SlideShare a Scribd company logo
1 of 16
Download to read offline
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

RESEARCH ARTICLE

www.ijera.com

OPEN ACCESS

Expected Time to Recruitment in A Two - Grade Manpower
System Using Order Statistics for Inter-Decision Times and
Attrition
J. Sridharan*, P. Saranya**, A. Srinivasan***
*

(Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-1)
(Department of Mathematics, TRP Engineering College (SRM Group), Trichirappalli-105)
***
(Department of Mathematics, Bishop Heber College (Autonomous), Trichirappalli-17)
**

ABSTRACT
In this paper, a two-grade organization subjected to random exit of personal due to policy decisions taken by the
organization is considered. There is an associated loss of manpower if a person quits. As the exit of personnel is
unpredictable, a new recruitment policy involving two thresholds for each grade-one is optional and the other
mandatory is suggested to enable the organization to plan its decision on recruitment. Based on shock model
approach three mathematical models are constructed using an appropriate univariate policy of recruitment.
Performance measures namely mean and variance of the time to recruitment are obtained for all the models
when (i) the loss of man-hours and the inter decision time forms an order statistics (ii) the optional and
mandatory thresholds follow different distributions. The analytical results are substantiated by numerical
illustrations and the influence of nodal parameters on the performance measures is also analyzed.
Keywords-Manpower planning, Shock models, Univariate recruitment policy, Mean and variance of the time to
recruitment.

I. INTRODUCTION
Consider an organization having two grades in which depletion of manpower occurs at every decision
epoch. In the univariate policy of recruitment based on shock model approach, recruitment is made as and when
the cumulative loss of manpower crosses a threshold. Employing this recruitment policy, expected time to
recruitment is obtained under different conditions for several models in [1], [2] and [3].Recently in [4],for a
single grade man-power system with a mandatory exponential threshold for the loss of manpower ,the authors
have obtained the system performance measures namely mean and variance of the time to recruitment when the
inter-decision times form an order statistics .In [2] , for a single grade manpower system ,the author has
considered a new recruitment policy involving two thresholds for the loss of man-power in the organization in
which one is optional and the other is mandatory and obtained the mean time to recruitment under different
conditions on the nature of thresholds. In [5-8] the authors have extended the results in [2] for a two-grade
system according as the thresholds are exponential random variables or geometric random variables or SCBZ
property possessing random variables or extended exponential random variables. In [9-17], the authors have
extended the results in [4] for a two-grade system involving two thresholds by assuming different distributions
for thresholds under different condition of inter-decision time and wastage. The objective of the present paper is
to obtain the performance measures when (i) the loss of man-hours and the inter decision time forms an order
statistics (ii) the optional and mandatory thresholds follow different distributions.

II. MODEL DESCRIPTION AND ANALYSIS OF MODEL –I
Consider an organization taking decisions at random epoch in (0, ∞) and at every decision epoch a
random number of persons quit the organization. There is an associated loss of man-hours if a person quits. It is
assumed that the loss of man-hours are linear and cumulative. Let X i be the loss of man-hours due to the ith
decision epoch , i=1,2,3…n Let X 1, X 2, X 3,....X n  be the order statistics selected from the sample

X1, X 2 ,....X n with respective density functions

g x (1) (.), g x ( 2) (.),.... g x ( n ) (.) . Let Ui be a continuous random

variable denoting inter-decision time between (i-1)th and ith decision, i=1,2, 3….k with cumulative distribution
1
function F(.), probability density function f(.) and mean
(λ>0). Let U(1) (U(k)) be the smallest (largest) order

www.ijera.com

315 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330



www.ijera.com



statistic with probability density function. f u (1) (.), f u (k ) (.) .Let Y1, Y2 (Z1, Z2) denotes the optional (mandatory)
thresholds for the loss of man-hours in grades 1 and 2, with parameters 1, 2 , 1,  2 ‎ respectively, where
𝜃1 , 𝜃2 , 𝛼1 , 𝛼2 are positive. It is assumed that Y1 < Z1 and Y2 <Z2. Write Y=Max (Y1, Y2) and Z=Max (Z1, Z2),
where Y (Z) is the optional (mandatory) threshold for the loss of man-hours in the organization. The loss of
man- hours, optional and mandatory thresholds are assumed as statistically independent. Let T be the time to
recruitment in the organization with cumulative distribution function L (.), probability density function l (.),
mean E (T) and variance V (T). Let F k(.) be the k fold convolution of F(.). Let l *(.) and f*(.), be the Laplace
transform of l (.) and f (.), respectively. Let V k(t) be the probability that there are exactly k decision epochs in
(0, t]. It is known from Renewal theory [18] that Vk(t) = Fk(t) - Fk+1(t) with F0(t) = 1. Let p be the probability
that the organization is not going for recruitment whenever the total loss of man-hours crosses optional
threshold Y. The Univariate recruitment policy employed in this paper is as follows: If the total loss of manhours exceeds the optional threshold Y, the organization may or may not go for recruitment. But if the total loss
of man-hours exceeds the mandatory threshold Z, the recruitment is necessary.
MAIN RESULTS
P (T  t ) 



 k





 i 1



k 0

 k



 k



 i 1



 i 1



 V k ( t ) P  Xi  Y   p  V k ( t ) P  Xi  Y   P  Xi  Z 







k 0

(1)

For n=1, 2, 3…k the probability density function of X(n) is given by
g x(n) (t)  n kc n [G(t)]n 1 g(t)[1  G(t)]k n , n  1,2,3..k

(2)

If g( t )  g x (1) ( t )
In this case it is known that
g x(1) (t)  k g(t) 1  G(t)k 1

(3)

By hypothesis g( t )  ce ct
Therefore from (3) and (4) we get,

(4)



g x (1) () 

(5)

kc
kc  

If g(t )  g x (k ) (t )
In this case it is known that
g x(k) (t )  kG(t )k 1g(t )
Therefore from (4) and (6) we get
g* ( k ) () 
x

(6)

k!c k
(  c)(  2c)...(  kc)

(7)

For r=1, 2, 3…k the probability density function of U(r) is given by
f u(r ) (t )  r kcr [F(t )]r 1f (t )[1  F(t )]k r , r  1,2,3..k

(8)

If f ( t )  f u (1) ( t )
In this case it is known that
f u(1) (t)  k f (t) 1  F(t)k1

(9)

Therefore from (8) and (9) we get,
k



(10)

f u (1) (s)  k  s
If f (t )  f u(k) (t )
In this case it is known that
f u (k ) (t )  kF(t )k 1f (t )
*
f u ( k ) (s)

(11)

k!k

(s  )(s  2)...(s  k)

(12)

It is known that
E(T)  

d(l* (s))
ds

, E(T 2 ) 
s 0

d 2 (l* (s)
ds 2

and V(T)  E(T 2 )  (E(T))2

(13)

s 0

Case (i): The distribution of optional and mandatory thresholds follow exponential distribution
For this case the first two moments of time to recruitment are found to be

www.ijera.com

316 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
If g(t )  g

x (1)

( t ), f ( t )  f u (1) ( t )

E(T)  CI1  CI2  CI3  p(CI4  CI5 CI6 H

I1,4



2

2

www.ijera.com

2



2

2

2

2




(14)

 HI1,5  HI1,6  HI2,4  HI2,5  HI2,6  HI3,4  HI3,5  HI3,6

2

2

2

2

2

2

2

2

2

E(T )  2 CI1  CI2  CI3  p CI4  CI5  CI6  HI1,4  HI1,5  HI1,6  HI2,4  HI2,5  HI2,6  HI3,4  HI3,5  HI3,6

(15)

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6.
1

(16)

1

CIa  k(1 

and HIb,d 
k(1  DIb DId)
DIa)
*
*
*
*
*
*
DI1  gx(1) (1), DI2  gx (1) (2), DI3  gx (1) (1  2), DI4  gx (1) (1), DI5  gx(1) (2), DI6  gx (1) (1  2)

are given by (5)
If g(t )  g
(t ), f (t )  f
x (k )

(17)
(t )
u (1)

E(T)  LK1  LK2  LK3  p(LK4  LK5  LK6  M



2

2

2



2

K1,4

2

2

2

 MK1,5  MK1,6  MK2,4  MK2,5  MK2,6  MK3,4  MK3,5  MK3,6

2

2

2

2

2

2

2

2

2

E(T )  2 LK1  LK2  LK3  p LK4  LK5  LK6  MK1,4  MK1,5  MK1,6  MK2,4  MK2,5  MK2,6  MK3,4  MK3,5  MK3,6



(18)



(19)

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6.
1

(20)

1

LKa  k(1 

and MKb,d 
k(1  DKb DKd)
DKa)
*
*
*
*
*
*
DK1  gx(k) (1), DK 2  gx (k ) (2), DK3  gx(k ) (1  2), DK 4  gx (k ) (1), DK5  gx (k ) (2), DK6  gx (k ) (1  2)
are given by (7)
If g(t )  g
( t ), f ( t )  f
(t)
u(k)

x (k )

E (T )  PK1  PK 2  PK 3  p(PK 4  PK 5  P K 6  Q



2

E(T )  2 P


2

K1

P

2
p
K3

N  M 1  1

p



P

2

K2

P

2

2

DK 4



(21)



2

K4

P

2

K5

P

2

K6

K1, 4

Q

K1,5

Q

Q

K1,6

Q

K 2, 4

K 2, 5

Q

K 2, 6

Q

 1

QK1,4  QK1,5  QK1,6  QK 2,4  QK 2,5  QK 2,6  QK3,4  QK3,5  QK3,6    2


2

2

2

2

2

2

2

2

2

K 3, 4

Q

K 3,5

Q




(22)
(23)

K 3,6 

N 
2

 1
1
1 

M


1

 DK1 1  DK 2 1  DK3 


1
1
1
1
1
1
1
1
1
1
1












1  DK5 1  DK 6 1  DK1 DK 4 1  D D
1  D K1D
1  D K2 D
1  D K2 D
1  D K2 D
1  D K3 D
1  D K3 D
1  D K3 D 
K1 K5
K6
K4
K5
K6
K4
K5
K6 

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6.
P Ka 

If

g( t )  g

x (1)

( t ), f ( t )  f u ( k ) ( t )

E(T)  R I1  R I2  R I3  p(R I4  R I5 R I6 S

I1,4



2

2

2

2



2

2

2

2

2

2

 SI1,5  SI1,6  SI2,4  SI2,5  SI2,6  SI3,4  SI3,5  SI3,6

2

2

2

2

2

2

 1 N  M 1  1

E(T )  2 R I1  R I 2  R I3  p R I 4  R I5  R I6  SI1,4  SI1,5  SI1,6  SI 2,4 SI 2,5  SI 2,6  SI3,4  SI3,5  SI3,6 


p



2

(24)

k
k
N
N
1
1
,Q

,N  
and M  
2
Kb, d
 (1  D Ka)
 (1  D Kb D Kd)
n 1 n
n 1 n

N  M 1  1
2

DI 4





2



2

DI1







(25)
(26)

1
1 


1  DI 2 1  DI 3 



1
1
1
1
1
1
1
1
1
1
1












1  DI5 1  DI6 1  DI1 DI 4 1  D D
I1 I5 1  D I1DI6 1  D I2 DI 4 1  D I2 DI5 1  D I2 DI6 1  D I3 DI 4 1  D I3 DI5 1  D I3 DI6 


where for a = 1, 2…6, b=1, 2, 3 and d=4, 5
R Ia 

N
,

 (1  DIa) SIb,d
 (1 

N

,N 

k



1

and M 

k



1

(27)
Case (ii): The distributions of optional and mandatory thresholds follow extended exponential distribution with
shape parameter 2.
If g(t )  g (t ), f (t )  f
(t )
DIb DId)

n 1 n

n 1

n

2

u (1)

x (1)



E (T )  2CI1  2CI 2  2CI7  2CI8  CI9  CI10  CI11  4CI3  p 2CI 4  2CI5  2CI12  2CI13  CI14  CI15  CI16  4CI6  4H I1,4  4HI1,5  4H I1,12  4H I1,13

(28)

 2HI1,14  2H I1,15  2H I1,16  8HI1,6  4H I 2,4  4H I 2,5  4HI 2,12  4H I 2,13  2HI 2,14  2HI 2,15  2HI 2,16  8H I 2,6  4HI7,4  4HI7,5  4H I7,12  4H I7,13
 2HI7,14  2H I7,15  2HI7,16  8H I7,6  4HI8,4  4H I8,5  4H I8,12  4HI8,13  2HI8,14  2HI8,15  2H I8,16  8HI8,6  2HI9,4  2HI9,5  2H I9,12  2HI9,13
 H I9,14  H I9,15  H I9,16  4HI9,6  2HI10,4  2H I10,5  2H I10,12  2H I10,13  H1I0,14  H I10,15  HI10,16  4H I10,6  2H I11,4  2H I11,5  2HI11,12  2H I11,13
 H I11,14  H I11,15  HI11,16  4HI11,6  8HI3,4  8H I3,5  8H I3,12  8H I3,13  4H I3,14  4HI3,15  4H I3,16 16H I3,6
2



2

2

2

2

2

2

2

2



2

2

2

2

2

2

2

2



2

2

2

2

I 2, 6

2

I 7, 4

2
I 7 ,5

E(T )  2 2CI1  2CI 2  2CI7  2CI8  CI9  CI10  CI11  4CI3  p 2CI 4  2CI5  2CI12  2CI13  CI14  CI15  CI16  4CI6  4HI1,4  4HI1,5  4HI1,12
 4H

2

I1,13

2

I1,14

2

I1,15

2

I1,16

2

I1,6

2

I 2, 4

2

I 2,5

2

I 2,12

2

I 2,13

2

I 2,14

2

I 2,15

2

I 2,16

(29)

8H 4H 4H 4H
8H 4H 4H
2H
2H
2H
4H
2H
2H
2H
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
 4HI7,12  4HI7,13  2HI7,14  2HI7,15  2HI7,16  8HI7,6  4HI8,4  4HI8,5  4HI8,12  4HI8,13  2HI8,14  2HI8,15  2HI8,16  8HI8,6  2HI9,4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
 2HI9,5  2HI9,12  2HI9,13  HI9,14  HI9,15  HI9,16  4HI9,6  2HI10,4  2HI10,5  2HI10,12  2HI10,13  HI10,14  HI10,15  HI10,16  4HI10,6  2HI11,4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
 2HI11,5  2HI11,12  2HI11,13  HI11,14  HI11,15  HI11,16  4HI11,6  8HI3,4  8HI3,5  8HI3,12  8HI3,13  4HI3,14  4HI3,15  4HI3,16 16HI3,6 

www.ijera.com

317 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com

where for a=1, 2, 3…16, b=1, 2, 3,7, 8, 9, 10,11 and d=4, 5, 6, 12, 13,14,15,16.
given by (16)

C Ia , H Ib, d are

(30)

DI7  gx (1) (21  2), DI8  gx (1) (1 22), DI9  gx (1) (21), DI10  gx (1) (22) DI11  gx (1) (21  22),
*

*

*

*

*

DI12  gx(1) (21 2), DI13  gx(1) (2 2  1), DI14  gx (1) (21), DI15  gx (1) (22), DI16  gx (1) (21 22)
*

*

*

If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t )

*

*



E(T)  2LK1  2LK 2  2LK 7  2LK8  LKI9  LK10  LK11  4LK3  p 2LK 4  2LK5  2LK12  2LK13  LK14  LK15  LK16  4LK 6  4MK1,4  4MK1,5  4MK1,12  4MK1,13
 2MK1,14  2MK1,15  2MK1,16  8MK1,6  4MK 2,4  4MK 2,5  4MK 2,12  4MK 2,13  2MK 2,14  2MK 2,15  2MK 2,16  8MK 2,6  4MK 7,4  4MK 7,5  4MK 7,12  4MK 7,13
 2MK 7,14  2MK 7,15  2MK 7,16  8MK 7,6  4MK8,4  4MK8,5  4MK8,12  4MK8,13  2MK8,14  2MK8,15  2MK8,16  8MK8,6  2MK9,4  2MK9,5  2MK9,12  2MK9,13
 MK9,14  MK9,15  MK9,16  4MK9,6  2MK10,4  2MK10,5  2MK10,12  2MK10,13  MKI0,14  MI10,15  MK10,16  4MK10,6  2MK11,4  2MK11,5  2MK11,12  2MK11,13
 MK11,14  MK11,15  MK11,16  4MK11,6  8MK3,4  8MK3,5  8MK3,12  8MK3,13  4MK3,14  4MK3,15  4MK3,16 16MK3,6





2

2

2

2

2

2

2

2

(31)



2

2

2

2

2

2

2

2

2

E(T )  2 2L K1  2L K 2  2L K 7  2L K8  L K 9  L K10  L K11  4L K 3  p 2L K 4  2L K 5  2L K12  2L K13  L K14  L K15  L K16  4L K 6
2

2

2

2

2

2

2

2

2

2

2

2

2

 4M K1,4  4M K1,5  4M K1,12  4M K1,13  2M K1,14  2M K1,15  2M K1,16  8M K1,6  4M K 2,4  4M K 2,5  4M K 2,12  4M K 2,13  2M K 2,14
2

2

2

2

K8,12

2

K8,13

2

K8,14

2

2

2

2

2

2

2

2

2

2

 2M K 2,15  2M K 2,16  8M K 2,6  4M K 7,4  4M K 7,5  4M K 7,12  4M K 7,13  2M K 7,14  2M K 7,15  2M K 7,16  8M K 7,6  4M K8,4  4M K8,5
 4M

4M

2

2M

2

2M

2

2

K8,15

2M

2

2

K8,16

8M

2

2
K8,6

 2M

2

2
K 9, 4

 2M

2

2
K 9,5

 2M

2

K 9,12

2

2M

2

K 9,13

2

M

2

K 9,14

2

M

2

K 9,15

2

M

2
K 9,16

2

2

 4M K 9,6  2M K10,4  2M K10,5  2M K10,12  2M K10,13  M K10,14  M K10,15  M K10,16  4M K10,6  2M K11,4  2M K11,5  2M K11,12  2M K11,13
M

2

K11,14

M

2

K11,15

M

2

K11,16

4M

2
K11,6

 8M

2
K 3, 4

 8M

2
K 3,5

 8M

2

K 3,12

8M

2

K 3,13

4M

2

K 3,14

4M

2

K 3,15

4M

2

K 3,16

16M

2
K 3,6



(32)

where for a=1,2,3,4,5,….16,b=1,2,…8 and d=9,10…..16. L Ka , M Kb, d are given by (20) .
If g(t )  g

(t ), f (t )  f u (1) (t )

x (k )



E (T )  2PK1  2PK 2  2PK 7  2PK8  PK 9  PK10  PK11  4PK 3  p 2PK 4  2PK 5  2PK12  2PK13  PK14  PK15  PK16  4PK 6  4Q
 4Q

K1,13

 4Q

K 7,12

 2Q

K 9 ,5

 2Q

K11,5



2

 2Q

K1,14

 4Q

 2Q

K 7,13

K 9,12

 2Q

2

 2Q

K1,15

 2Q

 2Q

K11,12

2

 2Q

K 7,14

K 9,13

 2Q
2

K1,16

 2Q

Q

K11,13
2

K 7,15

K 9,14

Q

 8Q

2

 2Q

Q

K11,14

K1,6

K 7,16

K 9,15

Q

2

 4Q

Q

K11,15

K 2, 4

 8Q

K 9,16

Q

2

 4Q

K 7,6

 4Q

 4Q

K11,16



2

K 2 ,5

K 9, 6

 4Q

 4Q

K 8, 4

 4Q

 2Q
K11,6

2

K 2,12

K10, 4

 8Q

2

 4Q

K 8,5

 4Q

 2Q

K 3, 4

K 2,13

K 8,12

K10,5

 8Q

2

 2Q

 4Q

 2Q

K 3,5

2

K 2,14

K 8,13

K10,12

 8Q

2

 2Q

 2Q

 2Q

K 3,12

K 8,14

K10,13

 8Q

2

K 2,15

 4Q

2

 2Q

2

Q

 2Q

K 7,14

2

Q

K1,14

2

K 9,14

K1,15

 2Q

Q

K11,14

2
2

K 7,15

2
K 9,15

Q

 2Q

K11,15

K1,16

 2Q

Q

2

2

2
K 9,16

Q

 8Q

2
K 7,16

K11,16

K1,6

 8Q

 4Q

2

2

2
K 9, 6

 4Q

 4Q

2
K 7,6

K11,6

K 2, 4

 4Q

 2Q

2

2

2
K10, 4

 8Q

 4Q

2
K 8, 4

K 3, 4

K 2, 5

 4Q

 2Q

2

2
2

K 8,5

2
K10,5

 8Q

 4Q

K 3,5

K 2,12

 4Q

 2Q

2

2
2

K 8,12

2
K10,12

 8Q

 4Q

2
K 3,12

2
K 2,13

 4Q

 2Q

 8Q

 2Q

2
K 8,13

2

K 3,13

K 2,14

 2Q

Q

 4Q

 2Q

2
K 8,14

2

2

K10,13

2

2

K10,14

K 3,14

2
K 2,15

 2Q

Q

2
K 8,15

2
K10,15

 4Q

 2Q

2
K 3,15

2
K 2,16

 2Q

Q

2
K 8,16

2
K10,16

 4Q

 8Q

K 3,16

K 2, 6

 8Q

 4Q

2

2
2

K 8,6

2
K10,6

16Q

2

 4Q

K1, 4

2
K 7, 4

 2Q

 2Q

2

K 9, 4

2
K11, 4

 4Q

2
K1,5

K 7 ,5

K 9,5

K11,5

K1,5

 4Q

K 7, 4

 4Q

 8Q

Q

K10,16

 4Q

 4Q

 4Q

2

2

 4Q

 4Q

K 8,16

K 3,15

2

 2Q

 2Q

K 2, 6

K10,15

 4Q

 4Q

2

K1, 4

 2Q

Q

K 3,14

2

 8Q

K 8,15

K10,14

E(T )  2 2PK1  2PK 2  2PK 7  2PK8  PK 9  PK10  PK11  4PK 3  p 2PK 4  2PK 5  2PK12  2PK13  PK14  PK15  PK16  4PK 6  4Q
 2Q

