SlideShare ist ein Scribd-Unternehmen logo
1 von 82
BIOMECHANICAL CONSIDERATIONS IN
IMPLANT DENTISTRY
INDIAN DENTAL ACADEMY
Leader in Continuing Dental Education
www.indiandentalacademy.com
CONTENTS
• Introduction
• Definition
• Types of biomechanics
• Importance in field of dental
implants
• Methods to analyze and
visualize stresses in bone
• Biomechanics of natural teeth
• Elements of mechanical
properties
• Force delivery and failure
mechanism
• Clinical moment arms and
crestal bone loss
• Bone as reactive recipient
material
• The bone repair mechanism
• Endosseous implant
• Biomechanical problems of
implant-supported prostheses
• Effects on treatment planning
• Summary and conclusion
www.indiandentalacademy.com
Biomechanics is one of the most important
considerations affecting the design of framework for
an implant –borne prosthesis. In general, the forces
that participate in both the masticatory process and
parafunction must be considered in the design of the
prosthesis. These considerations act as determining
factors of the device’s success or failure.
INTRODUCTION
www.indiandentalacademy.com
www.indiandentalacademy.com
WHAT ARE BIOMECHANICS?
Biomechanics is the scientific study of the load-force
relationships of a biomaterial in the oral cavity.
(Ralph Mc Kinney).
GPT-8
It is the relationship between the biologic behavior of
oral structures and the physical influence of a dental
restoration.
www.indiandentalacademy.com
TYPES OF BIOMECHANICS
TWO TYPES:-
1) Reactive Biomechanics:
is the interaction of isolated biomechanical factors which
when combined, produce an accumulative effect.
2) Therapeutic Biomechanics
is the clinical process of altering each biomechanical
factor to reduce the cumulative response causing implant
overload.
www.indiandentalacademy.com
IMPORTANCE IN THE FIELD OF DENTAL IMPLANTS:
• First, to know the loading (bite forces) exerted on the
prosthesis.
• Secondly, to know the distribution of the applied forces to
the implants and teeth supporting the prosthesis.
• Thirdly, the force on each implant must be delivered safely
to the bony tissues which in turn depend on the shape and
size of the implant.
In all these, the aim of biomechanical analysis is to foresee
failure of any part of the system, including the prosthesis,
the supporting implants and the biological tissues.
www.indiandentalacademy.com
METHODS TO ANALYZE AND VISUALIZE STRESSES IN BONE
Stress analysis can be performed:-
• Experimentally e.g. Stress-optical examination
• Theoretically & mathematically with computer simulation
e.g. Finite-element method
Stress-optical examination
Implant to be analyzed is embedded in synthetic resin and
stresses induced by loading are made visible by polarized light.
Disadvantages are:-
1. Not possible in inhomogeneous structure of bone
2. Limited optical resolution
www.indiandentalacademy.com
Finite-element method
• The structures to be examined are subdivided into a finite
number of elements of similar size that can be connected with
each other at corner points, i.e. nodes.
• The displacements and stresses at each node caused by loading
can be calculated with a computer program.
Advantages are:-
1. Allows inclusion of various materials with differing material
properties. Most importantly, the inhomogeneous structure of
bone, i.e. the subdivision into cortical and cancellous bone, can
be taken into consideration.
2. Allows three-dimensional visualization of the calculated
displacement and stresses.
www.indiandentalacademy.com
BIOMECHANICS OF NATURAL TEETH
The tooth is suspended syndesmotically within the alveolar bone
by dentoalveolar bundles of collagen fibers. Because of its
elasticity there is measurable horizontal, vertical, and rotational
tooth mobility.
Basically, tooth movement can be subdivided into two phases:-
1. Desmodontal phase:-
referred to as the first stage of movement, taking place when a
load of up to 100 N acts on the tooth. During this phase, the tooth
moves slightly within the socket. Some periodontal fiber bundles
are stretched, while others are relaxed. However, the alveolar
process does not undergo marked deformation.
www.indiandentalacademy.com
2. Periodontal phase:-
commences at loads exceeding 500 N. After the
desmodontal phase has passed and the periodontal fiber
bundles have been stretched to their full length, these strong
forces cause deformation of the entire alveolar process, which
subsequently offers more resistance to further tooth
deflection.
The degree of tooth deflection may vary from one individual
to another and ranges between 10 and 50 µm.
www.indiandentalacademy.com
Calculations of the stress distribution around natural teeth
have shown that physiologic stresses result in a relatively
even stress distribution.
The exception is in the cervical region of the tooth, where
horizontal loading with transfer of the compressive forces into
the periodontium results in moderately high tensile stresses,
and the lamina dura is affected by axial compressive
stresses because of bending of the alveolar bone.
www.indiandentalacademy.com
• Mass, is the degree of gravitational attraction the body of
matter experiences.
• Force was described by Newton.
Newton's second law, states that the acceleration of a body is
inversely proportional to its mass and directly proportional to
the force that caused the acceleration.
A α f  m Therefore, F = ma
• Weight is the gravitational force acting on an object at a
Specified location.
Weight and Force therefore can be expressed by the same
units, newtons (N) or pound force (Ibf)
ELEMENTS OF MECHANICAL PROPERTIES
www.indiandentalacademy.com
FORCES
• Forces may be described by magnitude, duration,
direction, type, and magnification factors.
• Forces acting on dental implants are referred to as vector
quantities; that is, they possess both magnitude and
direction.
A force applied to a dental implant is rarely directed
absolutely longitudinally along a single axis.
In fact, forces are three dimensional with components
directed along one or more of the three clinical coordinatethree clinical coordinate
axesaxes i.e. :-
www.indiandentalacademy.com
www.indiandentalacademy.com
Components of Forces (Vector Resolution)
A single occlusal contact most commonly result in a three-
dimensional occlusal force. The process by which three-
dimensional forces are broken down into their component parts is
referred to as vector resolution
Types of Forces
Forces may be described as :-
1. Compressive forces attempt to push masses toward each other.
2. Tensile forces pull objects apart.
3. Shear forces on implants cause sliding forces.
www.indiandentalacademy.com
www.indiandentalacademy.com
• Compressive forces tend to maintain the integrity of a bone-
to-implant interface, whereas tensile and shear forces tend
to disrupt such an interface.
• Shear forces are most destructive to implants and bone
when compared with other load modalities.
• Compressive forces, in general, are best accommodated by
the complete implant-prosthesis system.
www.indiandentalacademy.com
The implant body design transmits the occlusal load to the
bone. Threaded or finned dental implants impart a
combination of all three force types at the interface under
the action of a single occlusal load.
Cylindrical implants are at highest risk for harmful shear
loads under an occlusal load directed along the long axis of
the implant body. As a result, cylinder implants require a
coating to manage the shear stress at the interface through
a more uniform bone attachment along the implant length.
Compressive forces should typically be dominant in implantCompressive forces should typically be dominant in implant
prosthetic occlusion.prosthetic occlusion.
www.indiandentalacademy.com
STRESS
The manner in which a force is distributed over a surface is
referred to as mechanical stress. Thus stress is defined by the
familiar relation:
Stress = F/A
The internal stresses that develop in an implant system and
surrounding biologic tissues have a significant influence on the
long-term longevity of the implants in vivo.
As a general rule of thumb, a goal of treatment planning should
be to both minimize and evenly distribute mechanical stress in the
implant system and the contiguous bone.
www.indiandentalacademy.com
The magnitude of stress is dependent on two variables:-
1. force magnitude and
2. cross-sectional area over which the force is dissipated.
Force magnitude
• rarely be completely controlled by a dental practitioner.
• The magnitude of the force may be decreased by reducing the
significant "magnifiers of force“ :- cantilever length, offset loads,
and crown height.
Night guards to decrease nocturnal parafunction, occlusal
materials that decrease impact force, and overdentures rather
than fixed prosthesis so they may be removed at night are
further examples of force reduction strategies.
www.indiandentalacademy.com
Functional cross-sectional area is defined as that surface
that participates significantly in load bearing and stress
dissipation.
It may be optimized by :-
(1) Increasing the number of implants for a given edentulous
site, and
(2) Selecting an implant geometry that has been carefully
designed to maximize functional cross-sectional area.
www.indiandentalacademy.com
DEFORMATION AND STRAIN
Strain is defined as the change in length divided by the original
length.
For tension and compression, strain expresses a lengthening and a
shortening of the body respectively. In shear, the shape change is
expressed in terms of a change in angle of one part of the body
relative to the other.
The deformation and strain characteristics of the materials used in
implant dentistry may influence interfacial tissues, and clinical
longevity.
Elongation (deformation) of biomaterials used for dental implants
range from 0% for aluminum oxide (Al2O3) to up to 55% for
annealed 316-L stainless steel.
www.indiandentalacademy.com
Related to deformation is the concept of strain—a parameter
believed to be a key mediator of bone activity.
All materials (both biologic and nonbiologic) are characterized
by a maximum elongation possible before permanent
deformation or fracture results.
www.indiandentalacademy.com
STRESS-STRAIN CHARACTERISTICS:
A relationship is needed between the applied force (and stress)
and the subsequent deformation (and strain).
If any elastic body is experimentally subjected to an applied load,
a load-vs.-deformation curve may be generated.
If the load values are divided by the surface area over which they
act and the change in the length by the original length, a classic
engineering stress-strain curve is produced.
www.indiandentalacademy.com
Such a curve provides for the prediction of how much strain will be
experienced in a given material under an applied load.
The slope of the linear (elastic) portion of this curve is referred to
as the modulus of elasticity (E), and its value is indicative of the
stiffness of the material under study.
The closer the modulus of elasticity of the implant resembles that of
the biologic tissues, the less the likelihood of relative motion at the
tissue-to-implant interface.
Once a particular implant system (i.e., a specific biomaterial) is
selected, the only way to control the strain is to control the applied
stress or change the density of bone around the implant.
www.indiandentalacademy.com
The greater the magnitude of stress applied, the greater the
difference in strain between implant material and bone.
www.indiandentalacademy.com
