Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Our aim in this paper is to expose the interesting role played by differ integral specifically, semi derivatives and semi integrals in solving certain diffusion problems. Along with the wave equation and Laplace equation, the diffusion equation is one of the three fundamental partial differential equation of mathematical physics. I will not discuss convential solutions of the diffusion equation at all. These range from closed form solutions for very simple model problems to computer methods for approximating the concentration of the diffusing substance on a network of points. Such solutions are described extensively in the literature .My purpose, rather, is to expose a technique for partially solving a family of diffusion problems, a technique that leads to a compact equation which is first order partially and half order temporally. I shall show that, for semi finite systems initially at equilibrium, our semi differential equation leads to a relationship between the intensive variable and the flux at the boundary. Use of this relationship then obviates the need to solve the original diffusion equation in those problems for which this behavior at the boundary is of primary importance. I shall, in fact, freely make use of the general properties established for differ integral operators as if all my functions were differ integrable. Dr. Ayaz Ahmad "A Technique for Partially Solving a Family of Diffusion Problems" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: http://www.ijtsrd.com/papers/ijtsrd18576.pdf
Our aim in this paper is to expose the interesting role played by differ integral specifically, semi derivatives and semi integrals in solving certain diffusion problems. Along with the wave equation and Laplace equation, the diffusion equation is one of the three fundamental partial differential equation of mathematical physics. I will not discuss convential solutions of the diffusion equation at all. These range from closed form solutions for very simple model problems to computer methods for approximating the concentration of the diffusing substance on a network of points. Such solutions are described extensively in the literature .My purpose, rather, is to expose a technique for partially solving a family of diffusion problems, a technique that leads to a compact equation which is first order partially and half order temporally. I shall show that, for semi finite systems initially at equilibrium, our semi differential equation leads to a relationship between the intensive variable and the flux at the boundary. Use of this relationship then obviates the need to solve the original diffusion equation in those problems for which this behavior at the boundary is of primary importance. I shall, in fact, freely make use of the general properties established for differ integral operators as if all my functions were differ integrable. Dr. Ayaz Ahmad "A Technique for Partially Solving a Family of Diffusion Problems" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: http://www.ijtsrd.com/papers/ijtsrd18576.pdf
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!