K 2,16

 2Q

Q

K 3,13

2

 2Q

K1,12

2
K 7,12

 2Q

 2Q

2

K 9,12

2
K11,12

 4Q

 2Q

K11, 4




(33)

K 3,6 

2
K1,13

2
K 7,13

 2Q

 2Q

K 9, 4

K10,6

16Q

 4Q

2

 2Q

K 8,6

 4Q

K 3,16

K1,12

K 7 ,5

2
K 9,13

2
K11,13

2
2
  1 ( 2  M ) 2




2 N
1
 DK1 1  DK 2 1  DK 7


K 3,6 





2
1
1
1
4  p
2
2
2
2
1
1
1
4
4
2





(
 M )








2 N
1
1  DK8 1  DK 9 1  DK10 1  DK11 1  DK 3 

 DK 4 1  DK 5 1  DK12 1  DK13 1  DK14 1  DK15 1  DK16 1  DK 6 1  DK1 DK 4



4
4
4
2
2
2
8
4
4
4
4










1  DK1 DK 5 1  DK1 DK12 1  DK1 DK13 1  DK1 DK14 1  DK1 DK15 1  DK1 DK16 1  DK1 DK 6 1  DK 2 DK 4 1  DK 2 DK 5 1  DK 2 DK12 1  DK 2 DK13



2
2
2
8
4
4
4
4
2
2
2










1  DK 2 DK14 1  DK 2 DK15 1  DK 2 DK16 1  DK 2 DK 6 1  DK 7 DK 4 1  DK 7 DK 5 1  DK 7 DK12 1  DK 7 DK13 1  DK 7 DK14 1  DK 7 DK15 1  DK 7 DK16



8
4
4
4
4
2
2
2
8
2
2










1  DK 7 DK 6 1  DK8 DK 4 1  DK8 DK 5 1  DK8 DK12 1  DK8 DK13 1  DK8 DK14 1  DK8 DK15 1  DK8 DK16 1  DK8 DK 6 1  DK 9 DK 4 1  DK 9 DK 5



2
2
1
1
1
4
2
2
2
2
1










1  DK 9 DK12 1  DK 9 DK13 1  DK 9 DK14 1  DK 9 DK15 1  DK 9 DK16 1  DK 9 DK 6 1  DK10 DK 4 1  DK10 DK 5 1  DK10 DK12 1  DK10 DK13 1  DK10 DK14



1
1
4
2
2
2
2
1
1
1
4










1  DK10 DK15 1  DK10 DK16 1  DK10 DK 6 1  DK11 DK 4 1  DK11 DK 5 1  DK11 DK12 1  DK11 DK13 1  DK11 DK14 1  DK11 DK15 1  DK11 DK16 1  DK11 DK 6




8
8
8
8
4
4
4
16








1  DK 3 DK 4 1  DK 3 DK 5 1  DK 3 DK12 1  DK 3 DK13 1  DK 3 DK14 1  DK 3 DK15 1  DK 3 DK16 1  DK 3 DK 6 




(34)

where for a=1,2,3,4,5,….16,b=1,2,…8 and d=9,10…..16. P Ka , Q Kb, d are given by (24) .
If g(t )  g

x (1)

(t ), f (t )  f u (k ) (t )



E (T )  2R I1  2R I 2  2R I7  2R I8  R I9  R I10  R I11  4R I3  p 2R I 4  2R I5  2R I12  2R I13  R I14  R I15  R I16  4R I6  4SI1,4  4SI1,5  4SI1,12

(35)

 4SI1,13  2SI1,14  2SI1,15  2SI1,16  8SI1,6  4SI 2,4  4SI 2,5  4SI 2,12  4SI 2,13  2SI 2,14  2SI 2,15  2SI 2,16  8SI 2,6  4SI7,4  4SI7,5  4SI7,12
 4SI7,13  2SI7,14  2SI7,15  2SI7,16  8SI7,6  4SI8,4  4SI8,5  4SI8,12  4SI8,13  2SI8,14  2SI8,15  2SI8,16  8SI8,6  2SI9,4  2SI9,5  2SI9,12
 2SI9,13  SI9,14  SI9,15  SI9,16  4SI9,6  2SI10,4  2SI10,5  2SI10,12  2SI10,13  SI10,14  SI10,15  SI10,16  4SI10,6  2SI11,4  2SI11,5  2SI11,12
 2SI11,13  SI11,14  SI11,15  SI11,16  4SI11,6  8SI3,4  8SI3,5  8SI3,12  8SI3,13  4SI3,14  4SI3,15  4SI3,16 16SI3,6

www.ijera.com



318 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330



2

2

2

2

2

2

2



2

2

2

I 2, 5

2

I 2,12

2

2

2

2

2

2

2

2

2

2

I7, 4

2

I 7 ,5

www.ijera.com

2

2

2

E(T )  2 2R I1  2R I 2  2R I7  2R I8  R I9  R I10  R I11  4R I3  p 2R I 4  2R I5  2R I12  2R I13  R I14  R I15  R I16  4R I6  4S1,4  4SI1,5  4SI1,12  4SI1,13
2

I1,14

2

I1,15

2

I1,6

2

 2S

2

I1,16

2

2

I 2, 4

2

2

I 2,13

2

I 2,14

2

I 2,15

2

I 2,16

2

I 2,6

2

I7,12

2

I7,13

2

I7,14

2

2S
2S
8S 4S
4S 4S
4S
2S
2S
2S
8S
4S
4S 4S
4S
2S
2SI7,15
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
 2S
8SI7,6  4SI8,4  4SI8,5  4SI8,12  4SI8,13  2SI8,14  2SI8,15  2SI8,16  8SI8,6  2SI9,4  2SI9,5  2SI9,12  2SI9,13  SI9,14  SI9,15  SI9,16  4SI9,6  2SI10,4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
 2SI10,5  2SI10,12  2SI10,13  SI10,14  SI10,15  SI10,16  4SI10,6  2SI11,4  2SI11,5  2SI11,12  2SI11,13  SI11,14  SI11,15  SI11,16  4SI11,6  8SI3,4  8SI3,5
2

I7,16

2

2



2

 8SI3,12  8SI3,13  4SI3,14  4SI3,15  4SI3,16 16SI3,6 

1



2

 2
2
2
2
1
1
1
4 
2

( N  M )







 1

 D I1 1  D I 2 1  D I7 1  D I8 1  D I9 1  D I10 1  D I11 1  D I3 


2
2
2
2
1
1
1
4
4
4
4
4
2
( N  M )











 1
 D I 4 1  D I5 1  D I12 1  D I13 1  D I14 1  D I15 1  D I16 1  D I6 1  D I1 D I 4 1  D I1 D I5 1  D I1 D I12 1  D I1 D I13
2
2
2
8
4
4
4
4
2
2
2











1  D I1 D I14 1  D I1 D I15 1  D I1 D I16 1  D I1 D I6 1  D I 2 D I 4 1  D I 2 D I5 1  D I 2 D I12 1  D I 2 D I13 1  D I 2 D I14 1  D I 2 D I15 1  D I 2 D I16
p





2



8
4
4
4
4
2
2
2
8
4
4










1  D I 2 D I6 1  D I7 D I 4 1  D I7 D I5 1  D I7 D I12 1  D I7 D I13 1  D I7 D I14 1  D I7 D I15 1  D I7 D I16 1  D I7 D I6 1  D I8 D I 4 1  D I8 D I5



4
4
2
2
2
8
2
2
2
2
1










1  D I8 D I12 1  D I8 D I13 1  D I8 D I14 1  D I8 D I15 1  D I8 D I16 1  D I8 D I6 1  D I9 D I 4 1  D I9 D I5 1  D I9 D I12 1  D I9 D I13 1  D I9 D I14



1
1
4
2
2
2
2
1
1
1
4










1  D I9 D I15 1  D I9 D I16 1  D I9 D I6 1  D I10 D I 4 1  D I10 D I5 1  D I10 D I12 1  D I10 D I13 1  D I10 D I14 1  D I10 D I15 1  D I10 D I16 1  D I10 D I6



2
2
2
2
1
1
1
4
8
8
8










1  D I11 D I 4 1  D I11 D I5 1  D I11 D I12 1  D I11 D I13 1  D I11 D I14 1  D I11 D I15 1  D I11 D I16 1  D I11 D I6 1  D I3 D I 4 1  D I3 D I5 1  D I3 D I12




8
4
4
4
16





1  D I3 D I13 1  D I3 D I14 1  D I3 D I15 1  D I3 D I16 1  D I3 D I6 


(36)
where for a=1,2,3…16, b=1, 2, 3, 7, 8, 9, 10,11 and d=4, 5, 6, 12, 13,14,15,16.
R Ia , S Ib, d are given by (27).
Case (iii): The distributions of optional and mandatory thresholds possess SCBZ property.
If g(t )  g (t ), f (t )  f
(t )
u (1)

x (1)

E (T )  p

 q CI 2  p CI3  p p CI 4  p q CI5  q CI6  p q CI7  q q CI8  p(p CI9  q CI10  p CI11  p p CI12  p q CI13  q CI14
3 4
3 4
1 2
1 2
2 1
1 2
2 CI1
2
1
1
4
4
3
3
 p 4 q3 CI15  q 3q4 CI16  p 2 p 4 HI1,9  p 2 q4 HI1,10  p 2 p3 HI1,11  p 2 p 3 p4 HI1,12  p2 p 3q4 HI1,13  p2 q3 HI1,14  p2 p 4 q3 HI1,15  p2 q 3q4 HI1,16
q

2 p 4 H I 2 ,9

q

2 q 4 HI 2,10

q

2 p3 HI 2,11

 q 2p

p

3 4 HI 2,12

q

2

(37)

p 3q4 HI2,13  q2 q3 HI2,14  q2 p 4 q3 HI2,15  q2 q 3q4 HI2,16  p1p 4 HI3,9

 p q HI3,10  p p HI3,11  p1p p HI3,12  p p q HI3,13  p q HI3,14  p p q H I3,15  p q q H I3,16  p1p p H

1 4
1 3
2 4 I 4,9 p1 p 2 q 4 HI 4,10
1 3 4
1 3
1 4 3
1 3 4
3 4
p

p 2 p3 HI4,11  p1p 2 p 3 p4 HI4,12  p1 p2 p 3q4 HI4,13  p1 p2 q3 HI4,14  p1 p2 p 4 q3 HI4,15  p1 p2 q 3q4 HI4,16  p1q 2 p 4 HI5,9  p1 q 2 q4 HI5,10

p

q 2 p3 HI5,11  p1q 2 p 3 p4 HI5,12  p1 q2 p 3q4 HI5,13  p1 q2 q3 HI5,14  p1 q2 p 4 q3 HI5,15  p1 q2 q 3q4 HI5,16  q1p 4 HI6,9  q1q4 HI6,10  q1p3 HI6,11

1
1

 q1p

3 4 H I6,12

 q1p

2 3 p4 HI7,12

q

1

2



p

q

1

p

q 2 p3

p 3q4 HI6,13  q1 q3 HI6,14  q1 p 4 q3 HI6,15  q1 q 3q4 HI6,16  q1p 2 p 4 HI7,9  q1 p 2 q4 HI7,10  q1 p 2 p3 HI7,11

q

1

HI8,11  q1q

p2 p 3q4 HI7,13  q1 p2 q3 HI7,14  q1 p2 p 4 q3 HI7,15  q1 p2 q 3q4 HI7,16  q1q 2 p 4 HI8,9  q1 q 2 q4 HI8,10






p

2 3 p4 HI8,12 q1 q 2 p 3q 4 HI8,13 q1 q 2 q3 HI8,14 q1 q 2 p 4 q3 H I8,15 q1 q 2 q 3q 4 H I8,16 

2
2
2
2
2
2
2
2
2
2
2
2
2
2
C I1  q 2 C I2  p1 C I3  p1p 2 C I4  p1q 2 C I5  q1 C I6  p 2q1 C I7  q1q 2 C I8  pp 4 C I9  q 4 C I10  p3 C I11  p3p 4 C I12  p3q 4 C I13  q 3 C I14
2
2
2
2
2
2
2
2
2
 p 4q 3 C I15  q 3q 4 C I16  p 2 p 4 H I1,9  p 2q 4 H I1,10  p 2 p3 H I1,11  p 2 p3p 4 H I1,12  p 2 p3q 4 H I1,13  p 2 q 3 H I1,14  p 2 p 4q 3 H I1,15  p 2 q 3q 4 H 21,16
I

E(T )  2 p

2

q

(38)

2

2 p 4 H I 2,9

q

2

2 q 4 H I 2,10

2

q

2

2 p 3 H I 2,11

2

 q 2p

3

p 4 H 22,12  q 2 p3q 4 H 22,13  q 2 q 3 H 22,14  q 2 p 4q 3 H 22,15  q 2 q 3q 4 H 22,16  p1p 4 H 23,9  p1q 4 H 23,10
I
I
I
I
I
I
I

2

2

2

2

2

2

2

 p p H I3,11  p1p p H I3,12  p p q H I3,13  p q H I3,14  p p q H I3,15  p q q H I3,16  p p p H I 4,9  p p q H I 4,10  p p p H I 4,11
1 3
1 3 4
1 3
1 4 3
1 3 4
1 2 4
1 2 4
1 2 3
3 4
 p1p
 p1q

p

2

I 4,12

p

2

I5,12

2 3p 4 H
2 3p 4 H

p1 p 2 p3q 4 H

2

I 4,13

p1 q 2 p3q 4 H

2

I5,13

p1 p 2 q 3 H

2

I 4,14

p1 q 2 q 3 H

2

I5,14

p1 p 2 p 4q 3 H
p1 q 2 p 4q 3 H

2

I 4,15

2

I5,15

p1 p 2 q 3q 4 H
p1 q 2 q 3q 4 H

2

I 4,16

2

I5,16

p1 q 2 p 4 H

q1p 4 H

2

I5,9

2

I6,9

p1 q 2q 4 H

q1q 4 H

2

I6,10

2

I5,10

p1 q 2 p3 H 25,11
I

q1p3 H 26,11  q1p3p 4 H 26,12
I
I

q

1

p3q 4 H 26,13  q1 q 3 H 26,14  q1 p 4q 3 H 26,15  q1 q 3q 4 H 26,16  q1p 2 p 4 H 27,9  q1 p 2q 4 H 27,10  q1 p 2 p3 H 27,11  q1p 2 p3p 4 H 27,12  q1 p 2 p3q 4 H 27,13
I
I
I
I
I
I
I
I
I

q

1

p 2 q 3 H 27,14  q1 p 2 p 4q 3 H 27,15  q1 p 2 q 3q 4 H 27,16  q1q 2 p 4 H 28,9  q1 q 2q 4 H 28,10  q1 q 2 p3 H 28,11  q1q 2 p3p 4 H 28,12  q1 q 2 p3q 4 H 28,13  q1 q 2 q 3 H 28,14
I
I
I
I
I
I
I
I
I

1


q 2 p 4q 3 H 28,15  q1 q 2 q 3q 4 H 28,16 
I
I


q

where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16.
CIa 

p1 



(39)

1
1
and HIb,d 
k(1  BIa )
k(1  BIb BId)



3  3
 2  2
 4  4
 
1
,p 
,p 
,p 
1  1 2  2   2  2  3  3   3  3 4  4   4  4 

1

1



q1  1  p1 , q 2

BI1



*

g x (1)

 1  p 2 , q 3  1  p3 , q 4  1  p 4

(2   ), BI 2 
2

*

g x (1)

( ), BI3 
2

*

g x (1)

(40)

(1   ), B

14
1

g x (1) (1 1 2  2),
*

(41)

BI5  g x (1) (1  2  2), BI6  g x (1) (1), BI7  g x (1) (1  2  2), BI8  g x (1) (1  2),
*

*

*

*

BI9  g x (1) (4  4), BI10  g x (1) (4), BI11  g x (1) (3  3), BI12  g x (1) (3  3 4  4),
*

*

*

*

BI13  g x (1) (3 4  3), BI14  g x (1) (3), BI15  g x (1) (3 4  4), BI16  g x (1) (3 4)
*

www.ijera.com

*

*

*

319 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com

If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t )
q

LK1  q2 LK 2  p1 LK3  p1p2 LK 4  p1q2 LK5  q1 LK6  p 2 q1 LK7  q1q2 LK8  p(p4 LK9  q4 LK10  p3 LK11  p 3 p4 LK12  p 3q4 LK13  q3 LK14  p 4 q3 LK15
 p







 p
p
3q 4 LK16 p 2 4 M K1,9 p 2 q4 M K1,10 p 2 p3 M KI1,11 p 2 3 p4 MK1,12 p2 p 3q4 M K1,13 p2 q3 M K1,14 p2 p 4 q3 M K1,15 p2 q 3q4 M K1,16 q 2 4 M K 2,9

q

2 q 4 M K 2,10

E (T )  p

2

 p1p

 q p M K 2,11  q 2 p p M K 2,12  q p q M K 2,13  q q M K 2,14  q p q M K 2,15  q q q MK 2,16  p p M


1 4 K 3,9 p1q 4 M K 3,10 p1p3 M K 3,11
2 3
2 3 4
2 3
2 4 3
2 3 4
3 4
p4 MK3,12  p1 p 3q4 MK3,13  p1 q3 MI3,14  p1 p 4 q3 MI3,15  p1 q 3q4 MI3,16  p1p 2 p 4 MI4,9  p1 p 2 q4 MK 4,10  p1 p 2 p3 MK 4,11  p1p 2 p 3 p4 MK 4,12
3

p2 p 3q4 MI4,13  p1 p2 q3 MI4,14  p1 p2 p 4 q3 MI4,15  p1 p2 q 3q4 MI4,16  p1q 2 p 4 MK5,9  p1 q 2 q4 MK5,10  p1 q 2 p3 MK5,11  p1q 2 p 3p4 MK5,12  p1 q2 p 3q4 MK5,13

p

1

p

q2 q3 MK5,14  p1 q2 p 4 q3 MK5,15  p1 q2 q 3q4 MK5,16  q1p 4 MK6,9  q1q4 MK6,10  q1p3 MK6,11  q1p 3p4 MK6,12  q1 p 3q4 MK6,13  q1 q3 MK6,14  q1 p 4 q3 MK6,15
q 3q4 MK6,16  q1p 2 p 4 MK7,9  q1 p 2 q4 MK7,10  q1 p 2 p3 MK7,11  q1p 2 p 3p4 MK7,12  q1 p2 p 3q4 MK7,13  q1 p2 q3 MK7,14  q1 p2 p 4 q3 MK7,15  q1 p2 q 3q4 MK7,16
1
1

q

 q1q
2



p

2 4 M K8,9

q

1


q 2 q4 MK8,10  q1 q 2 p3 MK8,11  q1q 2 p 3p4 MK8,12  q1 q2 p 3q4 MK8,13  q1 q2 q3 MK8,14  q1 q2 p 4 q3 MK8,15  q1 q2 q 3q4 MK8,16