• When two bodies collide in a very small interval of time (fractions
of a second), relatively large forces develop. Such a collision is
described as impact.
• In dental implant systems subjected to occlusal impact loads,
deformation may occur in the prosthetic
restoration, in the implant itself, or in the interfacial tissue.
• The higher the impact load, the greater the risk of implant and
bridge failure and bone fracture.
• Rigidly fixed implants generates a higher impact force than a
natural tooth with its periodontal ligament.
Various methods have been proposed to address the issue of
reducing implant loads.
IMPACT LOADS
www.indiandentalacademy.com
Skalak suggested the use of acrylic teeth in conjunction with
osteointegrated fixtures
Weiss has proposed that a fibrous tissue-to-implant interface
provides for physiologic shock absorption in the same manner as by
a functioning periodontal ligament.
one implant design has attempted to incorporate shock absorption
capability in the design itself, by the use of an "intramobile element"
of lower stiffness compared with the rest of the implant.
Misch advocates an acrylic provisional restoration with a progressive
occlusal loading to improve the bone-to-implant interface before the
final restoration, occlusal design, and masticatory loads are
distributed to the system.
www.indiandentalacademy.com
FORCE DELIVERY AND FAILURE MECHANISMS
The manner in which forces are applied to implant
restorations dictates the likelihood of system failure.
If a force is applied some distance away from a weak link in
an implant or prosthesis, bending or torsional failure may
result from moment loads.
www.indiandentalacademy.com
The moment of a force about a point tends to produce
rotation or bending about that point.
The moment is a vector quantity.
Moment Loads = force magnitude X moment armMoment Loads = force magnitude X moment arm
This imposed moment load is also referred to as a torque or
torsional load and may be quite destructive with respect to
implant systems.
Moment Loads
www.indiandentalacademy.com
Proper restorative design must necessarily include
consideration of both forces and the moment loads caused by
those forces.
100 N
www.indiandentalacademy.com
"Clinical Moment Arms" and Crestal Bone Loss
A total of six moments (rotations) may develop about the
three clinical coordinate axes.
faciolingual plane
www.indiandentalacademy.com
Such moment loads induce microrotations and stress
concentrations at the crest of the alveolar ridge at the
implant-to-tissue interface, which leads to crestal bone loss.
Three "clinical moment arms" exist in implant dentistry:-
1. Occlusal height,
2. Cantilever length, and
3. Occlusal width.
Minimization of each of these moment arms is necessary to
prevent unretained restorations, fracture of components,
crestal bone loss, and/or complete implant system failure.
www.indiandentalacademy.com
www.indiandentalacademy.com
Occlusal Height Moment Arm
Occlusal height serves as the moment arm for force
components directed along the faciolingual axis as well as
along the mesiodistal axis.
www.indiandentalacademy.com
Moment of a force along the vertical axis is not affected by the
occlusal height because there is no effective moment arm.
Offset occlusal contacts or lateral loads, however, will
introduce significant moment arms.
www.indiandentalacademy.com
• Large moments may develop from vertical axis force
components in cantilever extensions or offset loads from
rigidly fixed implants.
• A lingual force component may also induce a twisting
moment about the implant neck axis if applied through a
cantilever length.
Cantilever length moment arm
www.indiandentalacademy.com
www.indiandentalacademy.com
• An implant with a cantilevers extending1 cm, 2 cm, and 3 cm
has significant ranges of moment loads.
• A 100-N force applied directly over the implant does not
induce a moment load or torque because no rotational forces
are applied through an offset distance.
• This same 100-N force applied 1 cm from the implant results
in a 100 N-cm moment load.
• Similarly, if the load is applied 2 cm from the implant, a 200
N-cm torque is applied to the implant-bone region, and 3 cm
results in a 300 N-cm moment load.
• (Implant abutments are typically tightened with less than
30 N-cm of torque).
www.indiandentalacademy.com
The distance from the center of the most anterior implant to the
distal of each posterior implant is called the anteroposterior (AP)
distance.
The greater the A - P distance, the smaller the resultant load on
the implant system from cantilevered forces, because of the
stabilizing effect of the anteroposterior distance.
According to Misch, the amount of stress applied to system is
determined by the length of the distal cantilever.
Nobel Biocare prosthetic protocol uses four to six anterior
implants placed in front of the mental foramen or maxillary sinus
and uses a full-arch fixed prosthesis with cantilevered segments.
www.indiandentalacademy.com
Replacement of maxillary anterior
teeth in a tapered arch form requires
more posterior implants than in a
square arch form, with less offset
loading of mandibular teeth.
A tapered arch form permits greater
cantilever length than a square arch
form in mandibular anterior region.
www.indiandentalacademy.com
• The most ideal biomechanical arch form depends on the
restorative situation:-
• Tapering arch form is favorable for anterior implants with
posterior cantilevers.
• Square arch form is preferred when canine and posterior
implants are used to support anterior cantilevers in either arch.
• Ovoid arch form has qualities of both tapered and square arches.
• Clinical experiences suggest that the distal cantilever should not
extend 2.5 times the A-P distance under ideal conditions.
• Patients with severe bruxism should not be restored with any
cantilevers.
www.indiandentalacademy.com
Occlusal Width Moment Arm
Wide occlusal tables increase the moment arm for any offset
occlusal loads.
Faciolingual tipping (rotation) can be significantly reduced by
narrowing the occlusal tables and/or adjusting the occlusion
to provide more centric contacts.
It can be summarized that a destructive cycle can develop with
moment loads and result in crestal bone loss. Unless the bone
increases in density and strength , the cycle continues
towards implant failure if the biomechanical environment is
not corrected.
www.indiandentalacademy.com
BONE AS REACTIVE RECIPIENT MATERIAL
Meier (1887) assumed that the trajectories within cancellous bone
show the same direction as in the femur head. Wolff (1892) gave
more clarity to Meier hypothesis and established it as law of nature.
Roux (1895) suggested that natural tissues are capable of adapting
to changing loading conditions because of a cellular regulation
process. Depending on the magnitude of loading ,bone tissue cells
either respond by bone formation or bone resorption.
Later, Wolff’s hypothesis and Roux’s principle merged into one
concept as Wolff’s Law.
Today, practically all load related changes in the bone structure areToday, practically all load related changes in the bone structure are
grouped together under termgrouped together under term remodelingremodeling and are associated withand are associated with
Wolff’s Law.Wolff’s Law.
www.indiandentalacademy.com
THE BONE REPAIR MECHANISM
Pauwels hypothesis (1960) is based on the observation that bone
responds to physiologically relevant long-term loading by increasing
bone formation.
If bone remains unloaded for the same period of time it will undergo
resorption.
If a physiologically relevant force acts on the bone, bone tries tobone tries to
reduce strainreduce strain by bone apposition or reduction and by changing its
cross section and stiffness.
This is done by :-
• Bone formation or resorption at surface [external or surface
remodeling]
• Altering the bone mineral content [internal remodeling]
www.indiandentalacademy.com
As long as the mechanical stimulus remains within a certain
physiologic limit, the system will maintain balance between
bone resorption and new bone growth.
Stress of 2.48x10N/mm² --- will cause increase in bone growth.
Stress ranging 2.5x10 to 6.9x10N/mm2
– will lead to reduction
of bone growth.
Stress exceeding 6.9x10N/mm² -- will cause cell destruction.
www.indiandentalacademy.com
To prevent bone resorption caused by biomechanical
factors,forces should be as even as possible and not
exceeding a maximum value of 2.5x10 N/mm².
The balance can be regulated by both hormonal and
mechanical factors. Several theories concern the effect of
mechanical loads and repair mechanisms.
www.indiandentalacademy.com
ENDOSSEOUS IMPLANT (OPEN IMPLANT SYSTEM)
• The biomechanical conditions around an implant
differ fundamentally from those around natural teeth.
• While natural teeth are anchored within the socket by
the fibers of the periodontal membrane, implants may
show either direct bone bonding or connective tissue
encapsulation.
www.indiandentalacademy.com
Direct bone bonding
• Can be achieved if implant is allowed to heal into bone in
the absence of loading and new bone is oppositioned onto
the implant surface.
• Ankylotic-healing can be considered as one of the most
important aspects of the force transfer mechanisms in
osseointegrated implants because it prevents relative
movement of implant and bone.
• Close apposition of bone to the implant can even be
observed in microasperities at the Angstrom level.
www.indiandentalacademy.com
Connective tissue encapsulation
• occurs if the implant is loaded
immediately after having been placed.
• Following long periods of function, the
bone around endosseous implants can
undergo resorption observed as funnel-
shaped local areas of cortical bone
reduction at the site where the implant
enters bone.
• Aside from inflammatory causes, bone
resorption is mainly due to biomechanical
factors.
www.indiandentalacademy.com
Will the use of "isoelastic" implants result in more favorable
stress conditions in bone than those observed when relatively
stiff, conventional dental implants are used?
Soltesz and Siegele (1982) as well as Moilgth et al (1989) have
shown that :-
• The global stress pattern remains the same when the material
properties of an implant are changed.
• Most stress values only show minor changes, except for the
site where the implant enters bone.
• The values obtained from implants made of bonelike
substances are more than twice as high as those calculated for
implants made of stiffer materials.
Impact of implant stiffness on stress distribution
www.indiandentalacademy.com
www.indiandentalacademy.com
All in all, the use of isoelastic implants cannot be
recommended.
On the contrary, implants should be as stiff as possible from
the biomechanical standpoint, and should have modulus of
elasticity of atleast 100,000N/mm². The stiffness of an implant
can also be increased by choosing an implant of larger
diameter.
If the diameter is increased by 30%, implant stiffness will be
five times higher, and the stresses around the implant neck
are thus reduced.
www.indiandentalacademy.com
Impact of implant shape on stress distribution
The stress conditions around an implant can also be improved by
selecting an appropriate implant shape.
Endosteal dental implant designs may be generally considered as
blade or root form.
The neck design in either implant system (i.e. root form & blade
form) is particularly important in the consideration of implant
geometry because the physiologic load is transmitted
