry‟s method and optical density of the strain was compared with the BSA standard curve (fig:3) to calculate the amount of protein (mg/ml) present in the supernatant used in cellulase assay. Fig.3: showing the BSA standard curve. Table-3: Table showing the protein content present in PISS-3 fungal isolate by using BSA standard curve. Sr. No. Fungal isolates Optical Density Protein(mg/ml) 1. PISS-3 0.050 0.1
  • 5. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 16 | P a g e The amount of protein present in the sample was found to be 0.1mg/ml. Fig.4: showing Glucose standard curve. Table-4: Table showing the release of glucose mg/0.5ml in the fungal isolate on comparison with the Glucose standard curve. Sr. No. Fungal isolates Optical Density glucose(mg/0.5ml) 1. PISS-3 0.055 1.0 The amount of glucose released by the sample was found to be 1.0mg/0.5ml. Cellulase activity. Cellulase activity was assayed using dinitrosalisic acid (DNS) reagent by estimation of reducing sugars released from the sample. Sugars liberated were determined by measuring absorbance at 540 nm. Cellulase production was estimated by using glucose standard curve. The activities of enzyme cellulases were determined by using the following formula: Enzyme activity = amount of glucose liberated/mg protein/30minutes (Ghose T.K. et al 1987). Enzyme activity of the PISS-3 strain is found to be 20mg glucose librated/mg protein/30min at 32°C. IV. DISCUSSION As cellulose can be regarded as the most abundant and biologically renewable resource for bioconversion, its exploitation can be maximized on hydrolysis to glucose and other soluble sugars which can be further fermented into ethanol for use as liquid fuel. Cellulases are the enzymes responsible for the cleavage of the β–1, 4–glycosidic linkages in cellulose. They are members of the glycoside hydrolase families of enzymes that hydrolyze oligosaccharides and/or polysaccharides. The major goals for future Cellulase research would be: (1) reduction in the cost of cellulase production and (2) improving the power of cellulases to make them more effective, so that less enzyme is needed (Akpan I. et al. 1999). Degradation of cellulosic materials is a complex process and requires participation of microbial cellulolytic enzymes. Habitats where these substrates are present are the best sources for isolation of cellulolytic microorganisms. About one fifth of fresh water and soil samples yield cellulose degrading fungi after enrichment but some samples did not bear such kind of fungi. This is due to existence of microenvironments where different growth conditions for cellulose degrading microorganisms are present. Several microorganisms have been discovered for decades which have capacity to convert cellulose into simple sugars but the need for newly isolated cellulose degrading microorganism still continues.
  • 6. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 17 | P a g e In the present study, soil samples were collected from different places of Himachal Pradesh. Two different types of soil samples taken from the different locations of Himachal Pradesh i.e. Paper Industry Soil Sample taken from HRA Mill Village-Tibhi, Indora Kangra H.P. and Bami Soil Sample of soil from Mandi H.P. Current study focuses on to the fungal isolates. The soil sample contained considerable population of the cellulase producing fungi. The Fungi grown on the selective media supported the growth of the fungi by using cellulose as the carbon source, for example Sabraud Dextrose Agar (SDA) with 1% of CMC. Total 21 fungal cultures were isolated from soil samples. The isolated fungi was purified by repeated sub-culturing on the Sabraud Dextrose Agar medium at regular intervals and incubating at 29°C. Morphological identification of the fungal isolates were performed by fungal staining of the cultures. Efficient cellulase producing fungi isolates were finally selected based on the zone of the clearance around the fungi. The appearance of the clear zone around the colony when the Congo red solution was added was a strong evidence that the fungi produced cellulase inorder to degrade cellulose. Among all these 21 fungal isolates only four fungal isolates (PISS-1, PISS-2, PISS-3, BSS- 1) were showing the cellulase activity on screening with congo red. Out these four fungal isolate PISS-3 have greater cellulase producing capability as it shows maximum zone i.e 7mm of clear zone around the fungal culture. The cellulase activity of fungal isolate PISS-3 was analyzed by evaluating the cellulase liberated in CMC solution through DNS method. The cellulase activity of fungal isolate was mathematically calculated by using the data of protein content (mg/ml) present in the supernatant of isolates which was estimated by Folin Lowrey‟s method. BSA Standard curve was used for determining the amount of protein present in the culture sample. The O.D. of the sample was compared with the standard curve of the BSA protein. The amount of protein present in the sample PISS-3 strain was estimated to be 0.1mg/ml. Cellulase activity of the enzyme was measured by cellulase assay. Cellulase Assay was done by DNS method (3, 5-dinitrosalicylic acid) and the activity of the enzyme was expressed in mg/ml/min. It was calculated by the following formula:Enzyme activity = amount of glucose liberated/mg protein/30minutes.In the previous studies made on cellulase by Lone M.A. et al. (2012), the cellulase activity of A. niger mtc872 was 59.25mg glucose liberated/mg protein/30minutes. But in our work the enzyme activity of the PISS-3 isolate was found to be 20mg glucose librated/mg protein/30min at 32°C. Future work of the present work includes increases the cellulase production by modifying the substrate and production conduction, purification of enzyme in order to gain higher specific activity of cellulase by