(42)

2
2
2
2
2
2
2
2
2
L q L p L p p L p q L q LK6  p 2 q1 LK7  q1q2 LK8  pp4 LK9  q4 LK10  p3 LK11  p3p4 LK12  p3q4 LK13  q3 LK14
 p q L q q L p p M p q M p 2 p3 M2 1,11  p 2 p3p4 M2 1,12  p2 p 3q4 M2 1,13  p2 q3 M2 1,14  p2 p 4q3 M2 1,15  p2 q 3q4 M2 1,16
K
K
K
K
K
K
q p M
q p p M2 2,12  q2 p3q4 M2 2,13  q2 q3 M2 2,14  q2 p 4q3 M2 2,15  q2 q 3q4 M2 2,16  p1p4 M2 3,9  p1q4 M2 3,10
qqM
q pM
K
K
K
K
K
K
K
2 4
p p M
pppM
pp q M
p q M2 3,14  p1 p 4q3 M2 3,15  p1 q 3q4 M2 3,16  p1 p 2 p4 M2 4,9  p1 p 2q4 M2 4,10  p1 p 2 p3 M2 4,11
K
K
K
K
K
K
1 3
2

2 K1
2
2

4 3 K15

2
2
2
2




K2
1 2 K 4 1 2 K5 1
1 K3
2
2
2



3 4 K16 2 4 K1,9 2 4 K1,10
2
2
2



K 2 ,9
2 4 K 2,10 2 3 K 2,11 2 3 4
2
2
2
 1


K 3,11
3 4 K3,12 1 3 4 K3,13 1 3

E(T )  2 p

 p1p

2

p

2 3 p4 M K 4,12

p

(43)

p p3q4 M2 4,13  p1 p2 q3 M2 4,14  p1 p2 p 4q3 M2 4,15  p1 p2 q 3q4 M2 4,16  p1 q 2 p4 M2 5,9  p1 q 2 q4 M2 5,10  p1 q 2 p3 M2 5,11  p1q 2 p3p4 M2 5,12
K
K
K
K
K
K
K
K

1 2

q p3q4 M2 5,13  p1 q2 q3 M2 5,14  p1 q2 p 4q3 M2 5,15  p1 q2 q 3q4 M2 5,16  q1p4 M2 6,9  q1q4 M2 6,10  q1p3 M2 6,11  q1p3p4 M2 6,12  q1 p3q4 M2 6,13  q1 q3 M2 6,14
K
K
K
K
K
K
K
K
K
K
2
2
2
2
2
2
2
2
2
 q p q MK 6,15  q q q MK 6,16  q p p MK 7,9  q p q MK 7,10  q p p MK 7,11  q1p p p MK 7,12  q p p q MK 7,13  q p q MK 7,14  q p p q MK 7,15
1 2 4
2 3
1 4 3
1 3 4
1 2 4
1 2 3
1 2 3 4
1 2 3
1 2 4 3
p

1 2

4

q

p q 3q4 M2 7,16  q1q 2 p4 M2 8,9  q1 q 2q4 M2 8,10  q1 q 2 p3 M2 8,11  q1q 2 p3p4 M2 8,12  q1 q2 p3q4 M2 8,13  q1 q2 q3 M2 8,14  q1 q2 p 4q3 M2 8,15  q1 q2 q 3q4 M2 8,16 
K
K
K
K
K
K
K
K
K 


1 2

where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16.
(44)

1
1
and M Kb, d 
k (1  B Ka )
k (1  B Kb B Kd )



L Ka

BK1  g x ( k ) (2  2), BK 2  g x ( k ) (2), BK 3  g x ( k ) (1  1), BK 4  g x ( k ) (1 1 2  2),
*

*

*

*

BK 5  g x (k ) (1  2  2), BK 6  g x ( k ) (1), BK 7  g x (k ) (1  2  2), BK8  g x (k ) (1  2),
*

*

*

*

BK 9  g x ( k ) (4  4), BK10  g x ( k ) (4), BK11  g x ( k ) (3  3), BK12  g x ( k ) (3  3 4  4),
*

*

*

*

BK13  g x ( k ) (3 4  3), BK14  g x (k ) (3), BK15  g x (k ) (3 4  4), BK16  g x ( k ) (3 4)
*

*

*

*

(45)

If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )
E (T ) 

p2 PK1  q 2 PK 2  p1 PK 3  p1p2 PK 4  p1q 2 PK 5  q1 PK 6  p 2 q1 PK 7  q1q 2 PK8  p(p4 PK 9  q 4 PK10  p3 PK11  p 3 p4 PK12







p
p
3q 4 P K13 q3 PK14  p 4 q3 P K15 q 3q 4 P K16 p 2 4 QK1,9 p 2 q 4 QK1,10 p 2 p3 QK1,11 p 2 3 p4 QK1,12 p2 p 3 q 4 QK1,13

p
p
q

2

q3 QK1,14  p2 p 4 q3 QK1,15  p2 q 3q 4 QK1,16  q 2 p 4 QK 2,9  q 2 q4 QK 2,10  q 2 p3 QK 2,11  q 2 p 3 p4 QK 2,12  q 2 p 3q 4 QK 2,13

q QK 2,14  q 2 p 4 q3 QK 2,15  q2 q 3q 4 QK 2,16  p1p 4 QK 3,9  p1q 4 QK 3,10  p1p3 QK 3,11  p1p 3 p4 QK 3,12  p1 p 3q4 QK 3,13
2 3

p

q3 QK 3,14  p1 p 4 q3 QK 3,15  p1 q 3q 4 QK 3,16  p1p 2 p 4 QK 4,9  p1 p 2 q4 QK 4,10  p1 p 2 p3 QK 4,11  p1p 2 p 3 p4 QK 4,12

p

p2 p 3q 4 QK 4,13  p1 p2 q3 QK 4,14  p1 p2 p 4 q3 QK 4,15  p1 p2 q 3q 4 QK 4,16  p1q 2 p 4 QK 5,9  p1 q 2 q4 QK 5,10  p1 q 2 p3 QK 5,11

1
1

 p1q
q

2

p 3 p4 QK 5,12  p1 q 2 p 3q 4 QK 5,13  p1 q2 q3 QK 5,14  p1 q 2 p 4 q3 QK 5,15  p1 q2 q 3q 4 QK 5,16  q1p 4 QK 6,9  q1q 4 QK 6,10






 q1p p Q

p
1p3 QK 6,11 q1 3 p4 QK 6,12 q1 p 3 q 4 QK 6,13 q1 q3 QK 6,14 q1 p 4 q3 QK 6,15 q1 q 3 q 4 QK 6,16
2 4 K 7,9 q1 p 2 q 4 QK 7,10

q

p 2 p3 QK 7,11  q1p 2 p 3 p4 QK 7,12  q1 p2 p 3q 4 QK 7,13  q1 p2 q3 QK 7,14  q1 p2 p 4 q3 QK 7,15  q1 p2 q 3q 4 QK 7,16  q1q 2 p 4 QK8,9

q


q 2 q 4 QK8,10  q1 q 2 p3 QK8,11  q1q 2 p 3 p4 QK8,12  q1 q2 p 3q 4 QK8,13  q1 q2 q3 QK8,14  q1 q 2 p 4 q3 QK8,15  q1 q2 q 3q 4 QK8,16 


1
1

www.ijera.com

(46)

320 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
2



www.ijera.com

2
2
2
2
2
2
2
2
2
2
2
2
P K1  q 2 P K 2  p1 P K3  p1p2 P K 4  p1q 2 P K5  q1 P K 6  p2 q1 P K 7  q1q 2 P K8  pp4 P K9  q 4 P K10  p3 P K11  p3 p4 P K12
2
2
2
2
2
2
2
2
 p q P K13  q P K14  p q P K15  q q P K16  p p Q



p
3 4
3 4
4 3
2 4 K1,9 p 2 q 4 Q K1,10 p 2 p3 Q K1,11 p 2 3 p 4 Q K1,12
3
2
2
2
2
2
2
2
p p q Q
p q Q
p p q Q
p q q Q
q p Q


2 4 K 2,9 q 2 q 4 Q K 2,10 q 2 p3 Q K 2,11
K1,13
K1,14
K1,15
K1,16
2 3 4
2 3
2 4 3
2 3 4

E(T )  2 p

2

 q2 p

2

p

3 4 Q K 2,12

q

2

2

2

2

2

2

2

p3 q 4 QK 2,13  q 2 q3 QK 2,14  q 2 p4 q3 QK 2,15  q 2 q3 q 4 QK 2,16  p1p4 QK3,9  p1q 4 QK3,10

2

2

2

2

2

2

2

p p Q






p
1 3 K 3,11 p1 3 p 4 Q K 3,12 p1 p3 q 4 Q K 3,13 p1 q 3 Q K 3,14 p1 p 4 q 3 Q K 3,15 p1 q3 q 4 Q K 3,16 p1 p 2 p 4 Q K 4,9
2

p

1

2

2

2

2

2

p2 q 4 QK 4,10  p1 p2 p3 QK 4,11  p1p2 p3 p4 QK 4,12  p1 p2 p3 q 4 QK 4,13  p1 p2 q3 QK 4,14  p1 p2 p4 q3 QK 4,15
2

2

2

2

2

2

p

p2 q3 q 4 QK 4,16  p1q 2 p4 QK5,9  p1q 2 q 4 QK5,10  p1q 2 p3 QK5,11  p1q 2 p3 p4 QK5,12  p1q 2 p3 q 4 QK5,13

p

q 2 q3 QK5,14  p1q 2 p4 q3 QK5,15  p1q 2 q3 q 4 QK5,16  q1p4 QK 6,9  q1q 4 QK 6,10  q1p3 QK 6,11  q1p3 p4 QK 6,12

q

p3 q 4 QK 6,13  q1q3 QK 6,14  q1 p4 q3 QK 6,15  q1q3 q 4 QK 6,16  q1p2 p4 QK 7,9  q1 p2 q 4 QK 7,10  q1 p2 p3 QK 7,11

1

2

1

2

1

 q1 p
1

2 3 p 4 Q K 7,12

2

2

2

1

2

2

2

2

2

2

2

2

2

2

p2 p3 q 4 QK 7,13  q1 p2 q3 QK 7,14  q1 p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p4 QK8,9
2

2

2

2

2

2



2

(N

2

 p
 p
q2
p1
p1 p2
p1q 2
q1
q1 p2
q1q 2  p
q4
2



2
4
 M )








(
 M )

2 N
 1  BK1 1  BK 2 1  BK 3 1  BK 4 1  BK 5 1  BK 6 1  BK 7 1  BK8 

 1  BK 9 1  BK10

 


p3



q

2

q 2 q 4 QK8,10  q1q 2 p3 QK8,11  q1q 2 p3 p4 QK8,12  q1q 2 p3 q 4 QK8,13  q1q 2 q3 QK8,14  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16  



1



2

p

2

2

2

q


2

1  BK11



p3 p 4
1  BK12



p3 q 4
1  BK13



q3
1  BK14



q3 p4
1  BK15



q3 q 4
1  BK16



p4 p2
1  BK1 BK 9



p2 q 4
1  BK1 BK10



p 2 p3
1  BK1 BK11



p 2 p3 p 4
p 2 p3 q 4
p2 q3 p4
p2 q3 q 4
q 2 p3
p2 q3
q 2 p4
q2 q4







1  BK1 BK12 1  BK1 BK13 1  BK1 BK14 1  BK1 BK15 1  BK1 BK16 1  BK 2 BK 9 1  BK 2 BK10 1  BK 2 BK11



q 2 p3 p 4
q 2 p3 q 4
q 2 q3 p4
q 2 q3 q 4
p1p3
q 2 q3
p4 p1
p1q 4







1  BK 2 BK12 1  BK 2 BK13 1  BK 2 BK14 1  BK 2 BK15 1  BK 2 BK16 1  BK 3 BK 9 1  BK 3 BK10 1  BK 3 BK11



p1p3 p4
p1p3 q 4
p1q3 p4
p1q3 q 4
p1 p2 p3
p1q3
p1 p4 p2
p1 p2 q 4







1  BK 3 BK12 1  BK 3 BK13 1  BK 3 BK14 1  BK 3 BK15 1  BK 3 BK16 1  BK 4 BK 9 1  BK 4 BK10 1  BK 4 BK11



p1 p2 p3 p4 p1 p2 p3 q 4
p1 p2 q3 p4 p1p2 q3 q 4
p1q 2 p3
p1 p2 q3
p1 p4 q 2
p1q 2 q 4







1  BK 4 BK12 1  BK 4 BK13 1  BK 4 BK14 1  BK 4 BK15 1  BK 4 BK16 1  BK 5 BK 9 1  BK 5 BK10 1  BK 5 BK11



q1p3
p1q 2 p3 p4 p1q 2 p3 q 4
p1q 2 q3 p4 p1q 2 q3 q 4
p1q 2 q3
p4 q1
q1q 4







1  BK 5 BK12 1  BK 5 BK13 1  BK 5 BK14 1  BK 5 BK15 1  BK 5 BK16 1  BK 6 BK 9 1  BK 6 BK10 1  BK 6 BK11



q1p3 p4
q1p3 q 4
q1q3 p4
q1q3 q 4
q1 p2 p3
q1q3
q1 p4 p2
q1 p2 q 4







1  BK 6 BK12 1  BK 6 BK13 1  BK 6 BK14 1  BK 6 BK15 1  BK 6 BK16 1  BK 7 BK 9 1  BK 7 BK10 1  BK 7 BK11



q1 p2 p3 p4 q1 p2 p3 q 4
q1 p2 q3 p4 q1 p2 q3 q 4
q1q 2 p3
q1 p2 q3
q1 p4 q 2
q1q 2 q 4







1  BK 7 BK12 1  BK 7 BK13 1  BK 7 BK14 1  BK 7 BK15 1  BK 7 BK16 1  BK8 BK 9 1  BK8 BK10 1  BK8 BK11



q1q 2 p3 p4 q1q 2 p3 q 4
q1q 2 q3 p4 q1q 2 q3 q 4 
q1q 2 q3





1  BK8 BK12 1  BK8 BK13 1  BK8 BK14 1  BK8 BK15 1  BK8 BK16 



(47)

where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16.
N

PKa  (1 
If g ( t ) 
E (T )  p

2

BKa )

and Q

Kb,d

g x (1) ( t ), f ( t )

R I1  q

2



(48)

N
(1  BKb BKd)

 f u (k ) (t )

R I2  p

 p p R I 4  p q R I5  q R I6  p q R I7  q q R I8  p(p R I9  q R I10  p R I11  p p R I12  p q R I13
3 4
3 4
1 2
1 2
2 1
1 2
1 R I3
1
4
4
3

 p4 q3 R I15  q3 q 4 R I16  p2 p4SI1,9  p2 q 4 SI1,10  p2 p3SI1,11  p2 p3 p4 SI1,12  p2 p3 q 4 SI1,13  p2 q3SI1,14  p2 p4 q3SI1,15
3 R I14
 p q q SI1,16  q p S







2 4 I 2,9 q 2 q 4 SI 2,10 q 2 p3SI 2,11 q 2 p3 p4 SI 2,12 q 2 p3 q 4 SI 2,13 q 2 q3SI 2,14 q 2 p4 q3SI 2,15 q 2 q3 q 4 SI 2,16
2 3 4
q

p
p p S








1 4 I3,9 p1q 4 SI3,10 p1 p3SI3,11 p1 p3 p 4 SI3,12 p1 p3 q 4 SI3,13 p1 q3SI3,14 p1 p4 q3SI3,15 p1 q3 q 4 SI3,16 p1 2 p4 SI 4,9
p

p2 q 4 SI4,10  p1 p2 p3SI4,11  p1p2 p3 p4 SI4,12  p1 p2 p3 q 4 SI4,13  p1 p2 q3SI4,14  p1 p2 p4 q3SI4,15  p1 p2 q3 q 4 SI4,16  p1q 2 p4SI5,9

p

q 2 q 4 SI5,10  p1q 2 p3SI5,11  p1q 2 p3 p4 SI5,12  p1q 2 p3 q 4 SI5,13  p1q 2 q3SI5,14  p1q 2 p4 q3SI5,15  p1q 2 q3 q 4 SI5,16  q1p4SI6,9

1
1

 q q SI6,10  q p SI6,11  q1 p p SI6,12  q p q SI6,13  q q SI6,14  q p q SI6,15  q q q SI6,16  q1 p p S

1 4
1 3
2 4 I7,9 q1 p2 q 4 SI7,10
1 3 4
1 3
1 4 3
1 3 4
3 4
q

1

p2 p3SI7,11  q1p2 p3 p4 SI7,12  q1 p2 p3 q 4 SI7,13  q1 p2 q3SI7,14  q1 p2 p4 q3SI7,15  q1 p2 q3 q 4 SI7,16  q1q 2 p4SI8,9

(49)

 q q p SI8,11  q1q p p SI8,12  q q p q SI8,13  q q q SI8,14  q q p q SI8,15  q q q q SI8,16 

q q
2 3 4
1 2 4 SI8,10
1 2 3
1 2 3 4
1 2 3
1 2 4 3
1 2 3 4


q

www.ijera.com

321 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
2



www.ijera.com

2
2
2
2
2
2
2
2
2
2
2
2
2
R I1  q 2 R I2  p1 R I3  p1 p2 R I4  p1q 2 R I5  q1 R I6  p2 q1 R I7  q1q 2 R I8  pp4 R I9  q 4 R I10  p3 R I11  p3 p4 R I12  p3 q 4 R I13
2
2
2
2
2
2
2
2
2
2
 q R I14  p q R I15  q q R I16  p p SI1,9  p q SI1,10  p p SI1,11  p2 p p SI1,12  p p q SI1,13  p q SI1,14  p p q SI1,15
3 4
4 3
2 4
2 4
2 3
3
2 3 4
2 3
2 4 3
3 4
2
2
2
2
2
2
2
2
2
 p q q SI1,16  q p SI 2,9  q q SI 2,10  q p SI 2,11  q 2 p p SI 2,12  q p q SI 2,13  q q SI 2,14  q p q SI 2,15  q q q SI 2,16
2 4
2 4
2 3
2 3 4
2 3 4
2 3
2 4 3
2 3 4
3 4

E(T )  2 p

2

2

2

2

2

2

2

2

2

2

 p p SI3,9  p q SI3,10  p p SI3,11  p1 p p SI3,12  p p q SI3,13  p q SI3,14  p p q SI3,15  p q q SI3,16  p p p SI 4,9
1 4
1 4
1 3
1 3 4
1 3
1 4 3
1 3 4
1 2 4
3 4
p

1

p

1

2

I 4,10

p2 q 4 S

2

I5,10

q2 q4S

2

I 4,11

p1 p2 p3S

2

I5,11

p1 q 2 p3S

2

2

I 4,12

p1 p2 p3 p4 S

2

I5,12

p1q 2 p3 p4 S

2

2

I 4,13

p1 p2 p3 q 4 S

2

I5,13

p1 q 2 p3 q 4 S

2

2

2

I 4,14

2

I 4,15

p1 p2 p4 q3S

p1 p2 q3S

2

I5,14

p1 q 2 q3S

2

2

I5,15

p1 q 2 p4 q3S

2

2

I 4,16

p1 p2 q3 q 4 S

2

I5,16

p1 q 2 q3 q 4 S

2

p1 q 2 p4 S25,9
I

q1 p4 S26,9
I

2

2

 q q SI6,10  q p SI6,11  q1 p p SI6,12  q p q SI6,13  q q SI6,14  q p q SI6,15  q q q SI6,16  q p p SI7,9  q p q SI7,10
1 2 4
1 4
1 3
1 3 4
1 3
1 4 3
1 3 4
1 2 4
3 4
2

I7,11

2

I7,12

q1 p2 p3 p4 S

2

I 7,13

2

I7,14

2

I7,15

2

I7,16

q

p 2 p3 S

q


q 2 p3S28,11  q1q 2 p3 p4 S28,12  q1q 2 p3 q 4 S28,13  q1 q 2 q3S28,14  q1 q 2 p4 q3S28,15  q1 q 2 q3 q 4 S28,16   
I
I
I
I
I
I