through the neck region to the implant body and the
surrounding tissues.
As the cross-sectional area of the neck decreases, the stress levels
in the neck and the surrounding tissues increases.
( stress= force/area.)
www.indiandentalacademy.com
The implant body must exhibit a macrogeometry suitable for
force transfer to the surrounding tissues as well as for
implantation into a bony site of a particular anatomic size.
When viewed from the broad end, blade implants show a
relatively favorable stress pattern, when viewed from the front,
they exhibit an extremely unfavorable stress pattern,
particularly with regard to horizontal forces.
www.indiandentalacademy.com
Because force transfer into bone should be as even as possible,
implants showing rotational symmetry can be considered more
favorable from the biomechanical point of view. However, this
imposes size constraints on the geometry of the implantation
site.
Blade implants are designed to serve in those bony sites which
are too narrow to accommodate root form implants. However ,
they have reduced cross-sectional area available to resist axial
loads as compared to root form implants.
www.indiandentalacademy.com
Perforations or "vents" in the body of an endosteal dental
implant provide a means for bone in growth into the device
with resultant stabilization of the implant within the tissues. In
blade form implants, vents also serve to increase the amount
of cross-sectional area available to resist axial loads.
www.indiandentalacademy.com
www.indiandentalacademy.com
Impact of implant surface on stress distribution
Osteolytic loosening of an implant may result from selection of a
biomechanically unfavorable implant shape.
Because endosseous implants lack the natural attachment to bone,
this missing periodontal function must be compensated for by
minimization of the specific surface pressure (snowshoe principle).
This means that implant surface used for force transfer should be as
large as possible.
To minimize the compressive forces, the implant surface can be
enlarged by:-
•Applying threads
•Plasma flame spray coating
•Surface roughening
•Acid etching
www.indiandentalacademy.com
Another factor that influences the size of the surface area is
the length of the implant.
Albrektsson et al (1983) revealed a clear correlation between
the length of an implant and implant prognosis. Implants with
a length of less than 10mm showed a markedly worse
prognosis than did implants whose length exceeded 10 mm.
This may be due to the fact that short implants have a
considerably smaller surface area and are affected by
markedly higher moments.
www.indiandentalacademy.com
BIOMECHANICAL PROBLEMS OF IMPLANT-SUPPORTED
PROSTHESES
Connecting implants with natural teeth
In a combined tooth-implant prosthesis, force distribution
depends on whether, the main load is borne by the tooth or
the implant .
• If the superconstruction above the implant is affected by
vertical loads, load transfer will take place almost
exclusively via implant, the natural tooth only being used
minimally as support.
www.indiandentalacademy.com
Use of an implant with an integrated elastic layer, i.e. an
intramobile element can reduce the stresses.
From the prosthodontic point of view, whenever possible
avoid a rigid connection between implant and tooth and use
purely implant-supported superconstructions instead.
• lf the same vertical load acts on the portion of the prosthesis
above the tooth, the load distribution will differ from the one
previously described. In this case, the prosthesis acts as a
lever arm. The tooth is affected both by vertical force and
torque and can slightly sink into the socket .
www.indiandentalacademy.com
Purely implant-supported prostheses
Implant-supported prostheses seem to involve fewer
biomechanical problems. However, there are many
aspects that need to be clarified, because:
1. The prosthesis must follow the arched shape of the
mandible.
2. The implants cannot be considered an ideal rigid system.
3. The mandible undergoes functional deformation.
www.indiandentalacademy.com
One of the most common indication for implant treatment is the
atrophic edentulous mandible. Aside from the widely used bar-joint
dentures, fixed implant-supported prostheses with a posterior
cantilever are gaining increasing importance.
The number of implants to be placed can be calculated from the
space available between the two mental foramina and the distance
between the implants postulated by Branemark et al (1985).
Because the mean distance between the two mental foramina is 47
mm and the distance from the center of one implant to that of the
adjacent implant should be 7 mm, up to six implants can be placed.
www.indiandentalacademy.com
The author's (Mailath-Pokorny/Solar) own finite-element
analyses have shown that :-
1. The maximum shear stress and moments can be observed
in the implant closest to the site of force impact and the
effects on all other implants can even be ignored.
2. When the distribution and density of stress on a prosthesis
supported by four implants are compared with those
supported by six implants, the additional procedures needed
for placement of the two additional implant do not seem to
be justified.
www.indiandentalacademy.com
www.indiandentalacademy.com
3. Prolongation of the cantilever by more than two times the
width of a premolar tooth results in unfavorable loading
condition because of lever arm effect. It seems to be
sensible to use cantilever prostheses whose free end is
not longer than two times the width of a premolar tooth.
4. Also, the use of six implants would not improve the
unfavorable loading conditions caused by a long cantilever.
www.indiandentalacademy.com
EFFECTS ON TREATMENT PLANNING
1) The most common complications in implant dentistry, once
the prosthesis is delivered are, bone loss, fracture of
occlusal materials or implant components, and unretained
restorations.
These problems are primarily related to increases in stress.
Therefore once the sources of additional force are identified
on the implant system, the treatment plan is altered to lower
their negative impact on the implant, bone, and final
restoration.
www.indiandentalacademy.com
2) Stress can be reduced by using Additional implants, rather
than only an increase in implant width or height. This will:-
• decrease the number of pontics and the associated
mechanics and strains on the prosthesis.
• dissipate stresses more effectively to the bone structure,
especially in crestal region.
• retention of the final prosthesis or superstructure is further
improved.
• The amount of bone in contact with the implant is also
increased as a multiple of the number of implants.
• Also, Increase in implant width is preferable to length as
lesser stresses transmitted to crestal bone.
www.indiandentalacademy.com
Panoramic radiograph of mandibular fixed prosthesis opposing
natural dentition. Posterior implants are used as abutments rather
than cantilevers to decrease stress on implants and prosthesis. No
second molars are provided to decrease stress.
www.indiandentalacademy.com
3) Forces from bruxism are often the most difficult forces to
control. Crestal bone loss, unretained abutments, and fatigue
stress fractures of implants or prostheses are more likely a
result of this condition.
The implant treatment plan is modified primarily in two ways
when implants are inserted in the posterior region.
• Additional implants and occlusal considerations are both
primordial.
• The elimination of posterior lateral occlusal contacts during
excursive movements is recommended when opposing
natural teeth or an implant or tooth supported fixed
prostheses.
www.indiandentalacademy.com
• The anterior teeth may be modified to recreate the proper
incisal guidance and avoid posterior interferences during
excursions.
• Use of a night guard is helpful for the bruxism patient with
fixed prostheses.
• Anterior-guided disocclusion of the posterior teeth in
excursions is strongly suggested in the night guard, which
may be designed for the maxilla or mandible.
www.indiandentalacademy.com
• A removable partial denture over a healing implant is
especially of concern. These patients often have many
remaining teeth and higher forces are transmitted to the soft
tissue regions that support the restorations. The acrylic
between the soft tissue-borne region and metal substructure is
usually less than 2 mm thick.
• Removing the thin acrylic region over the implant is often not
sufficient. Instead, a 6-mm diameter hole through the metal
substructure should be prepared. In this manner, a bruxing
patient will not load the submerged implant during healing.
www.indiandentalacademy.com
4) The time Intervals between prosthodontic restoration
appointments may be increased to provide additional time to
produce load-bearing bone around the implants through
progressive bone-loading techniques.
• Anterior implants submitted to lateral parafunction forces
require further treatment considerations. Additional implants
are indicated, preferably of greater diameter.
www.indiandentalacademy.com
• The excursions are canine guided if natural, healthy
canines are present.
• Mutually protected occlusion is developed if the implants are
in the canine position or if this tooth is restored, as a pontic.
• A first premolar may also disocclude the remaining posterior
teeth when the patient is in skeletal Class II or when anterior
implants are small in size or number
www.indiandentalacademy.com
5) Prosthesis may be designed to improve the distribution of
stress throughout the implant system.
• Centric vertical contacts should be aligned with the long
axis of the implants whenever possible.
• The posterior occlusal tables may be narrowed to prevent
inadvertent lateral forces, and to leave greater space for
the tongue.
• Enameloplasty of the cusp tips of the opposing natural
teeth is done to improve the direction of vertical forces.
www.indiandentalacademy.com
6) A Lateral tongue thrust is most detrimental if horizontal
forces are applied to the implant during the early stages
of interface formation.
Submerged, two-phase, rigid, fixated implants are
indicated.
www.indiandentalacademy.com
7) Inadequate bone height for endosteal implants usually
means a higher crown height and extension of the implant
substructure. These permucosal abutment posts are subject
to increased lateral oral forces.
valid treatment alternatives are:-
• Myofunctional therapy and/or autogenous bone grafts to
modify the bone type.
• cantilevered bridges from the anterior teeth or implants.
• conventional removable partial dentures.
www.indiandentalacademy.com
SUMMARY AND CONCLUSION
The most common complications in implant-related
reconstruction are related to biomechanical conditions.
The manifestation of biomechanical loads on dental
implants (moments, stress, and strain) controls the long-
term health of the bone-to-implant interface. Knowledge of
basic biomechanical principles is thus required for the
dentist.
www.indiandentalacademy.com
• Biomechanics in clinical dentistry -Angelo. A CapitoAngelo. A Capito
• Contemporary implant dentistry - Carl E Misch Ed 2nd.Carl E Misch Ed 2nd.
• Oral rehabilitation with implant supported prostheses-
Vicente jimenez- LopezVicente jimenez- Lopez
• Endosteal Dental Implants -Ralf V McKinney JrRalf V McKinney Jr
• Endosseous implants- Georg WatzekGeorg Watzek
• Dental implant prosthetics - Carl E MischCarl E Misch
REFERENCES
www.indiandentalacademy.com
www.indiandentalacademy.com