the help of sophisticated purification procedures including Salt precipitation, Dialysis & Ion Exchange chromatography. V. CONCLUSION Cellulases are one of the most widely used enzymes required for the preparation of fermented foods. Apart from food and starch industries, in which demand for them is increasing continuously, they are also used in various other industries such as paper, pulp and textile etc. with increase in its application spectrum, the demand is for the enzyme with specificity. Present research is focused on to the isolation characterization of fungal isolates from the soil sample. In the present study, soil samples were collected from the different locations of Himachal Pradesh, India. Two different type of soil samples taken from the different locations of Himachal Pradesh i.e Paper Industry Soil Sample taken from HRA Mill Village Tibhi Indora Kangra H.P. and Bami Soil Sample from Mandi H.P. There were 21 fungal isolates were isolated from these two soil samples. Out of these 21 isolates of fungus only 3 isolates were showing the positive result for cellulase activity. Testing of cellulase isolates for cellulase activity was performed by performing Congo red staining of the isolates of the fungus. Morphological identification of the fungal isolates were done by fungal staining. The fungal isolate showing greater zone of clearance on screening was used further for production process. Production of the Cellulase by inoculating the isolate on to the Czepak Dox Broth for 72 hours. BSA standard curve was used for the estimation of the protein in the culture sample. Different dilutions of the BSA were used for the preparation of BSA standard curve. By comparing the O.D. of the culture sample with the standard graph of the BSA the concentration of Cellulase mg per ml of the sample was calculated. The amount of protein present in the sample PISS-3 strain was estimated to be 0.1mg/ml. The standard curve for glucose was prepared by using O.D. of the different dilution of glucose with citrate buffer. The amount of release of glucose mg per ml of the sample was calculated by DNS method. The amount of glucose present in the sample was found to be 1mg/ml. Enzyme activity of the PISS-3 strain was found to be 20mg glucose librated/mg protein/30min at 32°C. At last we conclude the PISS-3 fungal isolate is important for industrial use. ACKNOWLEDGEMENT Authors are thankful to Hon‟ble Vice Chancellor and Management of Arni University for providing necessary research facilities.
  • 7. Screening Isolation And Characterization Of Cellulase… www.ijpsi.org 18 | P a g e REFERENCES [1] Akpan I, Bankole M.O., Adesemowo A.M. and Latunde-Dada G.O., Trop. Sci., 1999, 39, 77-79. [2] Bakare. M.K., Adewale I.O., Ajayi A., and Shonukan O.O., purification and characterization of a thermostable endoglucanase from Aspergillus niger, African Journal of Biotechnology, 2005, 9, pp. 898. [3] Bhat, M.K., Cellulases and related enzymes in biotechnology. In Biotechnology Advances vol.18,2000 pp. 355-383. [4] Bhat, M.K. and Bhat, S., Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv., 1997, 15: 583–620. [5] Chesson A., Supplementary enzymes to improve the utilization of pigs and poultry diets. In: Haresign W Cole DJA editors Recent advances in animal nutrition London: Butterworths, 1987, 71–89. [6] Ghose TK., Pure Apple. Chem., 1987, 59, 257-268. [7] Immanuel, G., Dhanusa, Prema, P., and Palavesam, A., “Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment,” International Journal Environment Science Technology.2006, 3(1), 25-34. [8] Khalid, Yang, W.J., Kishwar, N., Rajput, Z.I. & Arijo, A.G., Study of cellulolytic soil fungi and two nova species and new medium. J. Zhejiang Univ. Sci. B, 2006, 7(6): 459-466. [9] Klemm D, Schmauder H.P., Heinze T., Biopolymers, vol VI, edited by E.Vandamme, S De Beats and A Steinb chel (Wiley- VCH, Weinheim), 2002, pp. 290 – 292. [10] Lederberg J., Cellulases. In: Encyclopaedia of Microbiology (Vol. 1; A-C). Academic Press, Inc. 1992. [11] Lynd LR, Weimer PJ, Van Zyl WH & Pretorious IS, Microbial cellulose utilization: Fundamentals and Biotechnology, Microbiology. Microbial Mol Bio Rev. 2002, 66: 506-577. [12] Lone MA, Wani MR, Bhat NA, and Resmi MA., Evaluation of cellulase enzyme secreted by some common and stirring Rhizosphere fungi of Juglans Regia L. by DNS method. In Journal of Enzyme Research. 2012,Vol 3, issue 1, 18-22. [13] Nowak, J., Florek, M., Kwiatek, W., Lekki, J., Chevallier, P. and Zieba E, Composite structure of wood cells in petrified wood. Mater Sci Eng, 2005, C25:119–30. [14] Subramniyan, S. and Prema, P., Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 2000, 183: 1-7. [15] Thomke S., Rundgreen M., Hesselman K. The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting of the European Association of Animal Production, Commission on Animal Production, Munich, Germany. 1980, 5. [16] Tolan, J.S and Foody, B., Cellulase from submerged fermentation. In: Advances in Biochemical Engineering: Biotechnology Vol 65. Recent Progress in Bioconversion of Lignocellulosics. (Tsao, G.T, Ed.), SpringerVerlag, Berlin, 1999 pp. 41–67. [17] Teather, R. M., and P. J. Wood. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol.1982, 43:777-780. [18] Voragen AGJ, Heutink R, Pilinik W, Solubilization of apple cell walls with polysaccharide degrading enzymes. J Appl Biochem. 1980, 2:452–68. [19] Voragen AGJ, Wolters H, Verdonschot-Kroef T, Rombouts FM, Pilnik W, Effect of juice-releasing enzymes on juice quality. In: International Fruit Juice Symposium, The Hague (NL), May 1986. Zurich: Juris Druck Verlag, 1986, 453–62. [20] Wen , Z., Liao, W. and Chen, S., Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 2005, 96: 491- 499. [21] Wood, T.M. and Bhat, K.M., Methods of measuring cellulase activities. Methods in Ezymology.1988, 160: 87-117.