1

1











p1
1  BI3



q3 q 4
1  BI16

p1 p2
1  BI 4





p1q 2
1  BI5

p4 p2
1  BI1 BI9





q1 p2 p3 q 4 S

q1
1  BI6

p2 q 4
1  BI1 BI10





q1 p2
1  BI7



q1 p2 q3S

q1 p2 p4 q3S

q1 p2 q3 q 4 S

2
I8,9

q1q 2 p4 S
1



2

q

1

q 2 q 4 S28,10
I

 p
q2
2

2
( N  M )

 1  BI1 1  BI 2


 p
p3
p3 p 4 p3 q 4
q3
q3 p4
q1q 2  p 2
q4


4

(
 M )






2 N
1  BI8 

 1  BI9 1  BI10 1  BI11 1  BI12 1  BI13 1  BI14 1  BI15




p 2 p3
p 2 p3 p 4
p 2 p3 q 4
p2 q3 p4
p2 q3 q 4
p2 q3
q 2 p4
q2 q4







1  BI1 BI11 1  BI1 BI12 1  BI1 BI13 1  BI1 BI14 1  BI1 BI15 1  BI1 BI16 1  BI 2 BI9 1  BI 2 BI10

(50)

q 2 p3
q 2 p3 p 4
q 2 p3 q 4
q 2 q3 p4
q 2 q3 q 4
p1 p3
p1 p3 p4
p1 p3 q 4
q 2 q3
p4 p1
p1q 4










1  BI 2 BI11 1  BI 2 BI12 1  BI 2 BI13 1  BI 2 BI14 1  BI 2 BI15 1  BI 2 BI16 1  BI3 BI9 1  BI3 BI10 1  BI3 BI11 1  BI3 BI12 1  BI3 BI13
p1 q3
1  BI3 BI14

p1 p4 q 2





1  BI5 BI9

p1q3 p4
p1q3 q 4
p1 p2 p3 p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p1 p2 q3 p4 p1 p2 q3 q 4
p1 p4 p2
p1 p2 q 4









1  BI3 BI15 1  BI3 BI16 1  BI 4 BI9 1  BI 4 BI10 1  BI 4 BI11 1  BI 4 BI12 1  BI 4 BI13 1  BI 4 BI14 1  BI 4 BI15 1  BI 4 BI16
p1q 2 q 4

1  BI5 BI10



q1 p3
p1 q 2 p3 p1 q 2 p3 p4 p1 q 2 p3 q 4 p1 q 2 q3 p1 q 2 q3 p4 p1q 2 q3 q 4
p4 q1
q1 q 4








1  BI5 BI11 1  BI5 BI12 1  BI5 BI13 1  BI5 BI14 1  BI5 BI15 1  BI5 BI16 1  BI6 BI9 1  BI6 BI10 1  BI6 BI11



q1 p3 p4
q1 p3 q 4
q1q3 p4
q1q3 q 4
q1 p2 p3 q1 p2 p3 p4 q1 p2 p3 q 4 q1 p2 q3
q1 q3
q1 p4 p2
q1 p2 q 4










1  BI6 BI12 1  BI6 BI13 1  BI6 BI14 1  BI6 BI15 1  BI6 BI16 1  BI7 BI9 1  BI7 BI10 1  BI7 BI11 1  BI7 BI12 1  BI7 BI13 1  BI7 BI14



q1 p2 q3 p4 q1 p2 q3 q 4 q1 p4 q 2
q1q 2 p3 q1q 2 p3 p4 q1q 2 p3 q 4 q1 q 2 q3 q1q 2 q3 p4 q1 q 2 q3 q 4 
q1 q 2 q 4











1  BI7 BI15 1  BI7 BI16 1  BI8 BI9 1  BI8 BI10 1  BI8 BI11 1  BI8 BI12 1  BI8 BI13 1  BI8 BI14 1  BI8 BI15 1  BI8 BI16 


where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16.
R Ia



(51)

N
N
and S Ib, d 
 (1  B Ia)
 (1  B Ib B Id)

III. MODEL DESCRIPTION AND ANALYSIS OF MODEL-II
For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are
taken as Y=min (Y1, Y2) and Z=min (Z1, Z2). All the other assumptions and notations are as in model-I.
Case (i): The distribution of optional and mandatory thresholds follow exponential distribution
For this case the first two moments of time to recruitment are found to be
Proceeding as in model-I, it can be shown for the present model that
If g ( t )  g
( t ), f ( t )  f u (1) ( t )
x (1)

E (T ) 

C I3  p(C I6  H I3,6)



E (T 2 )  2 C I 3  p(C I 6  H I 3, 6
2

2

2

(52)



(53)

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 C Ia , H Ib, d are given by (16)
If g(t )  g
(t ), f (t )  f
(t )
u (1)

x (k )

E (T ) 

(54)

LK 3  p(LK 6  M K 3,6)

2

2

2

2

E(T )  2(LK3  p(LK6  MK3,6



(55)

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 L Ka , M Kb, d are given by (20).
If g(t )  g
(t ), f (t )  f u (k ) (t )
x(k)

E(T)  PK3  p(PK6  Q

(56)

)

K3,6

2



2

E (T )  2 PK 3  p

P

2
K6

2

Q

  1

2

K 3,6  



N

2





1
 p
M
 1 
DK3  2



N

2





1
1

M

1 

DK 6 1  D K3 DK 6 



(57)

where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 P Ka , Q Kb, d are given by (24)
If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )
www.ijera.com

322 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
E (T ) 

www.ijera.com

(58)

R I3  p(R I6  SI3,6)

E (T 2 )  2

R

 p

2

R

2



2



1

 S I 3, 6 




M 

2


 p

1



2




M 

1


1



1  DI 3 D  
I6 

N
N
 1 
1
D  
D
(59)




where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 R Ia , SIb, d are given by (26).
Case (ii): The distribution of optional and mandatory thresholds follow extended exponential distribution
If g(t )  g (t ), f (t )  f
(t )
I3

I6

2

2

I3

u (1)

x (1)

I6



E(T)  4CI3  2CI7  2CI8  CI11  p 4CI6  2CI12  2CI13  CI16 16HI3,6  8HI3,12  8HI3,13  4HI3,16  8HI7,6

(60)



 4HI7,12  4HI7,13  2HI7,6  8HI8,6  4HI8,12  4HI8,13  2HI8,16  4HI11,6  2HI11,12  2HI11,13  HI11,16





(61)

E(T )  2 4CI3  2CI7  2CI8  CI11  p 4CI6  2CI12  2CI13  C1I6 16HI3,6  8HI3,12  8HI3,13  4HI3,16  8HI7,6  4HI7,12
2

2

 4H

2

2

I7,13

2

2H

2

I7,16

2

8H

2

I8,6

2

4H

2

2

I8,12

4H

2

2

I8,13

2

2H

2

I8,16

2

4H

2

I11,6

2

2H

2

I11,12

2

2H

2

I11,13

2

2

H

2



2
I11,16

where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 C Ia , H Ib, d are given by (16)
If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t )



E(T)  4LK 3  2LK 7  2LK8  LK11  p 4LK 6  2LK12  2LK13  LK16 16MK 3,6  8MK 3,12  8MK 3,13  4MK 3,16  8MK 7,6



(62)

 4MK 7,12  4MK 7,13  2MK 7,6  8MK8,6  4MK8,12  4MK8,13  2MK8,16  4MK11,6  2MK11,12  2MK11,13  MK11,16



2

2

2

2



2

2

2

2

2

2

2

2

2

2

E(T )  2 4LK3  2LK 7  2LK8  LK11  p 4LK 6  2LK12  2LK13  LK16 16LK3,6  8LK3,12  8LK3,13  4LK3,16  8LK 7,6


8L
 4L
4L
2L
4L
4L
2L
4L
2L
2L
L
where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 L Ka , M Kb, d are given by (20).
If g(t )  g
(t ), f (t )  f u (k ) (t )
2

K 7,12

2

K 7,13

2

K8,6

2

K 7,16

2

K8,12

2

K8,13

2

K8,16

2

K11,6

2

K11,12

2

K11,13

2
K11,16

(63)

x (k )

E(T)  4PK 3  2PK 7  2PK8  PK11  p
 4Q

K 7,12



2

E(T )  2 4P
 8Q

2

K3

2
K8,6

2P

 4Q

K 7,13

2

K7

 4Q

2P

2
K8,12

2

K8

 4Q

P

 2Q

4PK6  2PK12  2PK13  PK16 16QK3,6  8QK3,12  8QK3,13  4QK3,16  8QK7,6

K 7, 6

2
p
K11

2
K8,13

 8Q

2

K6

2

K12

4P

 2Q

2
K8,16

K8,6

2P

 4Q

2
K11,6

2P

 4Q

K8,12

2

K13

 2Q

P

2
K11,12

 4Q

K8,13

 2Q

K8,16

 4Q

K11,6

 2Q

K11,12

 2Q

K11,13




Q

K11,16 

16QK3,6  8QK3,12  8QK3,13  4QK3,16  8QK7,6  4QK7,12  4QK7,13  2QK7,16
2

2

K16

 2Q

2
K11,13

Q

2

2

2

2

2

2

(64)

2

(65)


1
   1 ( 2  M) 4  2  2 



2 N
K11,16  
 1
DK3 1  DK7 1  DK8 1  DK11 


2



 4
2
2
1
16
8
8
4
8
4
2

(
 M)









2 N
 1
 DK 6 1  DK12 1  DK13 1  DK16 1  DK3 DK 6 1  DK3 DK12 1  DK3 DK13 1  DK3 DK16 1  DK 7 DK 6 1  DK 7 DK12

p




4
2
8
4
4
2
4
2
2
1










1  DK 7 DK13 1  DK 7 DK 6 1  DK8 DK 6 1  DK8 DK12 1  DK8 DK13 1  DK8 DK16 1  DK11 DK 6 1  DK11 DK12 1  DK11 DK13 1  DK11 DK16 


where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 P Ka , Q Kb, d are given by (24) .
If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )



E(T)  4R I3  2R I7  2R I8  R I11  p 4R I6  2R I12  2R I13  R I16 16SI3,6  8SI3,12  8SI3,13  4SI3,16  8SI7,6



(66)

 4SI7,12  4SI7,13  2SI7,6  8SI8,6  4SI8,12  4SI8,13  2SI8,16  4SI11,6  2SI11,12  2SI11,13  SI11,16





E(T )  2 4R I3  2R I7  2R I8  R I11  p 4R I6  2R I12  2R I13  R1I6 16SI3,6  8SI3,12  8SI3,13  4SI3,16  8SI7,6  4SI7,12  4SI7,13  2SI7,16  8SI8,6
2

2

2

2

2

2

2

2

2

2



2

2

2

2

2

2

2

2

 4
 4
2
2
1  p
2
2
2

( N  M )



(
 M )

2 N

1
 1
 DI3 1  DI7 1  DI8 1  DI11  
 DI6 1  DI12
2
1
16
8
8
4
8
4
4
2
8











1  DI13 1  DI16 1  DI3 DI6 1  DI3 DI12 1  DI3 DI13 1  DI3 DI16 1  DI7 DI6 1  DI7 DI12 1  DI7 DI13 1  DI7 DIK 6 1  DI8 DI6
2

2

2

2

2

2

2

 4SI8,12  4SI8,13  2SI8,16  4SI11,6  2SI11,12  2SI11,13  SI11,16 



1



2


4
4
2
4
2
2
1







1  DI8 DI12 1  DI8 DI13 1  DI8 DI16 1  DI11 DI6 1  DI11 DI12 1  DI11 DI13 1  DI11 DI16 


(67)

where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 R Ia , SIb, d are given by (26).
Case (iii): The distributions of optional and mandatory thresholds possess SCBZ property.
If g ( t )  g
( t ), f ( t )  f u (1) ( t )
x (1)

(68)

p1p2 CI 4  p1q 2 CI5  p2 q1CI7  q1q 2 CI8  p(p3 p4 CI12  p3 q 4 CI13  p4 q3 CI15  q3 q 4 CI16
 p1p p p H I 4,12  p p p q H I 4,13  p p q p H I 4,15  p p q q H I 4,16  p1q p p H I5,12
2 3 4
2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

E (T ) 

p

q 2 p3 q 4 H I5,13  p1q 2 p4 q3 H I5,15  p1q 2 q3 q 4 H I5,16  q1p2 p3 p4 H I7,12  q1 p2 p3 q 4 H I7,13

q


p2 p4 q3 H I7,15  q1 p2 q3 q 4 H I7,16  q1q 2 p3 p4 H I8,12  q1q 2 p3 q 4 H I8,13  q1q 2 p4 q3 H I8,15  q1q 2 q3 q 4 H I8,16 


1

1

www.ijera.com

323 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com

2
2
2
2
2
2
2
2
2
E(T )  2 p p CI 4  p q CI5  p q CI7  q q CI8  p p p CI12  p q CI13  p q CI15  q q CI16


3 4
3 4
1 2
2 1
1 2
4 3
 1 2
 3 4

p2 p3q4 H24,13  p1p2 p4 q3 H24,15  p1p2 q3q4 H24,16  p1q2 p3 p4 H25,12
I
I
I
I
2
2
2
2
2
2
 p q p q H I5,13  p q p q H I5,15  p q q q H I5,16  q1p p p H I7,12  q p p q H I7,13  q p p q H I7,15
2 3 4
1 2 3 4
1 2 4 3
1 2 3 4
1 2 3 4
1 2 4 3
 p1p

q

1

2

p

2 3 p4 H I 4,12

p

1


p2 q3q4 H27,16  q1q2 p3 p4 H28,12  q1q2 p3q4 H28,13  q1q2 q3 H28,14  q1q2 p4 q3 H28,15  q1q2 q3q4 H28,16  
I
I
I
I
I
I


(69)

where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. C Ia , H Ib, d are given by (39) .
If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t )
E (T ) 

p1p2 LK 4  p1q 2 LK5  p2 q1 LK 7  q1q 2 LK8  p(p3 p4 LK12  p3 q 4 LK13  p4 q3 LK15  q3 q 4 LK16



 p1q p p M K 5,12
p
2 3 p4 M K 4,12 p1 p2 p3 q 4 M K 4,13 p1 p2 q3 p4 M K 4,15 p1 p2 q3 q 4 M K 4,16
2 3 4

(70)

 p1 p
p

q 2 p3 q 4 M K5,13  p1q 2 p4 q3 M K5,15  p1q 2 q3 q 4 M K5,16  q1p2 p3 p4 M K 7,12  q1 p2 p3 q 4 M K 7,13

q


p2 p4 q3 M K 7,15  q1 p2 q3 q 4 M K 7,16  q1q 2 p3 p4 M K8,12  q1q 2 p3 q 4 M K8,13  q1q 2 p4 q3 M K8,15  q1q 2 q3 q 4 M K8,16


1

1

2
2
2
2
2
2
2
2
2
2


E(T )  2 p p LK 4  p q LK 5  p q LK 7  q q LK8  p p p LK12  p q LK13  p q LK15  q q LK16  p1p p p M K 4,12
3 4
3 4
2 3 4
1 2
2 1
1 2
4 3
 1 2
 3 4

p2 p3 q4 M2 4,13  p1 p2 p4 q3 M2 4,15  p1 p2 q3 q 4 M2 4,16  p1q2 p3 p4 M2 5,12  p1q 2 p3 q 4 M2 5,13  p1q 2 p4 q3 M2 5,15
K
K
K
K
K
K
2
2
2
2
2
2
 p q q q M K 5,16  q1p p p M K 7,12  q p p q M K 7,13  q p p q M K 7,15  q p q q M K 7,16  q1q p p M K8,12
2 3
2 3
1 2 3 4
1 2 3 4
1 2 4 3
1 2 3 4
p

1

4

4


q p q 2  q1q 2 q3 M2 8,14  q1q 2 p4 q3 M 2 8,15  q1q 2 q3 q 4 M2 8,16 
K
K
K
1 2 3 4 M K 8,13


q

(71)

where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. L Ka , M Kb, d are given by (44).
If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )
p1p2 PK 4  p1q 2 PK 5  p2 q1 PK 7  q1q 2 PK8  p(p3 p4 PK12  p3 q 4 PK13 p4 q3 PK15  q3 q 4 PK16
 p1p p p Q



 p1q p p Q
2 3 4 K 4,12 p1 p2 p3 q 4 QK 4,13 p1 p2 q3 p4 QK 4,15 p1 p2 q3 q 4 QK 4,16
2 3 4 K 5,12

E (T ) 

p

q 2 p3 q 4 QK 5,13  p1q 2 p4 q3 QK 5,15  p1q 2 q3 q 4 QK 5,16  q1p2 p3 p4 QK 7,12  q1 p2 p3 q 4 QK 7,13

q


p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p3 p4 QK8,12  q1q 2 p3 q 4 QK8,13  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16 


1
1

(72)

E(T )  2 p p P K 4  p q P K 5  p q P K 7  q q P K8  p p p P K12  p q P K13  p q P K15  q q P K16  p1 p p p Q


3 4
3 4
2 3 4 K 4,12
1 2
2 1
1 2
4 3
 1 2
 3 4
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

p

p2 p3 q 4 QK 4,13  p1 p2 p4 q3 QK 4,15  p1 p2 q3 q 4 QK 4,16  p1q 2 p3 p4 QK5,12  p1q 2 p3 q 4 QK5,13  p1q 2 p4 q3 QK5,15

p

q 2 q3 q 4 QK5,16  q1p2 p3 p4 QK 7,12  q1 p2 p3 q 4 QK 7,13  q1 p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p3 p4 QK8,12

q


q 2 p3 q 4 QK8,13  q1q 2 q3 QK8,14  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16   


1
1

2

2

2

2

1

 p p
p1q 2
q1 p2
2
1 2 
( N  M)

1

DK 4 1  DK 5 1  DK 7



 p p
p1 p2 p3 p4
p1 p2 p3 q 4
p1 p2 q3 p4
p3 q 4
q3 p4
q3 q 4
q1q 2  p 2


3 4 

(
 M)






2 N
1  DK8 
 1  DK12 1  DK13 1  DK15 1  DK16 1  DK 4 DK12 1  DK 4 DK13 1  DK 4 DK15
 

p1p2 q3 q 4
p1q 2 q3 q 4
p1q 2 p3 p4
p1q 2 p3 q 4
p1q 2 q3 p4
q1 p2 p3 p4
q1 p2 p3 q 4







1  DK 4 DK16 1  DK 5 DK12 1  DK 5 DK13 1  DK 5 DK15 1  DK 5 DK16 1  DK 7 DK12 1  DK 7 DK13
q1 p2 q3 p4
q1 p2 q3 q 4
q1q 2 p3 p4
q1q 2 p3 q 4
q1q 2 q3 p4
q1q 2 q3 q 4 







1  DK 7 DK15 1  DK 7 DK16 1  DK8 DK12 1  DK8 DK13 1  DK8 DK15 1  DK8 DK16 


1

2

(73)

where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. P Ka , Q Kb, d are given by (48).
If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )
E (T )  p p R I 4  p q R I5  p q R I7  q q R I8  p(p p R I12  p q R I13  p q R I15  q q R I16
3 4
3 4
3 4
1 2
1 2
2 1
1 2
4 3
 p1p p p SI 4,12  p p p q SI 4,13  p p q p SI 4,15  p p q q SI 4,16  p1q p p SI5,12
2 3 4
2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
 p q p q SI5,13  p q p q SI5,15  p q q q SI5,16  q1p p p SI7,12  q p p q SI7,13
2 3 4
1 2 3 4
1 2 4 3
1 2 3 4
1 2 3 4
q

1


p2 p4 q3 SI7,15  q1 p2 q3q 4 SI7,16  q1q2 p3 p4 SI8,12  q1 q 2 p3q 4 SI8,13  q1 q 2 p4 q3 SI8,15  q1 q 2 q3q 4 SI8,16 


www.ijera.com

(74)

324 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com

2
2
2
2
2
2
2
2
2
2
2
E(T )  2 p p R I 4  p q R I5  p q R I7  q q R I8  p p p R I12  p q R I13  p q R I15  q q R I16  p1 p p p SI 4,12  p p p q SI 4,13


3 4
3 4
2 3 4
1 2
2 1
1 2
4 3
1 2 3 4
 1 2
 3 4

p2 p4 q3S24,15  p1 p2 q3 q 4 S24,16  p1q 2 p3 p4 S25,12  p1 q 2 p3 q 4 S25,13  p1 q 2 p4 q3S25,15  p1 q 2 q3 q 4 S25,16  q1 p2 p3 p4 S27,12
I
I
I
I
I
I
I
2
2
2
2
2
2
2
 q p p q SI7,13  q p p q SI7,15  q p q q SI7,16  q1q p p SI8,12  q q p q SI8,13  q q q SI8,14  q q p q SI8,15
2 3 4
1 2 3 4
1 2 4 3
1 2 3 4
1 2 3 4
1 2 3
1 2 4 3
p

1

q


q 2 q3 q 4 S28,16   
I


1

 p p
 p p
p3 q 4
q3 p4
q3 q 4
p1 q 2 q1 p2 q1 q 2  p
2
2



3 4
( N  M ) 1 2 



(
 M )



2 N
 1  D I 4 1  D I5 1  D I7 1  D I8 

 1  D I12 1  D I13 1  D I15 1  D I16

 



p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p4 p1 p2 q3 q 4 p1 q 2 p3 p4 p1 q 2 p3 q 4 p1 q 2 q3 p4 p1q 2 q3 q 4







1  D I 4 D I12 1  D I 4 D I13 1  DI 4 D15 1  D I 4 D I16 1  D I5 D I12 1  DI5 D I13 1  D I5 D I15 1  D I5 D I16
q p2 p3 p4 q1 p2 p3 q 4 q1 p2 q3 p4 q1 p2 q3 q 4 q1 q 2 p3 p4 q1 q 2 p3 q 4 q1 q 2 q3 p4 q1 q 2 q3 q 4 

 1








1  D I7 D I12 1  D I7 D I13 1  DI7 D I15 1  D I7 D I16 1  DI8 D I12 1  D I8 D I13 1  D I8 D I15 1  D I8 D I16 

1

2



(75)

where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. R Ia , SIb, d are given by (51).