Weitere ähnliche Inhalte

Was ist angesagt?

Bone density for dental implant.
Bone density for dental implant.Bone density for dental implant.
Bone density for dental implant.Riad Mahmud
 
Emergence profile in fixed partial denture.
Emergence profile in fixed partial denture.Emergence profile in fixed partial denture.
Emergence profile in fixed partial denture.Pallawi Sinha
 
Implants bio mechanics /certified fixed orthodontic courses by Indian denta...
Implants bio mechanics   /certified fixed orthodontic courses by Indian denta...Implants bio mechanics   /certified fixed orthodontic courses by Indian denta...
Implants bio mechanics /certified fixed orthodontic courses by Indian denta...Indian dental academy
 
Diagnosis and treatment planning in implants/ cosmetic dentistry training
Diagnosis and treatment planning in implants/ cosmetic dentistry trainingDiagnosis and treatment planning in implants/ cosmetic dentistry training
Diagnosis and treatment planning in implants/ cosmetic dentistry trainingIndian dental academy
 
PLATFORM SWITCHING
PLATFORM SWITCHINGPLATFORM SWITCHING
PLATFORM SWITCHINGshari kurup
 
Implant design and consideration/ dentistry work
Implant design and consideration/ dentistry workImplant design and consideration/ dentistry work
Implant design and consideration/ dentistry workIndian dental academy
 
Occlusion in implant ss
Occlusion in implant ssOcclusion in implant ss
Occlusion in implant ssMurtaza Kaderi
 
IMPLANT OCCLUSION
IMPLANT OCCLUSIONIMPLANT OCCLUSION
IMPLANT OCCLUSIONshari kurup
 
Osseodensification
Osseodensification Osseodensification
Osseodensification Naveed AnJum
 
Implant stability1
Implant stability1Implant stability1
Implant stability1Asmita Sodhi
 
Soft tissue considerations for implant placement
Soft tissue considerations for implant placementSoft tissue considerations for implant placement
Soft tissue considerations for implant placementGanesh Nair
 
Implants : An Overview, Biomechanics & Treatment Planning
Implants : An Overview, Biomechanics & Treatment PlanningImplants : An Overview, Biomechanics & Treatment Planning
Implants : An Overview, Biomechanics & Treatment PlanningDibya Falgoon Sarkar
 
Classification and impression techniques of implants/ dentistry dental implants
Classification and impression techniques of implants/ dentistry dental implantsClassification and impression techniques of implants/ dentistry dental implants
Classification and impression techniques of implants/ dentistry dental implantsIndian dental academy
 
Implant prosthetic considerations
Implant   prosthetic considerationsImplant   prosthetic considerations
Implant prosthetic considerationsNitika Jain
 

Was ist angesagt? (20)

Bone density for dental implant.
Bone density for dental implant.Bone density for dental implant.
Bone density for dental implant.
 
Emergence profile in fixed partial denture.
Emergence profile in fixed partial denture.Emergence profile in fixed partial denture.
Emergence profile in fixed partial denture.
 
Implants bio mechanics /certified fixed orthodontic courses by Indian denta...
Implants bio mechanics   /certified fixed orthodontic courses by Indian denta...Implants bio mechanics   /certified fixed orthodontic courses by Indian denta...
Implants bio mechanics /certified fixed orthodontic courses by Indian denta...
 
Diagnosis and treatment planning in implants/ cosmetic dentistry training
Diagnosis and treatment planning in implants/ cosmetic dentistry trainingDiagnosis and treatment planning in implants/ cosmetic dentistry training
Diagnosis and treatment planning in implants/ cosmetic dentistry training
 
PLATFORM SWITCHING
PLATFORM SWITCHINGPLATFORM SWITCHING
PLATFORM SWITCHING
 
Abutment Selection
Abutment SelectionAbutment Selection
Abutment Selection
 
Implant design and consideration/ dentistry work
Implant design and consideration/ dentistry workImplant design and consideration/ dentistry work
Implant design and consideration/ dentistry work
 
Biomechanics and Treatment Planning - Part 1
Biomechanics and Treatment Planning - Part 1Biomechanics and Treatment Planning - Part 1
Biomechanics and Treatment Planning - Part 1
 
Occlusion in implant ss
Occlusion in implant ssOcclusion in implant ss
Occlusion in implant ss
 
Immediate implants
Immediate implants Immediate implants
Immediate implants
 
Implant failure
Implant failureImplant failure
Implant failure
 
IMPLANT OCCLUSION
IMPLANT OCCLUSIONIMPLANT OCCLUSION
IMPLANT OCCLUSION
 
Osseodensification
Osseodensification Osseodensification
Osseodensification
 
Implant prosthesis occlusion
Implant prosthesis occlusionImplant prosthesis occlusion
Implant prosthesis occlusion
 
Implant stability1
Implant stability1Implant stability1
Implant stability1
 
Soft tissue considerations for implant placement
Soft tissue considerations for implant placementSoft tissue considerations for implant placement
Soft tissue considerations for implant placement
 
Implants : An Overview, Biomechanics & Treatment Planning
Implants : An Overview, Biomechanics & Treatment PlanningImplants : An Overview, Biomechanics & Treatment Planning
Implants : An Overview, Biomechanics & Treatment Planning
 
Single tooth implants
Single tooth implantsSingle tooth implants
Single tooth implants
 
Classification and impression techniques of implants/ dentistry dental implants
Classification and impression techniques of implants/ dentistry dental implantsClassification and impression techniques of implants/ dentistry dental implants
Classification and impression techniques of implants/ dentistry dental implants
 
Implant prosthetic considerations
Implant   prosthetic considerationsImplant   prosthetic considerations
Implant prosthetic considerations
 

Andere mochten auch

Elastic impression materials
Elastic impression materialsElastic impression materials
Elastic impression materialsSaransh Malot
 
Dental articulators
Dental articulatorsDental articulators
Dental articulatorsSerag Amer
 
Dental implant biomechanics, treatment planing, and prosthetic considerations
 Dental implant biomechanics, treatment planing, and prosthetic considerations Dental implant biomechanics, treatment planing, and prosthetic considerations
Dental implant biomechanics, treatment planing, and prosthetic considerationsPalm Immsombatti
 
elastomeric Impression DENTAL material
elastomeric Impression DENTAL materialelastomeric Impression DENTAL material
elastomeric Impression DENTAL materialDr-Faisal Al-Qahtani
 

Andere mochten auch (8)

Elastic impression materials
Elastic impression materialsElastic impression materials
Elastic impression materials
 
Dental articulators
Dental articulatorsDental articulators
Dental articulators
 
Articulators
ArticulatorsArticulators
Articulators
 
Dental implant biomechanics, treatment planing, and prosthetic considerations
 Dental implant biomechanics, treatment planing, and prosthetic considerations Dental implant biomechanics, treatment planing, and prosthetic considerations
Dental implant biomechanics, treatment planing, and prosthetic considerations
 
Denture base materials
Denture base materials Denture base materials
Denture base materials
 
Impression materials
Impression materialsImpression materials
Impression materials
 
Impression materials
Impression  materialsImpression  materials
Impression materials
 
elastomeric Impression DENTAL material
elastomeric Impression DENTAL materialelastomeric Impression DENTAL material
elastomeric Impression DENTAL material
 

Ähnlich wie Biomechanics/ dental implant courses

Biomechanics of dental implants/certified fixed orthodontic courses by Indian...
Biomechanics of dental implants/certified fixed orthodontic courses by Indian...Biomechanics of dental implants/certified fixed orthodontic courses by Indian...
Biomechanics of dental implants/certified fixed orthodontic courses by Indian...Indian dental academy
 
Stress breakers/ dentistry dental implants
Stress breakers/ dentistry dental implantsStress breakers/ dentistry dental implants
Stress breakers/ dentistry dental implantsIndian dental academy
 
Forces acting on Dental restorations
Forces acting on Dental restorationsForces acting on Dental restorations
Forces acting on Dental restorationsIndian dental academy
 
Stress breakers/ oral surgery courses  
Stress breakers/ oral surgery courses  Stress breakers/ oral surgery courses  
Stress breakers/ oral surgery courses  Indian dental academy
 
Stress breakers /certified fixed orthodontic courses by Indian dental academy
Stress breakers  /certified fixed orthodontic courses by Indian dental academy Stress breakers  /certified fixed orthodontic courses by Indian dental academy
Stress breakers /certified fixed orthodontic courses by Indian dental academy Indian dental academy
 
occlusion in implant n FAILURES.ppt
occlusion in implant n FAILURES.pptocclusion in implant n FAILURES.ppt
occlusion in implant n FAILURES.pptDrIbadatJamil
 
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.Joel Koshy
 
Biomechanics and mechanics of tooth movement
Biomechanics and mechanics of tooth movementBiomechanics and mechanics of tooth movement
Biomechanics and mechanics of tooth movementMohanad Elsherif
 
Mechanical Properties of Dental Materials
Mechanical Properties of Dental MaterialsMechanical Properties of Dental Materials
Mechanical Properties of Dental MaterialsDr. Nithin Mathew
 
Stress breakers / dentistry dental implants
Stress breakers / dentistry dental implantsStress breakers / dentistry dental implants
Stress breakers / dentistry dental implantsIndian dental academy
 
Stress breakers /prosthodontic courses/ oral surgery courses  
Stress breakers /prosthodontic courses/ oral surgery courses  Stress breakers /prosthodontic courses/ oral surgery courses  
Stress breakers /prosthodontic courses/ oral surgery courses  Indian dental academy
 
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...Indian dental academy
 
Stress & force factors /certified fixed orthodontic courses by Indian dental ...
Stress & force factors /certified fixed orthodontic courses by Indian dental ...Stress & force factors /certified fixed orthodontic courses by Indian dental ...
Stress & force factors /certified fixed orthodontic courses by Indian dental ...Indian dental academy
 
Implant design and consideration /orthodontic courses by Indian dental academy 
Implant design and consideration /orthodontic courses by Indian dental academy Implant design and consideration /orthodontic courses by Indian dental academy 
Implant design and consideration /orthodontic courses by Indian dental academy Indian dental academy
 
dr.neha srivastava ipo seminar.pptx
dr.neha srivastava ipo seminar.pptxdr.neha srivastava ipo seminar.pptx
dr.neha srivastava ipo seminar.pptxnehasrivastava643617
 

Ähnlich wie Biomechanics/ dental implant courses (20)

Biomechanics of dental implants/certified fixed orthodontic courses by Indian...
Biomechanics of dental implants/certified fixed orthodontic courses by Indian...Biomechanics of dental implants/certified fixed orthodontic courses by Indian...
Biomechanics of dental implants/certified fixed orthodontic courses by Indian...
 
Forces acting on restoration
Forces acting on restorationForces acting on restoration
Forces acting on restoration
 
Stress breakers/ dentistry dental implants
Stress breakers/ dentistry dental implantsStress breakers/ dentistry dental implants
Stress breakers/ dentistry dental implants
 
Forces acting on Dental restorations
Forces acting on Dental restorationsForces acting on Dental restorations
Forces acting on Dental restorations
 
Stress breakers/ oral surgery courses  
Stress breakers/ oral surgery courses  Stress breakers/ oral surgery courses  
Stress breakers/ oral surgery courses  
 
Stress breakers /certified fixed orthodontic courses by Indian dental academy
Stress breakers  /certified fixed orthodontic courses by Indian dental academy Stress breakers  /certified fixed orthodontic courses by Indian dental academy
Stress breakers /certified fixed orthodontic courses by Indian dental academy
 
occlusion in implant n FAILURES.ppt
occlusion in implant n FAILURES.pptocclusion in implant n FAILURES.ppt
occlusion in implant n FAILURES.ppt
 
Force acting on restoration
Force acting on restorationForce acting on restoration
Force acting on restoration
 
abm final presentation
abm final presentationabm final presentation
abm final presentation
 
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.
Mc Cracken chapter 4: Biomechanics of Removable Partial Denture.
 
biomechanics in rpd
 biomechanics in rpd biomechanics in rpd
biomechanics in rpd
 
Biomechanics and mechanics of tooth movement
Biomechanics and mechanics of tooth movementBiomechanics and mechanics of tooth movement
Biomechanics and mechanics of tooth movement
 
Mechanical Properties of Dental Materials
Mechanical Properties of Dental MaterialsMechanical Properties of Dental Materials
Mechanical Properties of Dental Materials
 
Stress breakers / dentistry dental implants
Stress breakers / dentistry dental implantsStress breakers / dentistry dental implants
Stress breakers / dentistry dental implants
 
Stress breakers /prosthodontic courses/ oral surgery courses  
Stress breakers /prosthodontic courses/ oral surgery courses  Stress breakers /prosthodontic courses/ oral surgery courses  
Stress breakers /prosthodontic courses/ oral surgery courses  
 
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...
Biomechanics implants/certified fixed orthodontic courses by Indian dental ac...
 
Biomechanics
BiomechanicsBiomechanics
Biomechanics
 
Stress & force factors /certified fixed orthodontic courses by Indian dental ...
Stress & force factors /certified fixed orthodontic courses by Indian dental ...Stress & force factors /certified fixed orthodontic courses by Indian dental ...
Stress & force factors /certified fixed orthodontic courses by Indian dental ...
 
Implant design and consideration /orthodontic courses by Indian dental academy 
Implant design and consideration /orthodontic courses by Indian dental academy Implant design and consideration /orthodontic courses by Indian dental academy 
Implant design and consideration /orthodontic courses by Indian dental academy 
 
dr.neha srivastava ipo seminar.pptx
dr.neha srivastava ipo seminar.pptxdr.neha srivastava ipo seminar.pptx
dr.neha srivastava ipo seminar.pptx
 

Mehr von Indian dental academy

Indian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian dental academy
 
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...Indian dental academy
 
Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Indian dental academy
 
Invisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeInvisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeIndian dental academy
 
Development of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesDevelopment of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesIndian dental academy
 
Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Indian dental academy
 
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Indian dental academy
 
Diagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesDiagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesIndian dental academy
 
Properties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesProperties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesIndian dental academy
 
Use of modified tooth forms in complete denture occlusion / dental implant...
Use of modified  tooth forms  in  complete denture occlusion / dental implant...Use of modified  tooth forms  in  complete denture occlusion / dental implant...
Use of modified tooth forms in complete denture occlusion / dental implant...Indian dental academy
 
Dental luting cements / oral surgery courses  
Dental   luting cements / oral surgery courses  Dental   luting cements / oral surgery courses  
Dental luting cements / oral surgery courses  Indian dental academy
 
Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Indian dental academy
 
Dental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesDental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesIndian dental academy
 
Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Indian dental academy
 
Dental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesDental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesIndian dental academy
 
Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Indian dental academy
 
Dental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesDental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesIndian dental academy
 
Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Indian dental academy
 

Mehr von Indian dental academy (20)

Indian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdom
 
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
 
Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india
 
Invisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeInvisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics pratice
 
online fixed orthodontics course
online fixed orthodontics courseonline fixed orthodontics course
online fixed orthodontics course
 
online orthodontics course
online orthodontics courseonline orthodontics course
online orthodontics course
 
Development of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesDevelopment of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant courses
 
Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  
 
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
 
Diagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesDiagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental courses
 
Properties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesProperties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic courses
 
Use of modified tooth forms in complete denture occlusion / dental implant...
Use of modified  tooth forms  in  complete denture occlusion / dental implant...Use of modified  tooth forms  in  complete denture occlusion / dental implant...
Use of modified tooth forms in complete denture occlusion / dental implant...
 