IV. MODEL DESCRIPTION AND ANALYSIS OF MODEL-III
For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are
taken as Y=Y1+Y2 and Z=Z1+ Z2 .All the other assumptions and notations are as in model-I. Proceeding as in
model-I, it can be shown for the present model that
Case (i): The distributions of optional and mandatory thresholds follow exponential distribution.
If g ( t )  g x (1) ( t ), f ( t )  f u (1) ( t )



E (T )  A2 CI 2  A1 CI1  p A5 CI5  A4 CI 4  A1 A4 HI1,4  A2 A4 HI1,4  A1 A5 HI1,5  A2 A5 HI 2,5



(76)





2
2
2
2
2
2
2
2
2

E(T )  2 A2 C I2  A1 C I1  p A5 CI5  A4 C I4  A1 A4 H I1,4  A2 A4 H I1,4  A1 A5 H I1,5  A2 A5 H I2,5  


where

(77)

2 ,
1 ,
2 ,
1
A2 
A4 
A5 
1  2
1  2
1   2
1   2

A1 

for a=1, 2, 4, 5, b=1,2and d=4, 5 C Ia , H Ib, d are given by equation (16).
If g ( t )  g
E (T ) 

x (k )

( t ), f ( t )  f u (1) ( t )

A 2 LK 2  A1 LK1  pA5 LK5  A 4 LK 4  A1 A 4 M K1,4  A 2 A 4 M K1,4  A1 A5 M K1,5  A 2 A5 M K 2,5

(78)
(79)





2
2
2
2
2
2
2
2
2

E(T )  2 A2 LK 2  A1 LK1  p A5 LK5  A 4 LK 4  A1 A4 MK1,4  A 2 A4 MK1,4  A1 A5 MK1,5  A2 A5 MK 2,5  


where for a=1, 2, 4, 5, b=1,2and d=4, 5 L Ka , M Kb, d are given by (20).
If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )



E(T )  A 2 P K 2  A1 P K1  p A5 P K 5  A 4 P K 4  A1 A 4 Q



K1, 4

 A2 A4 Q

K1, 4

 A1 A5 Q

K1,5

 A 2 A5 Q




(80)

K 2, 5 

 A2
A1 
2
2
2

E(T )  2 A2 P K 2  A1 P K1  p A5 PK 5  A4 P K 4  A1 A4 Q K1,4  A2 A4 Q K1,4  A1 A5 Q K1,5  A2 A5 Q K 2,5   
( N  M )


1

  2
 DK 2 1  DK1 





2

p



2

2

2

2

2

2

2

1


 A5
A4  A1A4  A 2 A4  A1A5  A 2 A5 
2
( N  M)


1
 DK 5 1  DK 4 1  DK1 DK 4 1  DK1 DK 4 1  DK1 DK 5 1  DK 2 DK 5 


(81)

where for a=1, 2, 4, 5, b=1,2and d=4, 5 P Ka , Q Kb, d are given by (24) .
If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )
E(T)  A2 R I 2  A1 R I1  p
2

E (T )  2

A5 R I5  A4 R I4  A1 A4 SI1,4  A2 A4 SI1,4  A1 A5 SI1,5  A2 A5 SI2,5

(82)

A2 R I22  A1 R I12  pA5 R 25  A4 R I42  A1 A4 SI1,42  A2 A4 SI1,42  A1 A5 SI1,52  A2 A5 SI2,52  


I


 A2
1
A1   p ( 2  M) A5  A4  A1A4  A 2 A4  A1A5  A 2 A5 
2




(
 M )

N
2 N
1
1

DI2 1  DI1  2
DI5 1  DI 4 1  DI1 DI 4 1  DI1 DI 4 1  DI1 DI5 1  DI 2 DI5 






(83)

where for a=1, 2, 4, 5, b=1,2and d=4, 5 R Ia , SIb, d are given by (27).
Case (ii): If the distributions of optional and mandatory thresholds follow extended exponential distribution
with shape parameter 2.
If g ( t ) 
( t ), f ( t ) 
(t)

g x (1)



f u (1)

E(T)  S1 CI1  S2 CI9  S3 CI2  S4 CI10  p S5 CI4  S6 CI14  S7 CI5  S8 CI5  S1S5 HI1,4  S1S6 H
 S2 S7 H

I9,5

 S2 S8 HI9,15  S3S5 HI2,4  S3S6 H

www.ijera.com

I2,14

 S3S7 H

I2,5

I1,14

 S1S7 H

 S3S8 HI2,15  S4 S5 HI4,10  S4 S6 H

I1,5

I10,14

 S1S8 HI1,15  S2 S5 HI9,4  S2 S6 H

 S4 S7 H

I10,5



 S4 S8 HI10,15

I9,14

(84)
325 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com



2
2
2
2
2
2
2
2
2
2
2
2
2
2
E(T )  2 S1 CI1  S2 CI9  S3 CI2  S4 CI10  pS5 CI4  S6 CI14  S7 CI5  S8 CI5  S1S5 H I1,4  S1S6 H I1,14  S1S7 H I1,5  S1S8H I1,15  S2 S5 H I9,4



 S2 S6 H I9,14

2

2

2

2

2

2

2

2

2

2

2

S2 S7HI9,5  S2 S8HI9,15  S3 S5 HI2,4  S3 S6HI2,14  S3 S7HI2,5  S3 S8HI2,15  S4 S5 HI4,10  S4 S6HI10,14  S4 S7HI10,5  S4 S8HI10,15  




(85)

Where for a=1, 2, 4, 5, 9,10,14,15 b=1, 2,9,10 and d=4, 5, 14, 15. C Ia , H Ib, d are given by (15)
4
4 1
2
1
,S 
,S 
S1     2 
S 
1 2 1 22  2 1  221  2 3 1  221  2  4 1  21  22
2
2
2
2
4 2
4 1
2
1
S5   
1  22 , S6  1  221  2 S7  1  221  2 , S8  1  21  22
1 2
If g(t )  g
(t ), f (t )  f u (1) (t )
2

2

x (k )

2

2



E (T )  S1 LK1  S2 LK 9  S3 LK 2  S4 LK10  p S5 LK 4  S6 LK14  S7 LK 5  S8 LK 5  S1S5 M K1, 4  S1S6 M
 S1S7 M

K1,5

 S3S7 M

E(T

2



 S1S8 M K1,15  S2 S5 M K 9, 4  S2 S6 M

K 9,14

 S3S8 M K 2,15  S4 S5 M K 4,10  S4 S6 M

K 2 ,5

 S2 S7 M

K10,14

 S4 S7 M

K1,14

 S2 S8 M K 9,15  S3S5 M K 2, 4  S3S6 M

K 9 ,5

K10,5

(86)



K 2,14

 S4 S8 M K10,15

(87)

2
2
2
2
2
2
)  2 S1 LK1  S2 LK9  S3 LK 2  S4 LK10  p S5 LK 4  S6 LK14  S7 LK5  S8 LK15  S1S5 M K1,4  S1S6 M K1,14


2

2

2

2

2

2

2

 S1S7 M K1,5  S1S8 M K1,15  S2 S5 M K9,4  S2 S6 M K9,14

2

2

2

2

 S2 S7 M K9,5  S2 S8 M K9,15  S3S5 M K 2,4  S3S6 M K 2,14

2

(88)

2
2
2
2
2
2
 S3S7 M K 2,5  S3S8 M K 2,15  S4 S5 M K 4,10  S4 S6 M K10,14  S4 S7 M K10,5  S4 S8 M K10,15  



where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 L Ka , M Kb, d are given by (20).
If g ( t )  g

x (k )

( t ), f ( t )  f u ( k ) ( t )



E(T)  S1 PK1  S2 PK 9  S3 PK 2  S4 PK10  p S5 PK 4  S6 PK14  S7 PK 5  S8 PK 5  S1 S5 Q
 S1 S7 Q

 S1 S8 Q

 S3 S7 Q

 S3 S8 Q

K1,5



K 2,5

K1,15

 S2 S5 Q

K 9, 4

K 2,15

 S4 S5 Q

K1, 4

 S2 S6 Q

K 4,10

K 9,14

 S4 S6 Q

 S2 S7 Q

K 9,5

K10,14

 S4 S7 Q

 S2 S8 Q

K 9,15

K10,5

 S4 S8 Q

 S1 S6 Q

K1,14

 S3 S5 Q

K 2, 4

 S3 S6 Q

K 2,14



K10,15 

(89)

2
E(T )  2 S1 P K1  S2 P K9  S3 P K 2  S4 P K10  p S5 P K 4  S6 P K14  S7 P K5  S8 P K15  S1S5 QK1,4  S1S6 QK1,14


2

2

2

2

2

2

2

2

2

2

2

 S1S7 QK1,5  S1S8 QK1,15  S2 S5 QK9,4  S2 S6 QK9,14

 S2 S7 QK9,5

2

2

2

2

2

2

2

 S2 S8 QK9,15  S3S5 QK 2,4  S3S6 QK 2,14

 S
2
2
2
2
2
2
1
2
1
 S3S7 QK 2,5  S3S8 QK 2,15  S4 S5 QK 4,10  S4 S6 QK10,14  S4 S7 QK10,5  S4 S8 QK10,15   
( N  M )


1
  2
DK1


S2

1  DK9



S3

1  DK 2



S1S5
S4   p ( 2  M) S5  S6  S7  S8 


2 N
1
1  DK10 
DK 4 1  DK14 1  DK5 1  DK15 1  DK1D

 


K4

S1S6
1  DK1 D

K14

S3S5
S3S6
S1S7
S1S8
S2S5
S2S6
S2S7
S2S8








1  DK1 D
1  DK1 D
1  DK 2 D
1  DK 2 D
1  DK9 D
1  DK9 D
1  DK9 D
1  DK9 D
K5
K15
K4
K14
K4
K14
K5
K15

S3S7
S3S8
S4S5
S4S6
S4S7
S4S8









1  DK 2 D
1  DK 2 D
1  DK10 D
1  DK10 D
1  DK10 D
1  DK10 D
K5
K15
K4
K14
K5
K15 

(90)

where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 P Ka , Q Kb, d are given by (24) .
If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )



E (T )  S1 R I1  S2 R I9  S3 R I 2  S4 R I10  p S5 R I 4  S6 R I14  S7 R I5  S8 R I5  S1S5 SI1, 4  S1S6S
 S1S7S

I1,5

 S3 S7S

I1,14

 S1S8 SI1,15  S2 S5 SI9, 4  S2 S6S

I 2,5

I9,14

 S3 S8 SI 2,15  S4 S5 SI 4,10  S4 S6S

 S2 S7S

I10,14

I 9, 5

 S4 S7S

 S2 S8 SI9,15  S3 S5 SI 2, 4  S3 S6S

I10,5

I 2,14



 S4 S8 SI10,15

(91)



2
2
2
2
2
2
2
2
2
2
2
E (T )  2 S1 R I1  S2 R I9  S3 R I 2  S4 R I10  p S5 R I 4  S6 R I14  S7 R I5  S8 R I5  S1S5 SI1,4  S1S6 SI1,14


2

2

2

2

 S1S7 SI1,5  S1S8SI1,15  S2 S5 SI9,4  S2 S6 SI9,14

 S2 S7 SI9,5

2

2

2

2

 S2 S8SI9,15  S3S5 SI 2,4  S3S6 SI 2,14


2
2
2
2
2
2
1
2
 S3S7 SI 2,5  S3S8SI 2,15  S4 S5 SI 4,10  S4 S6 SI10,14  S4 S7 SI10,5  S4 S8SI10,15   
( N  M ) S1

1
  2
DI1



S2

1  D I9



S3

1  DI 2



S4   p ( 2  M) S5  S6  S7  S8  S1S5


2 N
1
1  DI10 
DI 4 1  DI14 1  DI5 1  DI15 1  DI1D

 


I4

S1S6
1  DI1D

I14

S3S5 
S3S6
S1S7 
S1S8
S2S5  S2S6
S2S7 
S2S8




1  DI1D
1  DI1D
1  DI 2 D
1  DI 2 D
1  DI9 D
1  DI9 D
1  DI9 D
1  DI9 D
I5
I15
I4
I14
I4
I14
I5
I15

S3S7 
S3S8
S4S5
S4S6
S4S7
S4S8








1  DI 2 D
1  DI 2 D
1  DI10 D
1  DI10 D
1  DI10 D
1  DI10 D
I5
I15
I4
I14
I5
I15 

(92)

where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 R Ia , SIb, d are given by (27).
Case (iii):The distributions of optional and the mandatory thresholds possess SCBZ property.
www.ijera.com

326 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

www.ijera.com

If g(t )  g (t ), f (t )  f
(t )
u (1)
x (1)
E (T )  R1  R 2 CI1  R 3  R 4 CI3  R 5  R 6 CI6  R 7  R 8 CI 2  pR 9  R10CI9  R13  R14CI10
 R11  R12CI11  R15  R16CI14  R1  R 2 R 9  R10 H I1,9  R13  R14 H I1,10  R11  R12 H I1,11

 R15  R16H I1,14 R 7  R 8 R 9  R10 H I 2,9  R13  R14 H I 2,10  R11  R12 H I 2,11  R15  R16H I 2,14


 R 3  R 4 R 9  R10 H I3,9  R13  R14 H I3,10  R11  R12 H I3,11  R15  R16H I3,14 R 5  R 6 R 9  R10 H I6,9
 R13  R14 H I6,10  R11  R12 H I6,11  R15  R16H I6,14
(93)

R1  R 2 C I12  R 3  R 4 C I32  R 5  R 6 C I62  R 7  R 8C I22  pR 9  R10C I92
2
2
2
2
 R13  R14C I10  R11  R12C I11  R15  R16C I14  R1  R 2 R 9  R10 H I1,9
2
2
2
2
 R13  R14 H I1,10  R11  R12 H I1,11  R15  R16H I1,14   R 7  R 8 R 9  R10 H I 2,9

2
2
2
2
 R13  R14 H I 2,10  R11  R12 H I 2,11  R15  R16H I 2,14   R 3  R 4 R 9  R10 H I3,9

2
2
2
2
 R13  R14 H I3,10  R11  R12 H I3,11  R15  R16H I3,14   R 5  R 6 R 9  R10 H I6,9

2

E (T )  2





R13  R14H I6,102  R11  R12H I6,112  R15  R16H I6,142   



(94)



where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14. C Ia , H Ib, d are given by (39).
1   p p2
2   p p2
2   q1p
q p
 pq
qq
R1    1 1  , R 2   1 1  2 , R 3    2 1  , R 4   21  2  R 5    2   2 , R 6  2 1 2
1 2 1 2
2 2
1 2 1 2
1 2 1
2 2
1
2
4  1 p p4
1  1p1q2 ,  1q11 2 ,  3  3p3 p4
q
 q p4
 p q4
,R7 
R 8     R 9        R10   3 3   , R11    4 3  , R12   4 3   
1    2
3 4
3 4 3 4
3 4 3
2
3 4
3  1q4 p3  13q3q4 ,  4  4p34 q3 ,4  4 q3q4 4
3

R13       R14     R15      R16    
3 4 3
3
4
3 4
4
3
4
If g ( t )  g

x (k )

( t ), f ( t ) 

(95)

f u (1) ( t )

R1  R 2 LK1  R 3  R 4LK3  R 5  R 6 LK 6  R 7  R 8LK 2  pR 9  R10LK9  R13  R14LK10
R11  R12LK11  R15  R16LK14  R1  R 2 R 9  R10M K1,9  R13  R14M K1,10  R11  R12M K1,11
R15  R16M K1,14 R 7  R 8R 9  R10M K 2,9  R13  R14M K 2,10  R11  R12M K 2,11  R15  R16M K 2,14

R 3  R 4R 9  R10M K3,9  R13  R14MK3,10  R11  R12M K3,11  R15  R16MK3,14

R 5  R 6 R 9  R10M K 6,9  R13  R14M K 6,10  R11  R12M K 6,11  R15  R16M K 6,14

2
2
2
2
2
2
2
2
E(T )  2R1  R 2 LK1  R 3  R 4 LK3  R 5  R 6 LK 6  R 7  R 8LK 2  pR 9  R10LK9  R13  R14LK10  R11  R12LK11
2
2
2
2
2
 R15  R16LK14  R1  R 2 R 9  R10M K1,9  R13  R14M K1,10  R11  R12M K1,11  R15  R16M K1,14 

2
2
2
2

 R 7  R 8R 9  R10M K 2,9  R13  R14M K 2,10  R11  R12M K 2,11  R15  R16M K 2,14 

2
2
2
2

 R 3  R 4 R 9  R10M K3,9  R13  R14M K3,10  R11  R12M K3,11  R15  R16M K3,14 

2
2
2
2

 R 5  R 6 R 9  R10M K 6,9  R13  R14M K 6,10  R11  R12M K 6,11  R15  R16M K 6,14   

E (T ) 





(96)

(97)



where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 L Ka , M Kb, d are given by (44).
If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )









R 9  R10PK9  R13  R14PK10






 K1,9 R13  R14QK1,10  R11  R12QK1,11


 R15  R16Q
 R 7  R 8R 9  R10QK 2,9  R13  R14QK 2,10  R11  R12QK 2,11  R15  R16QK 2,14 

K1,14 



 R 3  R 4 R 9  R10Q
 R13  R14Q
 R11  R12Q
 R15  R16Q

K 3,9
K 3,10
K 3,11
K 3,14 


 R 5  R 6 R 9  R10Q
 R13  R14Q
 R11  R12Q
 R15  R16Q

K 6,9
K 6,10
K 6,11
K 6,14  

E (T )  R1  R 2 PK1  R 3  R 4 PK 3  R 5  R 6 PK 6  R 7  R 8 PK 2  p
 R11  R12 PK11  R15  R16 PK14  R1  R 2 R 9  R10 Q


2

R1  R 2PK12  R 3  R 4PK32  R 5  R 6PK62  R 7  R 8PK 22  pR 9  R10PK92  R13  R14PK102
2
2
2
2
2
 R11  R12P K11  R15  R16P K14  R1  R 2 R 9  R10QK1,9  R13  R14QK1,10  R11  R12QK1,11
2
2
2
2
2

 R15  R16QK1,14   R 7  R 8R 9  R10QK 2,9  R13  R14QK 2,10  R11  R12QK 2,11  R15  R16QK 2,14 

(98)

E (T )  2



(99)



R 3  R 4R 9  R10QK3,92  R13  R14QK3,102  R11  R12QK3,112  R15  R16QK3,142   R 5  R 6R 9  R10QK6,92




 R  R  R  R  R  R  R  R  
2
2
2
1
2
3
4 
5
6 
7
8 
1
2 



  M 






 


R13 R14 QK 6,10

R11 R12 QK 6,11

R15 R16 QK 6,14

N

 1
1  BI3
1  BI6
1  BI 2 
   2
BI1














 R 9 R10  R13 R14  R11 R12  R15 R16 
 R 9 R10  R13 R14  R11 R12  R15 R16 
 2 N M
R1  R 2  1 
 1
1  BI10
1  BI11
1  BI14
BI9
BI1 BI9 1  BI1 BI10 1  BI1 BI11 1  BI1 BI14 
















 R 7  R 8  R 9 R10  R13 R14  R11 R12  R15 R16   R 3  R 4  R 9 R10  R13 R14  R11 R12  R15 R16  
1
1
BI2 BI9 1  BI2 BI10 1  BI2 BI11 1  BI2 BI14 
BI3 BI9 1  BI3 BI10 1  BI3 BI11 1  BI3 BI14  




 R R




9
10  R 13 R 14  R 11 R 12  R 15 R 16   
 R5  R6 

1
BI6 BI9 1  BI6 BI10 1  BI6 BI11 1  BI6 BI14   


p



2



 

 

 

 





 

 

 

 





 

 

 




 

 

 

 

 

 







where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 P Ka , Q Kb, d are given by (48).
www.ijera.com

327 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
If g ( t )  g

x (1)

( t ), f ( t ) 

www.ijera.com

f u (k ) (t )

R1  R 2R I1  R 3  R 4R I3  R 5  R 6R I6  R 7  R8R I2  pR 9  R10R I9  R13  R14R I10  R11  R12R I11  R15  R16R I14
R1  R 2R 9  R10SI1,9  R13  R14SI1,10  R11  R12SI1,11  R15  R16SI1,14  R 7  R8R 9  R10SI2,9  R13  R14SI2,10


 R11  R12SI2,11  R15  R16SI2,14  R 3  R 4R 9  R10SI3,9  R13  R14SI3,10  R11  R12SI3,11  R15  R16SI3,14

 R 5  R 6R 9  R10SI6,9  R13  R14SI6,10  R11  R12SI6,11  R15  R16SI6,14
(100)

E (T ) 



2

R1  R 2R I12  R 3  R 4R I32  R 5  R 6R I62  R 7  R 8R I22  pR 9  R10R I92  R13  R14R I102  R11  R12R I112
R15  R16R I142  R1  R 2R 9  R10SI1,92  R13  R14SI1,102  R11  R12SI1,112  R15  R16SI1,142   R 7  R 8R 9  R10SI2,92



2
2
2
2
2
2

 R13  R14SI2,10  R11  R12SI2,11  R15  R16SI2,14   R 3  R 4 R 9  R10SI3,9  R13  R14SI3,10  R11  R12SI3,11

 R  R 
2
2
2
2
2
1

 

  



 2  M 1 2











E(T )  2


R15 R16 SI3,14




R 5 R 6 R 9 R10 SI6,9

R13 R14 SI6,10

R11 R12 SI6,11

R15 R16 SI6,14




(101)

2 N
 1
BI1

 R R
R13  R14
9
10


R1  R 2  1 
2 N

1  BI3
1  BI6
1  BI 2 
1  BI9
1  BI10
1  BI11
1  BI14
BI1 BI9 1  BI1 BI10


 R R
 R R

R15  R16  
R R
R R 
R R
R R
R R

 R11 R12 
R 7  R 8  1  9 10  1  13 14  1  11 12  1  15 16   R 3  R 4  1  9 10  1  13 14  1  11 12


1  BI1 BI11 1  BI1 BI14 
BI2 BI9
BI2 BI10
BI2 BI11
BI2 BI14 
BI3 BI9
BI3 BI10
BI3 BI11




R15  R16      R 9  R10  R13  R14  R11  R12  R15  R16   




1  BI3 BI14   R 5 R 6  1  BI6 BI9 1  BI6 BI10 1  BI6 BI11 1  BI6 BI14   





R 3  R 4  R 5  R 6  R 7  R 8  




 







 


p


 



2

 R 9  R10  R13  R14  R11  R12  R15  R16  


M



 

 

 

 

 

 






 

 



 





where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 R Ia , SIb, d are given by (51).

V. NUMERICAL ILLUSTRATIONS
The mean and variance of the time to recruitment for the above models are given in the following
tables for the cases(i),(ii),(iii) respectively by keeping 1  0.4,  2  0.6, 1  0.5,  2  0.8, p  0.8.

1  0.6, 1  0.3, 1  0.7, 2  0.4, 2  0.7,  2  0.4, 3  0.8, 3  0.9, 3  0.5, 4  1, 4  1.5,  4  0.2,   1

fixed and varying c, k one at a time and the results are tabulated below .

MODEL-I

r=1
Case (i)
r=k

r=1
Case(ii)
r=k

r=1
Case(iii)
r=k

www.ijera.com

Table – I (Effect of c, k, λ on performance measures)
c
1.5
1.5
1.5
0.5
k
1
2
3
2
λ
1
1
1
1
E
6.9679
6.3557
6.1484
2.5225
n=1
V
25.6665 19.3505
17.3979
3.6283
E
6.9679
2.3650
1.3080
1.0798
n=k
V
25.6665 3.1717
1.0148
0.8753
E
6.9679
19.0671
33.8154
7.5676
n=1
V
25.6665 161.4276 488.6549 28.1272
E
6.9679
7.0959
7.1940
3.2394
n=k
V
25.6665 24.4003
24.2223
6.6552
E
7.7324
7.0834
6.8728
2.7970
n=1
V
43.6104 36.0639
33.5832
5.7270
E
7.7324
3.5027
1.4977
1.2753
n=k
V
43.6104 3.1907
1.4998
1.0853
E
7.7324
21.2503
37.7996
8.3909
n=1
V
43.6104 319.2949 998.6626 50.7338
E
7.7324
8.0163
8.2373
3.7368
n=k
V
43.6104 38.4822
35.3702
7.2110
E
6.7761
6.1834
5.9831
2.4527
n=1
V
29.2323 23.1644
21.2936
3.9963
E
6.7761
2.2433
1.2782
1.0315
n=k
V
29.2323 3.6124
1.1285
0.8973
E
6.7761
18.5503
32.9067
7.3582
n=1
V
29.2323 196.1130 608.2081 31.0609
E
6.7761
6.7298
7.0299
3.0944
n=k
V
29.2323 28.0247
26.4670
6.0124

1
2
1
4.4423
9.9659
1.7248
1.8559
13.3270
81.0386
5.1745
13.9834
4.9371
17.6908
2.1966
2.3381
14.8114
156.1554
5.8959
19.4178
4.3208
11.6062
1.6384
2.0285
12.9625
87.1721
4.9151
14.9796

1.5
2
1
6.3557
19.3505
2.3650
3.1717
19.0671
161.4276
7.0959
24.4003
7.0834
36.0639
3.5027
3.1907
21.2503
319.2949
8.0163
38.4822
6.1834
23.1644
2.2433
3.6124
18.5503
196.1130
6.7298
28.0247

328 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330

MODEL-II
n=1
r=1
n=k
Case (i)
r=k

n=1
n=k
n=1

r=1
n=k
Case(ii)
r=k

n=1
n=k
n=1

r=1
n=k
Case(iii)
r=k

n=1
n=k

MODEL-III
n=1
r=1
n=k
Case (i)
r=k

n=1
n=k
n=1

r=1
n=k
Case(ii)
r=k

n=1
n=k
n=1

r=1
n=k

Case(iii)
r=k

n=1
n=k

www.ijera.com

c
k
λ
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
c
k
λ
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E

1.5
1
1
3.0491
7.1810
3.0491
7.1810
3.0441
7.1810
3.0441
7.1810
4.4497
10.6673
4.4497
10.6673
4.4497
10.6673
4.4497
10.6673
2.9380
7.1321
2.9380
7.1321
2.9380
7.1321
2.9380
7.1321
1.5
1
1
8.7025
34.8211
8.7025
34.8211
8.7025
34.8211
8.7025
34.8211
11.9437
44.2200
11.9437
44.2200
11.9437
44.2200
11.9437
44.2200
8.4755
40.0820
8.4755
40.0820
8.4755
40.0820
8.4755

www.ijera.com

1.5
2
1
2.4841
4.4459
1.0669
0.9564
7.4522
40.0132
3.2008
6.4733
3.8440
6.6718
1.5259
1.4048
11.5320
52.3579
4.5776
9.5917
2.3862
4.5063
1.0271
0.9467
7.1587
33.4547
1.0271
0.9467

1.5
3
1
2.2929
3.6707
0.6046
0.3209
12.6107
111.0337
3.3253
6.0806
3.6369
5.4893
0.8502
0.4678
20.0024
144.2232
4.6762
9.0489
2.1980
3.7663
0.5761
0.3126
12.0889
94.9477
0.5761
0.3126

0.5
2
1
1.1966
1.1672
0.6467
0.4026
3.5897
10.5046
1.9402
2.3297
1.6790
1.7016
0.7959
0.5362
5.0370
11.9566
2.3877
3.2339
1.1588
1.1488
0.6355
0.3945
3.4765
6.4008
0.6355
0.3945

1
2
1
1.8442
2.5502
0.8546
0.6514
5.5326
22.9520
2.5638
4.1530
2.7663
3.8162
1.1631
0.9324
8.2990
28.8134
3.4894
6.0657
1.7761
2.5532
0.8291
0.6393
5.3284
17.4633
0.8291
0.6393

1.5
2
1
2.4841
4.4459
1.0669
0.9564
7.4522
40.0132
3.2008
6.4733
3.8440
6.6718
1.5259
1.4048
11.5320
52.3579
4.5776
9.5917
2.3862
4.5063
1.0271
0.9467
7.1587
33.4547
1.0271
0.9467

1.5
2
1
8.0800
26.8975
2.9422
4.2573
24.2401
225.9177
8.8266
32.4314
11.2767
33.4379
4.0179
5.4334
33.8301
278.3881
12.0536
40.8646
7.8757
32.4776
2.8689
4.8388
23.6271
276.5466
8.6067

1.5
3
1
7.8698
24.4103
1.6226
1.3523
43.2829
691.1652
8.9241
31.1711
11.0507
30.0115
2.2079
1.7299
60.7777
841.5110
12.1431
39.0814
7.6735
30.0962
1.5833
1.5246
42.2037
864.3347
8.7081

0.5
2
1
3.1046
4.8250
1.2767
1.0932
9.3139
37.2158
3.83
7.2859
4.1989
6.1929
1.6500
1.4021
12.5968
47.3386
4.95
9.3189
3.0222
5.3736
1.2449
1.1397
9.0665
42.3183
3.7341

1
2
1
5.5952
13.6770
2.118
2.4337
16.7855
111.9030
6.3355
17.6793
7.7414
17.2159
2.8369
3.1300
23.2243
139.4601
8.5106
22.4964
5.4512
16.0863
2.0589
2.6751
16.3536
133.8743
6.1768

1.5
2
1
8.0800
26.8975
2.9422
4.2573
24.2401
225.9177
8.8266
32.4314
11.2767
33.4379
4.0179
5.4334
33.8301
278.3881
12.0536
40.8646
7.8757
32.4776
2.8689
4.8388
23.6271
276.5466
8.6067

329 | P a g e
P. Saranya et al Int. Journal of Engineering Research and Applications
ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330
V

40.0820

37.8112

36.6164

7.7674

www.ijera.com

19.9579

37.8112

VI. FINDINGS
The influence of nodal parameters on the performance measures namely mean and variance of the time
to recruitment for all the models are reported below.
i.
It is observed that the mean time to recruitment decreases, with increase in k for the cases r=1,n=1 and
r=1 ,n=k but increases for the cases r=k,n=1 and r=k,n=k.
ii.
If c increases, the average number of exits increases, which, in turn, implies that mean and variance of
the time to recruitment increase for all the models.

VII.

CONCLUSION

Note that while the time to recruitment is postponed in model-III, the time to recruitment is advanced
in model-I and II .Therefore from the organization point of view, model III is more preferable.

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

D.J. Bartholomew, & A.F. Forbes, “Statistical Techniques for Manpower Planning”( John Wiley and
Sons, 1979).
J.B.Esther Clara, Contributions to the study on some stochastic models in manpower planning ,
doctoral diss.,Bharathidasan University ,Tiruchirappalli,2012.
R.C. Grinold, & K.J. Marshall, Man Power Planning, North Holland, New York (1977).
A. Muthaiyan, A. Sulaiman, and R. Sathiyamoorthi, A stochastic model based on order statistics for
estimation of expected time to recruitment, Acta Ciencia Indica, 5(2), 2009, 501-508.
A. Srinivasan, V. Vasudevan, Variance of the time to recruitment in an organization with two grades,
Recent Research in Science and technology, 3(1), 2011 128-131.
A. Srinivasan, V. Vasudevan ,A Stochastic model for the expected time to recruitment in a two graded
manpower system, Antarctica Journal of Mathematics, 8(3),2011, 241-248.
A. Srinivasan, V.Vasudevan, A manpower model for a two-grade system with univariate policy of
recruitment, International review of pure and Applied Mathematics,7(1), 2011 ,79-88.
A. Srinivasan, V. Vasudevan, A Stochastic model for the expected time to recruitment in a two graded
manpower system with two discrete thresholds ,International Journal of Mathematical Analysis and
Applications, 6(1),2011 ,119-126.
J. Sridharan, P. Saranya., and A. Srinivasan , A Stochastic model based on order statistics for
estimation of expected time to recruitment in a two-grade man-power system with different types of
thresholds, International Journal of Mathematical Sciences and Engineering Applications ,6(5),2012
,1-10.
J. Sridharan, P. Saranya., and A. Srinivasan, Expected time to recruitment in an organization with twogrades involving two thresholds, Bulletin of Mathematical Sciences and Applications,1(2),2012,53-69.
J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment for a two-grade manpower
system with combined thresholds, Cayley Journal of Mathematics,1(2),2012 ,113-125.
P. Saranya, J. Sridharan., and A. Srinivasan , Expected time to recruitment in an organization with twogrades involving two thresholds following SCBZ property, Antarctica journal of Mathematics ,
10(4),2013 ,379-394.
P. Saranya, J. Sridharan., and A. Srinivasan , A Stochastic model for estimation of expected time to
recruitment in a two grade manpower system under correlated wastage ,Archimedes Journal of
Mathematics ,3(3),2013 , 279-298.
J. Sridharan, P. Saranya., and A. Srinivasan, A Stochastic model based on order statistics for estimation
of expected time to recruitment in a two-grade man-power system using a univariate recruitment policy
involving geometric threshold”, Antarctica journal of Mathematics ,10(1),2013,11-19.
J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment in a two-grade man-power
system with extended exponential thresholds using Order Statistics for inter-decision times ,
Archimedes journal of Mathematics, 3(1),2013,19-30.
J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment in a two- grade manpower
system with exponential and extended exponential thresholds using order statistics for inter-decision
times, Bessel Journal of Mathematics ,3(1),2013,29-38.
J. Sridharan, P. Saranya., and A. Srinivasan , A Stochastic model based on order statistics for
estimation of expected time to recruitment in a two grade manpower system under correlated wastage,
International Journal of Scientific Research and Publications ,3(7),2013,379-394.
Medhi.J, Stochastic Processes (second edition , New Age international publishers).

www.ijera.com

330 | P a g e

More Related Content

What's hot

Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricKomal Goyal
 
On Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space IIIOn Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space IIIBRNSS Publication Hub
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform meshAlexander Decker
 
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...TELKOMNIKA JOURNAL
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformIJERA Editor
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationTELKOMNIKA JOURNAL
 
On semi symmetric projective connection
On semi   symmetric projective connectionOn semi   symmetric projective connection
On semi symmetric projective connectionAlexander Decker
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINWireilla
 
11 two warehouse production inventory model with different deterioration rate...
11 two warehouse production inventory model with different deterioration rate...11 two warehouse production inventory model with different deterioration rate...
11 two warehouse production inventory model with different deterioration rate...BIOLOGICAL FORUM
 
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3IRJET Journal
 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)Komal Goyal
 
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,aTheta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,aijcsa
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence ofeSAT Publishing House
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...YogeshIJTSRD
 
Point Placement Algorithms: An Experimental Study
Point Placement Algorithms: An Experimental StudyPoint Placement Algorithms: An Experimental Study
Point Placement Algorithms: An Experimental StudyCSCJournals
 
Section3 containment and methods
Section3 containment and methodsSection3 containment and methods
Section3 containment and methodsDương Tùng
 
Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...ijcsa
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationJohnathan Gray
 

What's hot (20)

Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
On Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space IIIOn Certain Special Vector Fields in a Finsler Space III
On Certain Special Vector Fields in a Finsler Space III
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
 
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...Direct split-radix algorithm for fast computation of type-II discrete Hartley...
Direct split-radix algorithm for fast computation of type-II discrete Hartley...
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
On semi symmetric projective connection
On semi   symmetric projective connectionOn semi   symmetric projective connection
On semi symmetric projective connection
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
 
11 two warehouse production inventory model with different deterioration rate...
11 two warehouse production inventory model with different deterioration rate...11 two warehouse production inventory model with different deterioration rate...
11 two warehouse production inventory model with different deterioration rate...
 
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
 
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,aTheta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
Point Placement Algorithms: An Experimental Study
Point Placement Algorithms: An Experimental StudyPoint Placement Algorithms: An Experimental Study
Point Placement Algorithms: An Experimental Study
 
Section3 containment and methods
Section3 containment and methodsSection3 containment and methods
Section3 containment and methods
 
Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...
 
A
AA
A
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace Equation
 
L(2,1)-labeling
L(2,1)-labelingL(2,1)-labeling
L(2,1)-labeling
 

Viewers also liked

Respuesta segundo derecho de petición interpuesto por concejal Ramírez
Respuesta segundo derecho de petición interpuesto por concejal Ramírez Respuesta segundo derecho de petición interpuesto por concejal Ramírez
Respuesta segundo derecho de petición interpuesto por concejal Ramírez Canal Capital
 
Antiq_alleluia
Antiq_alleluiaAntiq_alleluia
Antiq_alleluiaJane Redd
 
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...Kristen Heavener
 
Cinco Coisas Que Me Deixam Feliz
Cinco Coisas Que Me Deixam FelizCinco Coisas Que Me Deixam Feliz
Cinco Coisas Que Me Deixam Felizguest5b86a2
 

Viewers also liked (20)

Ak4201243249
Ak4201243249Ak4201243249
Ak4201243249
 
At4201308314
At4201308314At4201308314
At4201308314
 
Ax4201341346
Ax4201341346Ax4201341346
Ax4201341346
 
Al4201250256
Al4201250256Al4201250256
Al4201250256
 
Aj4201235242
Aj4201235242Aj4201235242
Aj4201235242
 
H42013944
H42013944H42013944
H42013944
 
Ae4201209213
Ae4201209213Ae4201209213
Ae4201209213
 
B41021318
B41021318B41021318
B41021318
 
Ka3617341739
Ka3617341739Ka3617341739
Ka3617341739
 
Fe35907912
Fe35907912Fe35907912
Fe35907912
 
Ez35875879
Ez35875879Ez35875879
Ez35875879
 
Dw35701704
Dw35701704Dw35701704
Dw35701704
 
1017_001
1017_0011017_001
1017_001
 
Respuesta segundo derecho de petición interpuesto por concejal Ramírez
Respuesta segundo derecho de petición interpuesto por concejal Ramírez Respuesta segundo derecho de petición interpuesto por concejal Ramírez
Respuesta segundo derecho de petición interpuesto por concejal Ramírez
 
Practica 2 (formacion de nylon)
Practica 2 (formacion de nylon)Practica 2 (formacion de nylon)
Practica 2 (formacion de nylon)
 
Atividade 5
Atividade 5Atividade 5
Atividade 5
 
Antiq_alleluia
Antiq_alleluiaAntiq_alleluia
Antiq_alleluia
 
Ufcd4
Ufcd4Ufcd4
Ufcd4
 
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...
FEMA RiskMAP Kansas City Kristen Heavener 2011. Inspired by coursework at The...
 