Dental luting cements / oral surgery courses  
Dental   luting cements / oral surgery courses  Dental   luting cements / oral surgery courses  
Dental luting cements / oral surgery courses  
 
Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  
 
Dental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesDental casting investment materials/endodontic courses
Dental casting investment materials/endodontic courses
 
Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  
 
Dental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesDental ceramics/prosthodontic courses
Dental ceramics/prosthodontic courses
 
Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  
 
Dental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesDental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry courses
 
Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  
 

Kürzlich hochgeladen

Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 

Kürzlich hochgeladen (20)

Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 

Biomechanics/ dental implant courses

  • 1. BIOMECHANICAL CONSIDERATIONS IN IMPLANT DENTISTRY INDIAN DENTAL ACADEMY Leader in Continuing Dental Education www.indiandentalacademy.com
  • 2. CONTENTS • Introduction • Definition • Types of biomechanics • Importance in field of dental implants • Methods to analyze and visualize stresses in bone • Biomechanics of natural teeth • Elements of mechanical properties • Force delivery and failure mechanism • Clinical moment arms and crestal bone loss • Bone as reactive recipient material • The bone repair mechanism • Endosseous implant • Biomechanical problems of implant-supported prostheses • Effects on treatment planning • Summary and conclusion www.indiandentalacademy.com
  • 3. Biomechanics is one of the most important considerations affecting the design of framework for an implant –borne prosthesis. In general, the forces that participate in both the masticatory process and parafunction must be considered in the design of the prosthesis. These considerations act as determining factors of the device’s success or failure. INTRODUCTION www.indiandentalacademy.com
  • 5. WHAT ARE BIOMECHANICS? Biomechanics is the scientific study of the load-force relationships of a biomaterial in the oral cavity. (Ralph Mc Kinney). GPT-8 It is the relationship between the biologic behavior of oral structures and the physical influence of a dental restoration. www.indiandentalacademy.com
  • 6. TYPES OF BIOMECHANICS TWO TYPES:- 1) Reactive Biomechanics: is the interaction of isolated biomechanical factors which when combined, produce an accumulative effect. 2) Therapeutic Biomechanics is the clinical process of altering each biomechanical factor to reduce the cumulative response causing implant overload. www.indiandentalacademy.com
  • 7. IMPORTANCE IN THE FIELD OF DENTAL IMPLANTS: • First, to know the loading (bite forces) exerted on the prosthesis. • Secondly, to know the distribution of the applied forces to the implants and teeth supporting the prosthesis. • Thirdly, the force on each implant must be delivered safely to the bony tissues which in turn depend on the shape and size of the implant. In all these, the aim of biomechanical analysis is to foresee failure of any part of the system, including the prosthesis, the supporting implants and the biological tissues. www.indiandentalacademy.com
  • 8. METHODS TO ANALYZE AND VISUALIZE STRESSES IN BONE Stress analysis can be performed:- • Experimentally e.g. Stress-optical examination • Theoretically & mathematically with computer simulation e.g. Finite-element method Stress-optical examination Implant to be analyzed is embedded in synthetic resin and stresses induced by loading are made visible by polarized light. Disadvantages are:- 1. Not possible in inhomogeneous structure of bone 2. Limited optical resolution www.indiandentalacademy.com
  • 9. Finite-element method • The structures to be examined are subdivided into a finite number of elements of similar size that can be connected with each other at corner points, i.e. nodes. • The displacements and stresses at each node caused by loading can be calculated with a computer program. Advantages are:- 1. Allows inclusion of various materials with differing material properties. Most importantly, the inhomogeneous structure of bone, i.e. the subdivision into cortical and cancellous bone, can be taken into consideration. 2. Allows three-dimensional visualization of the calculated displacement and stresses. www.indiandentalacademy.com
  • 10. BIOMECHANICS OF NATURAL TEETH The tooth is suspended syndesmotically within the alveolar bone by dentoalveolar bundles of collagen fibers. Because of its elasticity there is measurable horizontal, vertical, and rotational tooth mobility. Basically, tooth movement can be subdivided into two phases:- 1. Desmodontal phase:- referred to as the first stage of movement, taking place when a load of up to 100 N acts on the tooth. During this phase, the tooth moves slightly within the socket. Some periodontal fiber bundles are stretched, while others are relaxed. However, the alveolar process does not undergo marked deformation. www.indiandentalacademy.com
  • 11. 2. Periodontal phase:- commences at loads exceeding 500 N. After the desmodontal phase has passed and the periodontal fiber bundles have been stretched to their full length, these strong forces cause deformation of the entire alveolar process, which subsequently offers more resistance to further tooth deflection. The degree of tooth deflection may vary from one individual to another and ranges between 10 and 50 µm. www.indiandentalacademy.com
  • 12. Calculations of the stress distribution around natural teeth have shown that physiologic stresses result in a relatively even stress distribution. The exception is in the cervical region of the tooth, where horizontal loading with transfer of the compressive forces into the periodontium results in moderately high tensile stresses, and the lamina dura is affected by axial compressive stresses because of bending of the alveolar bone. www.indiandentalacademy.com
  • 13. • Mass, is the degree of gravitational attraction the body of matter experiences. • Force was described by Newton. Newton's second law, states that the acceleration of a body is inversely proportional to its mass and directly proportional to the force that caused the acceleration. A α f m Therefore, F = ma • Weight is the gravitational force acting on an object at a Specified location. Weight and Force therefore can be expressed by the same units, newtons (N) or pound force (Ibf) ELEMENTS OF MECHANICAL PROPERTIES www.indiandentalacademy.com
  • 14. FORCES • Forces may be described by magnitude, duration, direction, type, and magnification factors. • Forces acting on dental implants are referred to as vector quantities; that is, they possess both magnitude and direction. A force applied to a dental implant is rarely directed absolutely longitudinally along a single axis. In fact, forces are three dimensional with components directed along one or more of the three clinical coordinatethree clinical coordinate axesaxes i.e. :- www.indiandentalacademy.com
  • 16. Components of Forces (Vector Resolution) A single occlusal contact most commonly result in a three- dimensional occlusal force. The process by which three- dimensional forces are broken down into their component parts is referred to as vector resolution Types of Forces Forces may be described as :- 1. Compressive forces attempt to push masses toward each other. 2. Tensile forces pull objects apart. 3. Shear forces on implants cause sliding forces. www.indiandentalacademy.com
  • 18. • Compressive forces tend to maintain the integrity of a bone- to-implant interface, whereas tensile and shear forces tend to disrupt such an interface. • Shear forces are most destructive to implants and bone when compared with other load modalities. • Compressive forces, in general, are best accommodated by the complete implant-prosthesis system. www.indiandentalacademy.com
  • 19. The implant body design transmits the occlusal load to the bone. Threaded or finned dental implants impart a combination of all three force types at the interface under the action of a single occlusal load. Cylindrical implants are at highest risk for harmful shear loads under an occlusal load directed along the long axis of the implant body. As a result, cylinder implants require a coating to manage the shear stress at the interface through a more uniform bone attachment along the implant length. Compressive forces should typically be dominant in implantCompressive forces should typically be dominant in implant prosthetic occlusion.prosthetic occlusion. www.indiandentalacademy.com
  • 20. STRESS The manner in which a force is distributed over a surface is referred to as mechanical stress. Thus stress is defined by the familiar relation: Stress = F/A The internal stresses that develop in an implant system and surrounding biologic tissues have a significant influence on the long-term longevity of the implants in vivo. As a general rule of thumb, a goal of treatment planning should be to both minimize and evenly distribute mechanical stress in the implant system and the contiguous bone. www.indiandentalacademy.com
  • 21. The magnitude of stress is dependent on two variables:- 1. force magnitude and 2. cross-sectional area over which the force is dissipated. Force magnitude • rarely be completely controlled by a dental practitioner. • The magnitude of the force may be decreased by reducing the significant "magnifiers of force“ :- cantilever length, offset loads, and crown height. Night guards to decrease nocturnal parafunction, occlusal materials that decrease impact force, and overdentures rather than fixed prosthesis so they may be removed at night are further examples of force reduction strategies. www.indiandentalacademy.com
  • 22. Functional cross-sectional area is defined as that surface that participates significantly in load bearing and stress dissipation. It may be optimized by :- (1) Increasing the number of implants for a given edentulous site, and (2) Selecting an implant geometry that has been carefully designed to maximize functional cross-sectional area. www.indiandentalacademy.com
  • 23. DEFORMATION AND STRAIN Strain is defined as the change in length divided by the original length. For tension and compression, strain expresses a lengthening and a shortening of the body respectively. In shear, the shape change is expressed in terms of a change in angle of one part of the body relative to the other. The deformation and strain characteristics of the materials used in implant dentistry may influence interfacial tissues, and clinical longevity. Elongation (deformation) of biomaterials used for dental implants range from 0% for aluminum oxide (Al2O3) to up to 55% for annealed 316-L stainless steel. www.indiandentalacademy.com
  • 24. Related to deformation is the concept of strain—a parameter believed to be a key mediator of bone activity. All materials (both biologic and nonbiologic) are characterized by a maximum elongation possible before permanent deformation or fracture results. www.indiandentalacademy.com
  • 25. STRESS-STRAIN CHARACTERISTICS: A relationship is needed between the applied force (and stress) and the subsequent deformation (and strain). If any elastic body is experimentally subjected to an applied load, a load-vs.-deformation curve may be generated. If the load values are divided by the surface area over which they act and the change in the length by the original length, a classic engineering stress-strain curve is produced. www.indiandentalacademy.com
  • 26. Such a curve provides for the prediction of how much strain will be experienced in a given material under an applied load. The slope of the linear (elastic) portion of this curve is referred to as the modulus of elasticity (E), and its value is indicative of the stiffness of the material under study. The closer the modulus of elasticity of the implant resembles that of the biologic tissues, the less the likelihood of relative motion at the tissue-to-implant interface. Once a particular implant system (i.e., a specific biomaterial) is selected, the only way to control the strain is to control the applied stress or change the density of bone around the implant. www.indiandentalacademy.com
  • 27. The greater the magnitude of stress applied, the greater the difference in strain between implant material and bone. www.indiandentalacademy.com
  • 28. • When two bodies collide in a very small interval of time (fractions of a second), relatively large forces develop. Such a collision is described as impact. • In dental implant systems subjected to occlusal impact loads, deformation may occur in the prosthetic restoration, in the implant itself, or in the interfacial tissue. • The higher the impact load, the greater the risk of implant and bridge failure and bone fracture. • Rigidly fixed implants generates a higher impact force than a natural tooth with its periodontal ligament. Various methods have been proposed to address the issue of reducing implant loads. IMPACT LOADS www.indiandentalacademy.com
  • 29. Skalak suggested the use of acrylic teeth in conjunction with osteointegrated fixtures Weiss has proposed that a fibrous tissue-to-implant interface provides for physiologic shock absorption in the same manner as by a functioning periodontal ligament. one implant design has attempted to incorporate shock absorption capability in the design itself, by the use of an "intramobile element" of lower stiffness compared with the rest of the implant. Misch advocates an acrylic provisional restoration with a progressive occlusal loading to improve the bone-to-implant interface before the final restoration, occlusal design, and masticatory loads are distributed to the system. www.indiandentalacademy.com
  • 30. FORCE DELIVERY AND FAILURE MECHANISMS The manner in which forces are applied to implant restorations dictates the likelihood of system failure. If a force is applied some distance away from a weak link in an implant or prosthesis, bending or torsional failure may result from moment loads. www.indiandentalacademy.com
  • 31. The moment of a force about a point tends to produce rotation or bending about that point. The moment is a vector quantity. Moment Loads = force magnitude X moment armMoment Loads = force magnitude X moment arm This imposed moment load is also referred to as a torque or torsional load and may be quite destructive with respect to implant systems. Moment Loads www.indiandentalacademy.com
  • 32. Proper restorative design must necessarily include consideration of both forces and the moment loads caused by those forces. 100 N www.indiandentalacademy.com
  • 33. "Clinical Moment Arms" and Crestal Bone Loss A total of six moments (rotations) may develop about the three clinical coordinate axes. faciolingual plane www.indiandentalacademy.com
  • 34. Such moment loads induce microrotations and stress concentrations at the crest of the alveolar ridge at the implant-to-tissue interface, which leads to crestal bone loss. Three "clinical moment arms" exist in implant dentistry:- 1. Occlusal height, 2. Cantilever length, and 3. Occlusal width. Minimization of each of these moment arms is necessary to prevent unretained restorations, fracture of components, crestal bone loss, and/or complete implant system failure. www.indiandentalacademy.com
  • 36. Occlusal Height Moment Arm Occlusal height serves as the moment arm for force components directed along the faciolingual axis as well as along the mesiodistal axis. www.indiandentalacademy.com
  • 37. Moment of a force along the vertical axis is not affected by the occlusal height because there is no effective moment arm. Offset occlusal contacts or lateral loads, however, will introduce significant moment arms. www.indiandentalacademy.com
  • 38. • Large moments may develop from vertical axis force components in cantilever extensions or offset loads from rigidly fixed implants. • A lingual force component may also induce a twisting moment about the implant neck axis if applied through a cantilever length. Cantilever length moment arm www.indiandentalacademy.com
  • 40. • An implant with a cantilevers extending1 cm, 2 cm, and 3 cm has significant ranges of moment loads. • A 100-N force applied directly over the implant does not induce a moment load or torque because no rotational forces are applied through an offset distance. • This same 100-N force applied 1 cm from the implant results in a 100 N-cm moment load. • Similarly, if the load is applied 2 cm from the implant, a 200 N-cm torque is applied to the implant-bone region, and 3 cm results in a 300 N-cm moment load. • (Implant abutments are typically tightened with less than 30 N-cm of torque). www.indiandentalacademy.com
  • 41. The distance from the center of the most anterior implant to the distal of each posterior implant is called the anteroposterior (AP) distance. The greater the A - P distance, the smaller the resultant load on the implant system from cantilevered forces, because of the stabilizing effect of the anteroposterior distance. According to Misch, the amount of stress applied to system is determined by the length of the distal cantilever. Nobel Biocare prosthetic protocol uses four to six anterior implants placed in front of the mental foramen or maxillary sinus and uses a full-arch fixed prosthesis with cantilevered segments. www.indiandentalacademy.com
  • 42. Replacement of maxillary anterior teeth in a tapered arch form requires more posterior implants than in a square arch form, with less offset loading of mandibular teeth. A tapered arch form permits greater cantilever length than a square arch form in mandibular anterior region. www.indiandentalacademy.com
  • 43. • The most ideal biomechanical arch form depends on the restorative situation:- • Tapering arch form is favorable for anterior implants with posterior cantilevers. • Square arch form is preferred when canine and posterior implants are used to support anterior cantilevers in either arch. • Ovoid arch form has qualities of both tapered and square arches. • Clinical experiences suggest that the distal cantilever should not extend 2.5 times the A-P distance under ideal conditions. • Patients with severe bruxism should not be restored with any cantilevers. www.indiandentalacademy.com
  • 44. Occlusal Width Moment Arm Wide occlusal tables increase the moment arm for any offset occlusal loads. Faciolingual tipping (rotation) can be significantly reduced by narrowing the occlusal tables and/or adjusting the occlusion to provide more centric contacts. It can be summarized that a destructive cycle can develop with moment loads and result in crestal bone loss. Unless the bone increases in density and strength , the cycle continues towards implant failure if the biomechanical environment is not corrected. www.indiandentalacademy.com
  • 45. BONE AS REACTIVE RECIPIENT MATERIAL Meier (1887) assumed that the trajectories within cancellous bone show the same direction as in the femur head. Wolff (1892) gave more clarity to Meier hypothesis and established it as law of nature. Roux (1895) suggested that natural tissues are capable of adapting to changing loading conditions because of a cellular regulation process. Depending on the magnitude of loading ,bone tissue cells either respond by bone formation or bone resorption. Later, Wolff’s hypothesis and Roux’s principle merged into one concept as Wolff’s Law. Today, practically all load related changes in the bone structure areToday, practically all load related changes in the bone structure are grouped together under termgrouped together under term remodelingremodeling and are associated withand are associated with Wolff’s Law.Wolff’s Law. www.indiandentalacademy.com
  • 46. THE BONE REPAIR MECHANISM Pauwels hypothesis (1960) is based on the observation that bone responds to physiologically relevant long-term loading by increasing bone formation. If bone remains unloaded for the same period of time it will undergo resorption. If a physiologically relevant force acts on the bone, bone tries tobone tries to reduce strainreduce strain by bone apposition or reduction and by changing its cross section and stiffness. This is done by :- • Bone formation or resorption at surface [external or surface remodeling] • Altering the bone mineral content [internal remodeling] www.indiandentalacademy.com
  • 47. As long as the mechanical stimulus remains within a certain physiologic limit, the system will maintain balance between bone resorption and new bone growth. Stress of 2.48x10N/mm² --- will cause increase in bone growth. Stress ranging 2.5x10 to 6.9x10N/mm2 – will lead to reduction of bone growth. Stress exceeding 6.9x10N/mm² -- will cause cell destruction. www.indiandentalacademy.com
  • 48. To prevent bone resorption caused by biomechanical factors,forces should be as even as possible and not exceeding a maximum value of 2.5x10 N/mm². The balance can be regulated by both hormonal and mechanical factors. Several theories concern the effect of mechanical loads and repair mechanisms. www.indiandentalacademy.com
  • 49. ENDOSSEOUS IMPLANT (OPEN IMPLANT SYSTEM) • The biomechanical conditions around an implant differ fundamentally from those around natural teeth. • While natural teeth are anchored within the socket by the fibers of the periodontal membrane, implants may show either direct bone bonding or connective tissue encapsulation. www.indiandentalacademy.com
  • 50. Direct bone bonding • Can be achieved if implant is allowed to heal into bone in the absence of loading and new bone is oppositioned onto the implant surface. • Ankylotic-healing can be considered as one of the most important aspects of the force transfer mechanisms in osseointegrated implants because it prevents relative movement of implant and bone. • Close apposition of bone to the implant can even be observed in microasperities at the Angstrom level. www.indiandentalacademy.com
  • 51. Connective tissue encapsulation • occurs if the implant is loaded immediately after having been placed. • Following long periods of function, the bone around endosseous implants can undergo resorption observed as funnel- shaped local areas of cortical bone reduction at the site where the implant enters bone. • Aside from inflammatory causes, bone resorption is mainly due to biomechanical factors. www.indiandentalacademy.com
  • 52. Will the use of "isoelastic" implants result in more favorable stress conditions in bone than those observed when relatively stiff, conventional dental implants are used? Soltesz and Siegele (1982) as well as Moilgth et al (1989) have shown that :- • The global stress pattern remains the same when the material properties of an implant are changed. • Most stress values only show minor changes, except for the site where the implant enters bone. • The values obtained from implants made of bonelike substances are more than twice as high as those calculated for implants made of stiffer materials. Impact of implant stiffness on stress distribution www.indiandentalacademy.com
  • 54. All in all, the use of isoelastic implants cannot be recommended. On the contrary, implants should be as stiff as possible from the biomechanical standpoint, and should have modulus of elasticity of atleast 100,000N/mm². The stiffness of an implant can also be increased by choosing an implant of larger diameter. If the diameter is increased by 30%, implant stiffness will be five times higher, and the stresses around the implant neck are thus reduced. www.indiandentalacademy.com
  • 55. Impact of implant shape on stress distribution The stress conditions around an implant can also be improved by selecting an appropriate implant shape. Endosteal dental implant designs may be generally considered as blade or root form. The neck design in either implant system (i.e. root form & blade form) is particularly important in the consideration of implant geometry because the physiologic load is transmitted through the neck region to the implant body and the surrounding tissues. As the cross-sectional area of the neck decreases, the stress levels in the neck and the surrounding tissues increases. ( stress= force/area.) www.indiandentalacademy.com
  • 56. The implant body must exhibit a macrogeometry suitable for force transfer to the surrounding tissues as well as for implantation into a bony site of a particular anatomic size. When viewed from the broad end, blade implants show a relatively favorable stress pattern, when viewed from the front, they exhibit an extremely unfavorable stress pattern, particularly with regard to horizontal forces. www.indiandentalacademy.com
  • 57. Because force transfer into bone should be as even as possible, implants showing rotational symmetry can be considered more favorable from the biomechanical point of view. However, this imposes size constraints on the geometry of the implantation site. Blade implants are designed to serve in those bony sites which are too narrow to accommodate root form implants. However , they have reduced cross-sectional area available to resist axial loads as compared to root form implants. www.indiandentalacademy.com
  • 58. Perforations or "vents" in the body of an endosteal dental implant provide a means for bone in growth into the device with resultant stabilization of the implant within the tissues. In blade form implants, vents also serve to increase the amount of cross-sectional area available to resist axial loads. www.indiandentalacademy.com
  • 60. Impact of implant surface on stress distribution Osteolytic loosening of an implant may result from selection of a biomechanically unfavorable implant shape. Because endosseous implants lack the natural attachment to bone, this missing periodontal function must be compensated for by minimization of the specific surface pressure (snowshoe principle). This means that implant surface used for force transfer should be as large as possible. To minimize the compressive forces, the implant surface can be enlarged by:- •Applying threads •Plasma flame spray coating •Surface roughening •Acid etching www.indiandentalacademy.com
  • 61. Another factor that influences the size of the surface area is the length of the implant. Albrektsson et al (1983) revealed a clear correlation between the length of an implant and implant prognosis. Implants with a length of less than 10mm showed a markedly worse prognosis than did implants whose length exceeded 10 mm. This may be due to the fact that short implants have a considerably smaller surface area and are affected by markedly higher moments. www.indiandentalacademy.com
  • 62. BIOMECHANICAL PROBLEMS OF IMPLANT-SUPPORTED PROSTHESES Connecting implants with natural teeth In a combined tooth-implant prosthesis, force distribution depends on whether, the main load is borne by the tooth or the implant . • If the superconstruction above the implant is affected by vertical loads, load transfer will take place almost exclusively via implant, the natural tooth only being used minimally as support. www.indiandentalacademy.com
  • 63. Use of an implant with an integrated elastic layer, i.e. an intramobile element can reduce the stresses. From the prosthodontic point of view, whenever possible avoid a rigid connection between implant and tooth and use purely implant-supported superconstructions instead. • lf the same vertical load acts on the portion of the prosthesis above the tooth, the load distribution will differ from the one previously described. In this case, the prosthesis acts as a lever arm. The tooth is affected both by vertical force and torque and can slightly sink into the socket . www.indiandentalacademy.com
  • 64. Purely implant-supported prostheses Implant-supported prostheses seem to involve fewer biomechanical problems. However, there are many aspects that need to be clarified, because: 1. The prosthesis must follow the arched shape of the mandible. 2. The implants cannot be considered an ideal rigid system. 3. The mandible undergoes functional deformation. www.indiandentalacademy.com
  • 65. One of the most common indication for implant treatment is the atrophic edentulous mandible. Aside from the widely used bar-joint dentures, fixed implant-supported prostheses with a posterior cantilever are gaining increasing importance. The number of implants to be placed can be calculated from the space available between the two mental foramina and the distance between the implants postulated by Branemark et al (1985). Because the mean distance between the two mental foramina is 47 mm and the distance from the center of one implant to that of the adjacent implant should be 7 mm, up to six implants can be placed. www.indiandentalacademy.com
  • 66. The author's (Mailath-Pokorny/Solar) own finite-element analyses have shown that :- 1. The maximum shear stress and moments can be observed in the implant closest to the site of force impact and the effects on all other implants can even be ignored. 2. When the distribution and density of stress on a prosthesis supported by four implants are compared with those supported by six implants, the additional procedures needed for placement of the two additional implant do not seem to be justified. www.indiandentalacademy.com
  • 68. 3. Prolongation of the cantilever by more than two times the width of a premolar tooth results in unfavorable loading condition because of lever arm effect. It seems to be sensible to use cantilever prostheses whose free end is not longer than two times the width of a premolar tooth. 4. Also, the use of six implants would not improve the unfavorable loading conditions caused by a long cantilever. www.indiandentalacademy.com
  • 69. EFFECTS ON TREATMENT PLANNING 1) The most common complications in implant dentistry, once the prosthesis is delivered are, bone loss, fracture of occlusal materials or implant components, and unretained restorations. These problems are primarily related to increases in stress. Therefore once the sources of additional force are identified on the implant system, the treatment plan is altered to lower their negative impact on the implant, bone, and final restoration. www.indiandentalacademy.com
  • 70. 2) Stress can be reduced by using Additional implants, rather than only an increase in implant width or height. This will:- • decrease the number of pontics and the associated mechanics and strains on the prosthesis. • dissipate stresses more effectively to the bone structure, especially in crestal region. • retention of the final prosthesis or superstructure is further improved. • The amount of bone in contact with the implant is also increased as a multiple of the number of implants. • Also, Increase in implant width is preferable to length as lesser stresses transmitted to crestal bone. www.indiandentalacademy.com
  • 71. Panoramic radiograph of mandibular fixed prosthesis opposing natural dentition. Posterior implants are used as abutments rather than cantilevers to decrease stress on implants and prosthesis. No second molars are provided to decrease stress. www.indiandentalacademy.com
  • 72. 3) Forces from bruxism are often the most difficult forces to control. Crestal bone loss, unretained abutments, and fatigue stress fractures of implants or prostheses are more likely a result of this condition. The implant treatment plan is modified primarily in two ways when implants are inserted in the posterior region. • Additional implants and occlusal considerations are both primordial. • The elimination of posterior lateral occlusal contacts during excursive movements is recommended when opposing natural teeth or an implant or tooth supported fixed prostheses. www.indiandentalacademy.com
  • 73. • The anterior teeth may be modified to recreate the proper incisal guidance and avoid posterior interferences during excursions. • Use of a night guard is helpful for the bruxism patient with fixed prostheses. • Anterior-guided disocclusion of the posterior teeth in excursions is strongly suggested in the night guard, which may be designed for the maxilla or mandible. www.indiandentalacademy.com
  • 74. • A removable partial denture over a healing implant is especially of concern. These patients often have many remaining teeth and higher forces are transmitted to the soft tissue regions that support the restorations. The acrylic between the soft tissue-borne region and metal substructure is usually less than 2 mm thick. • Removing the thin acrylic region over the implant is often not sufficient. Instead, a 6-mm diameter hole through the metal substructure should be prepared. In this manner, a bruxing patient will not load the submerged implant during healing. www.indiandentalacademy.com
  • 75. 4) The time Intervals between prosthodontic restoration appointments may be increased to provide additional time to produce load-bearing bone around the implants through progressive bone-loading techniques. • Anterior implants submitted to lateral parafunction forces require further treatment considerations. Additional implants are indicated, preferably of greater diameter. www.indiandentalacademy.com
  • 76. • The excursions are canine guided if natural, healthy canines are present. • Mutually protected occlusion is developed if the implants are in the canine position or if this tooth is restored, as a pontic. • A first premolar may also disocclude the remaining posterior teeth when the patient is in skeletal Class II or when anterior implants are small in size or number www.indiandentalacademy.com
  • 77. 5) Prosthesis may be designed to improve the distribution of stress throughout the implant system. • Centric vertical contacts should be aligned with the long axis of the implants whenever possible. • The posterior occlusal tables may be narrowed to prevent inadvertent lateral forces, and to leave greater space for the tongue. • Enameloplasty of the cusp tips of the opposing natural teeth is done to improve the direction of vertical forces. www.indiandentalacademy.com
  • 78. 6) A Lateral tongue thrust is most detrimental if horizontal forces are applied to the implant during the early stages of interface formation. Submerged, two-phase, rigid, fixated implants are indicated. www.indiandentalacademy.com
  • 79. 7) Inadequate bone height for endosteal implants usually means a higher crown height and extension of the implant substructure. These permucosal abutment posts are subject to increased lateral oral forces. valid treatment alternatives are:- • Myofunctional therapy and/or autogenous bone grafts to modify the bone type. • cantilevered bridges from the anterior teeth or implants. • conventional removable partial dentures. www.indiandentalacademy.com
  • 80. SUMMARY AND CONCLUSION The most common complications in implant-related reconstruction are related to biomechanical conditions. The manifestation of biomechanical loads on dental implants (moments, stress, and strain) controls the long- term health of the bone-to-implant interface. Knowledge of basic biomechanical principles is thus required for the dentist. www.indiandentalacademy.com
  • 81. • Biomechanics in clinical dentistry -Angelo. A CapitoAngelo. A Capito • Contemporary implant dentistry - Carl E Misch Ed 2nd.Carl E Misch Ed 2nd. • Oral rehabilitation with implant supported prostheses- Vicente jimenez- LopezVicente jimenez- Lopez • Endosteal Dental Implants -Ralf V McKinney JrRalf V McKinney Jr • Endosseous implants- Georg WatzekGeorg Watzek • Dental implant prosthetics - Carl E MischCarl E Misch REFERENCES www.indiandentalacademy.com