Cinco Coisas Que Me Deixam Feliz
Cinco Coisas Que Me Deixam FelizCinco Coisas Que Me Deixam Feliz
Cinco Coisas Que Me Deixam Feliz
 

Similar to Au4201315330

Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Alexander Decker
 
Common random fixed point theorems of contractions in
Common random fixed point theorems of contractions inCommon random fixed point theorems of contractions in
Common random fixed point theorems of contractions inAlexander Decker
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
The Odd Generalized Exponential Log Logistic Distribution
The Odd Generalized Exponential Log Logistic DistributionThe Odd Generalized Exponential Log Logistic Distribution
The Odd Generalized Exponential Log Logistic Distributioninventionjournals
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian InferencePeter Chapman
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new informationijitjournal
 
E041046051
E041046051E041046051
E041046051inventy
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4sophiabelthome
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsIJERA Editor
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesAlexander Decker
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withineSAT Publishing House
 
On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F inventionjournals
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
Quartic Rank Transmuted Gumbel Distribution
Quartic Rank Transmuted Gumbel DistributionQuartic Rank Transmuted Gumbel Distribution
Quartic Rank Transmuted Gumbel Distributiondoaaelhertanyi
 

Similar to Au4201315330 (20)

Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
Common random fixed point theorems of contractions in
Common random fixed point theorems of contractions inCommon random fixed point theorems of contractions in
Common random fixed point theorems of contractions in
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
A0212010109
A0212010109A0212010109
A0212010109
 
The Odd Generalized Exponential Log Logistic Distribution
The Odd Generalized Exponential Log Logistic DistributionThe Odd Generalized Exponential Log Logistic Distribution
The Odd Generalized Exponential Log Logistic Distribution
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian Inference
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new information
 
E041046051
E041046051E041046051
E041046051
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F 
 
Ao4201268273
Ao4201268273Ao4201268273
Ao4201268273
 
Sub1567
Sub1567Sub1567
Sub1567
 
Aj4103206211
Aj4103206211Aj4103206211
Aj4103206211
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Quartic Rank Transmuted Gumbel Distribution
Quartic Rank Transmuted Gumbel DistributionQuartic Rank Transmuted Gumbel Distribution
Quartic Rank Transmuted Gumbel Distribution
 

Recently uploaded

Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 

Recently uploaded (20)

Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 

Au4201315330

  • 1. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 RESEARCH ARTICLE www.ijera.com OPEN ACCESS Expected Time to Recruitment in A Two - Grade Manpower System Using Order Statistics for Inter-Decision Times and Attrition J. Sridharan*, P. Saranya**, A. Srinivasan*** * (Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-1) (Department of Mathematics, TRP Engineering College (SRM Group), Trichirappalli-105) *** (Department of Mathematics, Bishop Heber College (Autonomous), Trichirappalli-17) ** ABSTRACT In this paper, a two-grade organization subjected to random exit of personal due to policy decisions taken by the organization is considered. There is an associated loss of manpower if a person quits. As the exit of personnel is unpredictable, a new recruitment policy involving two thresholds for each grade-one is optional and the other mandatory is suggested to enable the organization to plan its decision on recruitment. Based on shock model approach three mathematical models are constructed using an appropriate univariate policy of recruitment. Performance measures namely mean and variance of the time to recruitment are obtained for all the models when (i) the loss of man-hours and the inter decision time forms an order statistics (ii) the optional and mandatory thresholds follow different distributions. The analytical results are substantiated by numerical illustrations and the influence of nodal parameters on the performance measures is also analyzed. Keywords-Manpower planning, Shock models, Univariate recruitment policy, Mean and variance of the time to recruitment. I. INTRODUCTION Consider an organization having two grades in which depletion of manpower occurs at every decision epoch. In the univariate policy of recruitment based on shock model approach, recruitment is made as and when the cumulative loss of manpower crosses a threshold. Employing this recruitment policy, expected time to recruitment is obtained under different conditions for several models in [1], [2] and [3].Recently in [4],for a single grade man-power system with a mandatory exponential threshold for the loss of manpower ,the authors have obtained the system performance measures namely mean and variance of the time to recruitment when the inter-decision times form an order statistics .In [2] , for a single grade manpower system ,the author has considered a new recruitment policy involving two thresholds for the loss of man-power in the organization in which one is optional and the other is mandatory and obtained the mean time to recruitment under different conditions on the nature of thresholds. In [5-8] the authors have extended the results in [2] for a two-grade system according as the thresholds are exponential random variables or geometric random variables or SCBZ property possessing random variables or extended exponential random variables. In [9-17], the authors have extended the results in [4] for a two-grade system involving two thresholds by assuming different distributions for thresholds under different condition of inter-decision time and wastage. The objective of the present paper is to obtain the performance measures when (i) the loss of man-hours and the inter decision time forms an order statistics (ii) the optional and mandatory thresholds follow different distributions. II. MODEL DESCRIPTION AND ANALYSIS OF MODEL –I Consider an organization taking decisions at random epoch in (0, ∞) and at every decision epoch a random number of persons quit the organization. There is an associated loss of man-hours if a person quits. It is assumed that the loss of man-hours are linear and cumulative. Let X i be the loss of man-hours due to the ith decision epoch , i=1,2,3…n Let X 1, X 2, X 3,....X n  be the order statistics selected from the sample X1, X 2 ,....X n with respective density functions g x (1) (.), g x ( 2) (.),.... g x ( n ) (.) . Let Ui be a continuous random variable denoting inter-decision time between (i-1)th and ith decision, i=1,2, 3….k with cumulative distribution 1 function F(.), probability density function f(.) and mean (λ>0). Let U(1) (U(k)) be the smallest (largest) order  www.ijera.com 315 | P a g e
  • 2. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330  www.ijera.com  statistic with probability density function. f u (1) (.), f u (k ) (.) .Let Y1, Y2 (Z1, Z2) denotes the optional (mandatory) thresholds for the loss of man-hours in grades 1 and 2, with parameters 1, 2 , 1,  2 ‎ respectively, where 𝜃1 , 𝜃2 , 𝛼1 , 𝛼2 are positive. It is assumed that Y1 < Z1 and Y2 <Z2. Write Y=Max (Y1, Y2) and Z=Max (Z1, Z2), where Y (Z) is the optional (mandatory) threshold for the loss of man-hours in the organization. The loss of man- hours, optional and mandatory thresholds are assumed as statistically independent. Let T be the time to recruitment in the organization with cumulative distribution function L (.), probability density function l (.), mean E (T) and variance V (T). Let F k(.) be the k fold convolution of F(.). Let l *(.) and f*(.), be the Laplace transform of l (.) and f (.), respectively. Let V k(t) be the probability that there are exactly k decision epochs in (0, t]. It is known from Renewal theory [18] that Vk(t) = Fk(t) - Fk+1(t) with F0(t) = 1. Let p be the probability that the organization is not going for recruitment whenever the total loss of man-hours crosses optional threshold Y. The Univariate recruitment policy employed in this paper is as follows: If the total loss of manhours exceeds the optional threshold Y, the organization may or may not go for recruitment. But if the total loss of man-hours exceeds the mandatory threshold Z, the recruitment is necessary. MAIN RESULTS P (T  t )    k    i 1  k 0  k   k   i 1   i 1   V k ( t ) P  Xi  Y   p  V k ( t ) P  Xi  Y   P  Xi  Z        k 0 (1) For n=1, 2, 3…k the probability density function of X(n) is given by g x(n) (t)  n kc n [G(t)]n 1 g(t)[1  G(t)]k n , n  1,2,3..k (2) If g( t )  g x (1) ( t ) In this case it is known that g x(1) (t)  k g(t) 1  G(t)k 1 (3) By hypothesis g( t )  ce ct Therefore from (3) and (4) we get, (4)  g x (1) ()  (5) kc kc   If g(t )  g x (k ) (t ) In this case it is known that g x(k) (t )  kG(t )k 1g(t ) Therefore from (4) and (6) we get g* ( k ) ()  x (6) k!c k (  c)(  2c)...(  kc) (7) For r=1, 2, 3…k the probability density function of U(r) is given by f u(r ) (t )  r kcr [F(t )]r 1f (t )[1  F(t )]k r , r  1,2,3..k (8) If f ( t )  f u (1) ( t ) In this case it is known that f u(1) (t)  k f (t) 1  F(t)k1 (9) Therefore from (8) and (9) we get, k  (10) f u (1) (s)  k  s If f (t )  f u(k) (t ) In this case it is known that f u (k ) (t )  kF(t )k 1f (t ) * f u ( k ) (s) (11) k!k  (s  )(s  2)...(s  k) (12) It is known that E(T)   d(l* (s)) ds , E(T 2 )  s 0 d 2 (l* (s) ds 2 and V(T)  E(T 2 )  (E(T))2 (13) s 0 Case (i): The distribution of optional and mandatory thresholds follow exponential distribution For this case the first two moments of time to recruitment are found to be www.ijera.com 316 | P a g e
  • 3. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 If g(t )  g x (1) ( t ), f ( t )  f u (1) ( t ) E(T)  CI1  CI2  CI3  p(CI4  CI5 CI6 H I1,4  2 2 www.ijera.com 2  2 2 2 2   (14)  HI1,5  HI1,6  HI2,4  HI2,5  HI2,6  HI3,4  HI3,5  HI3,6 2 2 2 2 2 2 2 2 2 E(T )  2 CI1  CI2  CI3  p CI4  CI5  CI6  HI1,4  HI1,5  HI1,6  HI2,4  HI2,5  HI2,6  HI3,4  HI3,5  HI3,6 (15) where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6. 1 (16) 1 CIa  k(1  and HIb,d  k(1  DIb DId) DIa) * * * * * * DI1  gx(1) (1), DI2  gx (1) (2), DI3  gx (1) (1  2), DI4  gx (1) (1), DI5  gx(1) (2), DI6  gx (1) (1  2) are given by (5) If g(t )  g (t ), f (t )  f x (k ) (17) (t ) u (1) E(T)  LK1  LK2  LK3  p(LK4  LK5  LK6  M  2 2 2  2 K1,4 2 2 2  MK1,5  MK1,6  MK2,4  MK2,5  MK2,6  MK3,4  MK3,5  MK3,6 2 2 2 2 2 2 2 2 2 E(T )  2 LK1  LK2  LK3  p LK4  LK5  LK6  MK1,4  MK1,5  MK1,6  MK2,4  MK2,5  MK2,6  MK3,4  MK3,5  MK3,6  (18)  (19) where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6. 1 (20) 1 LKa  k(1  and MKb,d  k(1  DKb DKd) DKa) * * * * * * DK1  gx(k) (1), DK 2  gx (k ) (2), DK3  gx(k ) (1  2), DK 4  gx (k ) (1), DK5  gx (k ) (2), DK6  gx (k ) (1  2) are given by (7) If g(t )  g ( t ), f ( t )  f (t) u(k) x (k ) E (T )  PK1  PK 2  PK 3  p(PK 4  PK 5  P K 6  Q  2 E(T )  2 P  2  K1 P 2 p K3 N  M 1  1 p  P 2  K2 P 2 2 DK 4  (21)  2  K4 P 2  K5 P 2  K6 K1, 4 Q K1,5 Q Q K1,6 Q K 2, 4 K 2, 5 Q K 2, 6 Q  1  QK1,4  QK1,5  QK1,6  QK 2,4  QK 2,5  QK 2,6  QK3,4  QK3,5  QK3,6    2   2 2 2 2 2 2 2 2 2 K 3, 4 Q K 3,5 Q   (22) (23) K 3,6  N  2  1 1 1   M   1   DK1 1  DK 2 1  DK3   1 1 1 1 1 1 1 1 1 1 1             1  DK5 1  DK 6 1  DK1 DK 4 1  D D 1  D K1D 1  D K2 D 1  D K2 D 1  D K2 D 1  D K3 D 1  D K3 D 1  D K3 D  K1 K5 K6 K4 K5 K6 K4 K5 K6  where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6. P Ka  If g( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t ) E(T)  R I1  R I2  R I3  p(R I4  R I5 R I6 S I1,4  2 2 2 2  2 2 2 2 2 2  SI1,5  SI1,6  SI2,4  SI2,5  SI2,6  SI3,4  SI3,5  SI3,6 2 2 2 2 2 2  1 N  M 1  1 E(T )  2 R I1  R I 2  R I3  p R I 4  R I5  R I6  SI1,4  SI1,5  SI1,6  SI 2,4 SI 2,5  SI 2,6  SI3,4  SI3,5  SI3,6   p  2 (24) k k N N 1 1 ,Q  ,N   and M   2 Kb, d  (1  D Ka)  (1  D Kb D Kd) n 1 n n 1 n N  M 1  1 2 DI 4   2  2 DI1    (25) (26) 1 1    1  DI 2 1  DI 3    1 1 1 1 1 1 1 1 1 1 1             1  DI5 1  DI6 1  DI1 DI 4 1  D D I1 I5 1  D I1DI6 1  D I2 DI 4 1  D I2 DI5 1  D I2 DI6 1  D I3 DI 4 1  D I3 DI5 1  D I3 DI6   where for a = 1, 2…6, b=1, 2, 3 and d=4, 5 R Ia  N ,   (1  DIa) SIb,d  (1  N ,N  k  1 and M  k  1 (27) Case (ii): The distributions of optional and mandatory thresholds follow extended exponential distribution with shape parameter 2. If g(t )  g (t ), f (t )  f (t ) DIb DId) n 1 n n 1 n 2 u (1) x (1)  E (T )  2CI1  2CI 2  2CI7  2CI8  CI9  CI10  CI11  4CI3  p 2CI 4  2CI5  2CI12  2CI13  CI14  CI15  CI16  4CI6  4H I1,4  4HI1,5  4H I1,12  4H I1,13 (28)  2HI1,14  2H I1,15  2H I1,16  8HI1,6  4H I 2,4  4H I 2,5  4HI 2,12  4H I 2,13  2HI 2,14  2HI 2,15  2HI 2,16  8H I 2,6  4HI7,4  4HI7,5  4H I7,12  4H I7,13  2HI7,14  2H I7,15  2HI7,16  8H I7,6  4HI8,4  4H I8,5  4H I8,12  4HI8,13  2HI8,14  2HI8,15  2H I8,16  8HI8,6  2HI9,4  2HI9,5  2H I9,12  2HI9,13  H I9,14  H I9,15  H I9,16  4HI9,6  2HI10,4  2H I10,5  2H I10,12  2H I10,13  H1I0,14  H I10,15  HI10,16  4H I10,6  2H I11,4  2H I11,5  2HI11,12  2H I11,13  H I11,14  H I11,15  HI11,16  4HI11,6  8HI3,4  8H I3,5  8H I3,12  8H I3,13  4H I3,14  4HI3,15  4H I3,16 16H I3,6 2  2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  2 2 2 2  I 2, 6 2  I 7, 4 2 I 7 ,5 E(T )  2 2CI1  2CI 2  2CI7  2CI8  CI9  CI10  CI11  4CI3  p 2CI 4  2CI5  2CI12  2CI13  CI14  CI15  CI16  4CI6  4HI1,4  4HI1,5  4HI1,12  4H 2  I1,13 2  I1,14 2  I1,15 2  I1,16 2  I1,6 2  I 2, 4 2  I 2,5 2  I 2,12 2  I 2,13 2  I 2,14 2  I 2,15 2  I 2,16 (29) 8H 4H 4H 4H 8H 4H 4H 2H 2H 2H 4H 2H 2H 2H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  4HI7,12  4HI7,13  2HI7,14  2HI7,15  2HI7,16  8HI7,6  4HI8,4  4HI8,5  4HI8,12  4HI8,13  2HI8,14  2HI8,15  2HI8,16  8HI8,6  2HI9,4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2HI9,5  2HI9,12  2HI9,13  HI9,14  HI9,15  HI9,16  4HI9,6  2HI10,4  2HI10,5  2HI10,12  2HI10,13  HI10,14  HI10,15  HI10,16  4HI10,6  2HI11,4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2HI11,5  2HI11,12  2HI11,13  HI11,14  HI11,15  HI11,16  4HI11,6  8HI3,4  8HI3,5  8HI3,12  8HI3,13  4HI3,14  4HI3,15  4HI3,16 16HI3,6  www.ijera.com 317 | P a g e
  • 4. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com where for a=1, 2, 3…16, b=1, 2, 3,7, 8, 9, 10,11 and d=4, 5, 6, 12, 13,14,15,16. given by (16) C Ia , H Ib, d are (30) DI7  gx (1) (21  2), DI8  gx (1) (1 22), DI9  gx (1) (21), DI10  gx (1) (22) DI11  gx (1) (21  22), * * * * * DI12  gx(1) (21 2), DI13  gx(1) (2 2  1), DI14  gx (1) (21), DI15  gx (1) (22), DI16  gx (1) (21 22) * * * If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t ) * *  E(T)  2LK1  2LK 2  2LK 7  2LK8  LKI9  LK10  LK11  4LK3  p 2LK 4  2LK5  2LK12  2LK13  LK14  LK15  LK16  4LK 6  4MK1,4  4MK1,5  4MK1,12  4MK1,13  2MK1,14  2MK1,15  2MK1,16  8MK1,6  4MK 2,4  4MK 2,5  4MK 2,12  4MK 2,13  2MK 2,14  2MK 2,15  2MK 2,16  8MK 2,6  4MK 7,4  4MK 7,5  4MK 7,12  4MK 7,13  2MK 7,14  2MK 7,15  2MK 7,16  8MK 7,6  4MK8,4  4MK8,5  4MK8,12  4MK8,13  2MK8,14  2MK8,15  2MK8,16  8MK8,6  2MK9,4  2MK9,5  2MK9,12  2MK9,13  MK9,14  MK9,15  MK9,16  4MK9,6  2MK10,4  2MK10,5  2MK10,12  2MK10,13  MKI0,14  MI10,15  MK10,16  4MK10,6  2MK11,4  2MK11,5  2MK11,12  2MK11,13  MK11,14  MK11,15  MK11,16  4MK11,6  8MK3,4  8MK3,5  8MK3,12  8MK3,13  4MK3,14  4MK3,15  4MK3,16 16MK3,6   2 2 2 2 2 2 2 2 (31)  2 2 2 2 2 2 2 2 2 E(T )  2 2L K1  2L K 2  2L K 7  2L K8  L K 9  L K10  L K11  4L K 3  p 2L K 4  2L K 5  2L K12  2L K13  L K14  L K15  L K16  4L K 6 2 2 2 2 2 2 2 2 2 2 2 2 2  4M K1,4  4M K1,5  4M K1,12  4M K1,13  2M K1,14  2M K1,15  2M K1,16  8M K1,6  4M K 2,4  4M K 2,5  4M K 2,12  4M K 2,13  2M K 2,14 2 2 2 2  K8,12 2  K8,13 2  K8,14 2 2 2 2 2 2 2 2 2 2  2M K 2,15  2M K 2,16  8M K 2,6  4M K 7,4  4M K 7,5  4M K 7,12  4M K 7,13  2M K 7,14  2M K 7,15  2M K 7,16  8M K 7,6  4M K8,4  4M K8,5  4M 4M 2 2M 2 2M 2 2  K8,15 2M 2 2  K8,16 8M 2 2 K8,6  2M 2 2 K 9, 4  2M 2 2 K 9,5  2M 2  K 9,12 2 2M 2  K 9,13 2 M 2  K 9,14 2 M 2  K 9,15 2 M 2 K 9,16 2 2  4M K 9,6  2M K10,4  2M K10,5  2M K10,12  2M K10,13  M K10,14  M K10,15  M K10,16  4M K10,6  2M K11,4  2M K11,5  2M K11,12  2M K11,13 M 2  K11,14 M 2  K11,15 M 2  K11,16 4M 2 K11,6  8M 2 K 3, 4  8M 2 K 3,5  8M 2  K 3,12 8M 2  K 3,13 4M 2  K 3,14 4M 2  K 3,15 4M 2  K 3,16 16M 2 K 3,6  (32) where for a=1,2,3,4,5,….16,b=1,2,…8 and d=9,10…..16. L Ka , M Kb, d are given by (20) . If g(t )  g (t ), f (t )  f u (1) (t ) x (k )  E (T )  2PK1  2PK 2  2PK 7  2PK8  PK 9  PK10  PK11  4PK 3  p 2PK 4  2PK 5  2PK12  2PK13  PK14  PK15  PK16  4PK 6  4Q  4Q K1,13  4Q K 7,12  2Q K 9 ,5  2Q K11,5  2  2Q K1,14  4Q  2Q K 7,13 K 9,12  2Q 2  2Q K1,15  2Q  2Q K11,12 2  2Q K 7,14 K 9,13  2Q 2 K1,16  2Q Q K11,13 2 K 7,15 K 9,14 Q  8Q 2  2Q Q K11,14 K1,6 K 7,16 K 9,15 Q 2  4Q Q K11,15 K 2, 4  8Q K 9,16 Q 2  4Q K 7,6  4Q  4Q K11,16  2 K 2 ,5 K 9, 6  4Q  4Q K 8, 4  4Q  2Q K11,6 2 K 2,12 K10, 4  8Q 2  4Q K 8,5  4Q  2Q K 3, 4 K 2,13 K 8,12 K10,5  8Q 2  2Q  4Q  2Q K 3,5 2 K 2,14 K 8,13 K10,12  8Q 2  2Q  2Q  2Q K 3,12 K 8,14 K10,13  8Q 2 K 2,15  4Q 2  2Q 2 Q  2Q K 7,14 2 Q K1,14 2 K 9,14 K1,15  2Q Q K11,14 2 2 K 7,15 2 K 9,15 Q  2Q K11,15 K1,16  2Q Q 2 2 2 K 9,16 Q  8Q 2 K 7,16 K11,16 K1,6  8Q  4Q 2 2 2 K 9, 6  4Q  4Q 2 K 7,6 K11,6 K 2, 4  4Q  2Q 2 2 2 K10, 4  8Q  4Q 2 K 8, 4 K 3, 4 K 2, 5  4Q  2Q 2 2 2 K 8,5 2 K10,5  8Q  4Q K 3,5 K 2,12  4Q  2Q 2 2 2 K 8,12 2 K10,12  8Q  4Q 2 K 3,12 2 K 2,13  4Q  2Q  8Q  2Q 2 K 8,13 2 K 3,13 K 2,14  2Q Q  4Q  2Q 2 K 8,14 2 2 K10,13 2 2 K10,14 K 3,14 2 K 2,15  2Q Q 2 K 8,15 2 K10,15  4Q  2Q 2 K 3,15 2 K 2,16  2Q Q 2 K 8,16 2 K10,16  4Q  8Q K 3,16 K 2, 6  8Q  4Q 2 2 2 K 8,6 2 K10,6 16Q 2  4Q K1, 4 2 K 7, 4  2Q  2Q 2 K 9, 4 2 K11, 4  4Q 2 K1,5 K 7 ,5 K 9,5 K11,5 K1,5  4Q K 7, 4  4Q  8Q Q K10,16  4Q  4Q  4Q 2 2  4Q  4Q K 8,16 K 3,15 2  2Q  2Q K 2, 6 K10,15  4Q  4Q 2 K1, 4  2Q Q K 3,14 2  8Q K 8,15 K10,14 E(T )  2 2PK1  2PK 2  2PK 7  2PK8  PK 9  PK10  PK11  4PK 3  p 2PK 4  2PK 5  2PK12  2PK13  PK14  PK15  PK16  4PK 6  4Q  2Q K 2,16  2Q Q K 3,13 2  2Q K1,12 2 K 7,12  2Q  2Q 2 K 9,12 2 K11,12  4Q  2Q K11, 4   (33) K 3,6  2 K1,13 2 K 7,13  2Q  2Q K 9, 4 K10,6 16Q  4Q 2  2Q K 8,6  4Q K 3,16 K1,12 K 7 ,5 2 K 9,13 2 K11,13 2 2   1 ( 2  M ) 2     2 N 1  DK1 1  DK 2 1  DK 7  K 3,6     2 1 1 1 4  p 2 2 2 2 1 1 1 4 4 2      (  M )         2 N 1 1  DK8 1  DK 9 1  DK10 1  DK11 1  DK 3    DK 4 1  DK 5 1  DK12 1  DK13 1  DK14 1  DK15 1  DK16 1  DK 6 1  DK1 DK 4  4 4 4 2 2 2 8 4 4 4 4           1  DK1 DK 5 1  DK1 DK12 1  DK1 DK13 1  DK1 DK14 1  DK1 DK15 1  DK1 DK16 1  DK1 DK 6 1  DK 2 DK 4 1  DK 2 DK 5 1  DK 2 DK12 1  DK 2 DK13  2 2 2 8 4 4 4 4 2 2 2           1  DK 2 DK14 1  DK 2 DK15 1  DK 2 DK16 1  DK 2 DK 6 1  DK 7 DK 4 1  DK 7 DK 5 1  DK 7 DK12 1  DK 7 DK13 1  DK 7 DK14 1  DK 7 DK15 1  DK 7 DK16  8 4 4 4 4 2 2 2 8 2 2           1  DK 7 DK 6 1  DK8 DK 4 1  DK8 DK 5 1  DK8 DK12 1  DK8 DK13 1  DK8 DK14 1  DK8 DK15 1  DK8 DK16 1  DK8 DK 6 1  DK 9 DK 4 1  DK 9 DK 5  2 2 1 1 1 4 2 2 2 2 1           1  DK 9 DK12 1  DK 9 DK13 1  DK 9 DK14 1  DK 9 DK15 1  DK 9 DK16 1  DK 9 DK 6 1  DK10 DK 4 1  DK10 DK 5 1  DK10 DK12 1  DK10 DK13 1  DK10 DK14  1 1 4 2 2 2 2 1 1 1 4           1  DK10 DK15 1  DK10 DK16 1  DK10 DK 6 1  DK11 DK 4 1  DK11 DK 5 1  DK11 DK12 1  DK11 DK13 1  DK11 DK14 1  DK11 DK15 1  DK11 DK16 1  DK11 DK 6   8 8 8 8 4 4 4 16         1  DK 3 DK 4 1  DK 3 DK 5 1  DK 3 DK12 1  DK 3 DK13 1  DK 3 DK14 1  DK 3 DK15 1  DK 3 DK16 1  DK 3 DK 6    (34) where for a=1,2,3,4,5,….16,b=1,2,…8 and d=9,10…..16. P Ka , Q Kb, d are given by (24) . If g(t )  g x (1) (t ), f (t )  f u (k ) (t )  E (T )  2R I1  2R I 2  2R I7  2R I8  R I9  R I10  R I11  4R I3  p 2R I 4  2R I5  2R I12  2R I13  R I14  R I15  R I16  4R I6  4SI1,4  4SI1,5  4SI1,12 (35)  4SI1,13  2SI1,14  2SI1,15  2SI1,16  8SI1,6  4SI 2,4  4SI 2,5  4SI 2,12  4SI 2,13  2SI 2,14  2SI 2,15  2SI 2,16  8SI 2,6  4SI7,4  4SI7,5  4SI7,12  4SI7,13  2SI7,14  2SI7,15  2SI7,16  8SI7,6  4SI8,4  4SI8,5  4SI8,12  4SI8,13  2SI8,14  2SI8,15  2SI8,16  8SI8,6  2SI9,4  2SI9,5  2SI9,12  2SI9,13  SI9,14  SI9,15  SI9,16  4SI9,6  2SI10,4  2SI10,5  2SI10,12  2SI10,13  SI10,14  SI10,15  SI10,16  4SI10,6  2SI11,4  2SI11,5  2SI11,12  2SI11,13  SI11,14  SI11,15  SI11,16  4SI11,6  8SI3,4  8SI3,5  8SI3,12  8SI3,13  4SI3,14  4SI3,15  4SI3,16 16SI3,6 www.ijera.com  318 | P a g e
  • 5. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330  2 2 2 2 2 2 2  2 2 2  I 2, 5 2  I 2,12 2 2 2 2 2 2 2 2 2 2  I7, 4 2  I 7 ,5 www.ijera.com 2 2 2 E(T )  2 2R I1  2R I 2  2R I7  2R I8  R I9  R I10  R I11  4R I3  p 2R I 4  2R I5  2R I12  2R I13  R I14  R I15  R I16  4R I6  4S1,4  4SI1,5  4SI1,12  4SI1,13 2  I1,14 2  I1,15 2  I1,6 2  2S 2  I1,16 2 2  I 2, 4 2 2  I 2,13 2  I 2,14 2  I 2,15 2  I 2,16 2  I 2,6 2  I7,12 2  I7,13 2  I7,14 2 2S 2S 8S 4S 4S 4S 4S 2S 2S 2S 8S 4S 4S 4S 4S 2S 2SI7,15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2S 8SI7,6  4SI8,4  4SI8,5  4SI8,12  4SI8,13  2SI8,14  2SI8,15  2SI8,16  8SI8,6  2SI9,4  2SI9,5  2SI9,12  2SI9,13  SI9,14  SI9,15  SI9,16  4SI9,6  2SI10,4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2SI10,5  2SI10,12  2SI10,13  SI10,14  SI10,15  SI10,16  4SI10,6  2SI11,4  2SI11,5  2SI11,12  2SI11,13  SI11,14  SI11,15  SI11,16  4SI11,6  8SI3,4  8SI3,5 2  I7,16 2 2  2  8SI3,12  8SI3,13  4SI3,14  4SI3,15  4SI3,16 16SI3,6  1  2  2 2 2 2 1 1 1 4  2  ( N  M )         1   D I1 1  D I 2 1  D I7 1  D I8 1  D I9 1  D I10 1  D I11 1  D I3   2 2 2 2 1 1 1 4 4 4 4 4 2 ( N  M )             1  D I 4 1  D I5 1  D I12 1  D I13 1  D I14 1  D I15 1  D I16 1  D I6 1  D I1 D I 4 1  D I1 D I5 1  D I1 D I12 1  D I1 D I13 2 2 2 8 4 4 4 4 2 2 2            1  D I1 D I14 1  D I1 D I15 1  D I1 D I16 1  D I1 D I6 1  D I 2 D I 4 1  D I 2 D I5 1  D I 2 D I12 1  D I 2 D I13 1  D I 2 D I14 1  D I 2 D I15 1  D I 2 D I16 p   2  8 4 4 4 4 2 2 2 8 4 4           1  D I 2 D I6 1  D I7 D I 4 1  D I7 D I5 1  D I7 D I12 1  D I7 D I13 1  D I7 D I14 1  D I7 D I15 1  D I7 D I16 1  D I7 D I6 1  D I8 D I 4 1  D I8 D I5  4 4 2 2 2 8 2 2 2 2 1           1  D I8 D I12 1  D I8 D I13 1  D I8 D I14 1  D I8 D I15 1  D I8 D I16 1  D I8 D I6 1  D I9 D I 4 1  D I9 D I5 1  D I9 D I12 1  D I9 D I13 1  D I9 D I14  1 1 4 2 2 2 2 1 1 1 4           1  D I9 D I15 1  D I9 D I16 1  D I9 D I6 1  D I10 D I 4 1  D I10 D I5 1  D I10 D I12 1  D I10 D I13 1  D I10 D I14 1  D I10 D I15 1  D I10 D I16 1  D I10 D I6  2 2 2 2 1 1 1 4 8 8 8           1  D I11 D I 4 1  D I11 D I5 1  D I11 D I12 1  D I11 D I13 1  D I11 D I14 1  D I11 D I15 1  D I11 D I16 1  D I11 D I6 1  D I3 D I 4 1  D I3 D I5 1  D I3 D I12   8 4 4 4 16      1  D I3 D I13 1  D I3 D I14 1  D I3 D I15 1  D I3 D I16 1  D I3 D I6   (36) where for a=1,2,3…16, b=1, 2, 3, 7, 8, 9, 10,11 and d=4, 5, 6, 12, 13,14,15,16. R Ia , S Ib, d are given by (27). Case (iii): The distributions of optional and mandatory thresholds possess SCBZ property. If g(t )  g (t ), f (t )  f (t ) u (1) x (1) E (T )  p  q CI 2  p CI3  p p CI 4  p q CI5  q CI6  p q CI7  q q CI8  p(p CI9  q CI10  p CI11  p p CI12  p q CI13  q CI14 3 4 3 4 1 2 1 2 2 1 1 2 2 CI1 2 1 1 4 4 3 3  p 4 q3 CI15  q 3q4 CI16  p 2 p 4 HI1,9  p 2 q4 HI1,10  p 2 p3 HI1,11  p 2 p 3 p4 HI1,12  p2 p 3q4 HI1,13  p2 q3 HI1,14  p2 p 4 q3 HI1,15  p2 q 3q4 HI1,16 q 2 p 4 H I 2 ,9 q 2 q 4 HI 2,10 q 2 p3 HI 2,11  q 2p p 3 4 HI 2,12 q 2 (37) p 3q4 HI2,13  q2 q3 HI2,14  q2 p 4 q3 HI2,15  q2 q 3q4 HI2,16  p1p 4 HI3,9  p q HI3,10  p p HI3,11  p1p p HI3,12  p p q HI3,13  p q HI3,14  p p q H I3,15  p q q H I3,16  p1p p H  1 4 1 3 2 4 I 4,9 p1 p 2 q 4 HI 4,10 1 3 4 1 3 1 4 3 1 3 4 3 4 p p 2 p3 HI4,11  p1p 2 p 3 p4 HI4,12  p1 p2 p 3q4 HI4,13  p1 p2 q3 HI4,14  p1 p2 p 4 q3 HI4,15  p1 p2 q 3q4 HI4,16  p1q 2 p 4 HI5,9  p1 q 2 q4 HI5,10 p q 2 p3 HI5,11  p1q 2 p 3 p4 HI5,12  p1 q2 p 3q4 HI5,13  p1 q2 q3 HI5,14  p1 q2 p 4 q3 HI5,15  p1 q2 q 3q4 HI5,16  q1p 4 HI6,9  q1q4 HI6,10  q1p3 HI6,11 1 1  q1p 3 4 H I6,12  q1p 2 3 p4 HI7,12 q 1 2  p q 1 p q 2 p3 p 3q4 HI6,13  q1 q3 HI6,14  q1 p 4 q3 HI6,15  q1 q 3q4 HI6,16  q1p 2 p 4 HI7,9  q1 p 2 q4 HI7,10  q1 p 2 p3 HI7,11 q 1 HI8,11  q1q p2 p 3q4 HI7,13  q1 p2 q3 HI7,14  q1 p2 p 4 q3 HI7,15  q1 p2 q 3q4 HI7,16  q1q 2 p 4 HI8,9  q1 q 2 q4 HI8,10      p  2 3 p4 HI8,12 q1 q 2 p 3q 4 HI8,13 q1 q 2 q3 HI8,14 q1 q 2 p 4 q3 H I8,15 q1 q 2 q 3q 4 H I8,16  2 2 2 2 2 2 2 2 2 2 2 2 2 2 C I1  q 2 C I2  p1 C I3  p1p 2 C I4  p1q 2 C I5  q1 C I6  p 2q1 C I7  q1q 2 C I8  pp 4 C I9  q 4 C I10  p3 C I11  p3p 4 C I12  p3q 4 C I13  q 3 C I14 2 2 2 2 2 2 2 2 2  p 4q 3 C I15  q 3q 4 C I16  p 2 p 4 H I1,9  p 2q 4 H I1,10  p 2 p3 H I1,11  p 2 p3p 4 H I1,12  p 2 p3q 4 H I1,13  p 2 q 3 H I1,14  p 2 p 4q 3 H I1,15  p 2 q 3q 4 H 21,16 I E(T )  2 p 2 q (38) 2 2 p 4 H I 2,9 q 2 2 q 4 H I 2,10 2 q 2 2 p 3 H I 2,11 2  q 2p 3 p 4 H 22,12  q 2 p3q 4 H 22,13  q 2 q 3 H 22,14  q 2 p 4q 3 H 22,15  q 2 q 3q 4 H 22,16  p1p 4 H 23,9  p1q 4 H 23,10 I I I I I I I 2 2 2 2 2 2 2  p p H I3,11  p1p p H I3,12  p p q H I3,13  p q H I3,14  p p q H I3,15  p q q H I3,16  p p p H I 4,9  p p q H I 4,10  p p p H I 4,11 1 3 1 3 4 1 3 1 4 3 1 3 4 1 2 4 1 2 4 1 2 3 3 4  p1p  p1q p 2  I 4,12 p 2  I5,12 2 3p 4 H 2 3p 4 H p1 p 2 p3q 4 H 2  I 4,13 p1 q 2 p3q 4 H 2  I5,13 p1 p 2 q 3 H 2  I 4,14 p1 q 2 q 3 H 2  I5,14 p1 p 2 p 4q 3 H p1 q 2 p 4q 3 H 2  I 4,15 2  I5,15 p1 p 2 q 3q 4 H p1 q 2 q 3q 4 H 2  I 4,16 2  I5,16 p1 q 2 p 4 H q1p 4 H 2  I5,9 2  I6,9 p1 q 2q 4 H q1q 4 H 2  I6,10 2  I5,10 p1 q 2 p3 H 25,11 I q1p3 H 26,11  q1p3p 4 H 26,12 I I q 1 p3q 4 H 26,13  q1 q 3 H 26,14  q1 p 4q 3 H 26,15  q1 q 3q 4 H 26,16  q1p 2 p 4 H 27,9  q1 p 2q 4 H 27,10  q1 p 2 p3 H 27,11  q1p 2 p3p 4 H 27,12  q1 p 2 p3q 4 H 27,13 I I I I I I I I I q 1 p 2 q 3 H 27,14  q1 p 2 p 4q 3 H 27,15  q1 p 2 q 3q 4 H 27,16  q1q 2 p 4 H 28,9  q1 q 2q 4 H 28,10  q1 q 2 p3 H 28,11  q1q 2 p3p 4 H 28,12  q1 q 2 p3q 4 H 28,13  q1 q 2 q 3 H 28,14 I I I I I I I I I 1  q 2 p 4q 3 H 28,15  q1 q 2 q 3q 4 H 28,16  I I  q where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16. CIa  p1   (39) 1 1 and HIb,d  k(1  BIa ) k(1  BIb BId)  3  3  2  2  4  4   1 ,p  ,p  ,p  1  1 2  2   2  2  3  3   3  3 4  4   4  4  1 1  q1  1  p1 , q 2 BI1  * g x (1)  1  p 2 , q 3  1  p3 , q 4  1  p 4 (2   ), BI 2  2 * g x (1) ( ), BI3  2 * g x (1) (40) (1   ), B  14 1 g x (1) (1 1 2  2), * (41) BI5  g x (1) (1  2  2), BI6  g x (1) (1), BI7  g x (1) (1  2  2), BI8  g x (1) (1  2), * * * * BI9  g x (1) (4  4), BI10  g x (1) (4), BI11  g x (1) (3  3), BI12  g x (1) (3  3 4  4), * * * * BI13  g x (1) (3 4  3), BI14  g x (1) (3), BI15  g x (1) (3 4  4), BI16  g x (1) (3 4) * www.ijera.com * * * 319 | P a g e
  • 6. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t ) q LK1  q2 LK 2  p1 LK3  p1p2 LK 4  p1q2 LK5  q1 LK6  p 2 q1 LK7  q1q2 LK8  p(p4 LK9  q4 LK10  p3 LK11  p 3 p4 LK12  p 3q4 LK13  q3 LK14  p 4 q3 LK15  p         p p 3q 4 LK16 p 2 4 M K1,9 p 2 q4 M K1,10 p 2 p3 M KI1,11 p 2 3 p4 MK1,12 p2 p 3q4 M K1,13 p2 q3 M K1,14 p2 p 4 q3 M K1,15 p2 q 3q4 M K1,16 q 2 4 M K 2,9 q 2 q 4 M K 2,10 E (T )  p 2  p1p  q p M K 2,11  q 2 p p M K 2,12  q p q M K 2,13  q q M K 2,14  q p q M K 2,15  q q q MK 2,16  p p M   1 4 K 3,9 p1q 4 M K 3,10 p1p3 M K 3,11 2 3 2 3 4 2 3 2 4 3 2 3 4 3 4 p4 MK3,12  p1 p 3q4 MK3,13  p1 q3 MI3,14  p1 p 4 q3 MI3,15  p1 q 3q4 MI3,16  p1p 2 p 4 MI4,9  p1 p 2 q4 MK 4,10  p1 p 2 p3 MK 4,11  p1p 2 p 3 p4 MK 4,12 3 p2 p 3q4 MI4,13  p1 p2 q3 MI4,14  p1 p2 p 4 q3 MI4,15  p1 p2 q 3q4 MI4,16  p1q 2 p 4 MK5,9  p1 q 2 q4 MK5,10  p1 q 2 p3 MK5,11  p1q 2 p 3p4 MK5,12  p1 q2 p 3q4 MK5,13 p 1 p q2 q3 MK5,14  p1 q2 p 4 q3 MK5,15  p1 q2 q 3q4 MK5,16  q1p 4 MK6,9  q1q4 MK6,10  q1p3 MK6,11  q1p 3p4 MK6,12  q1 p 3q4 MK6,13  q1 q3 MK6,14  q1 p 4 q3 MK6,15 q 3q4 MK6,16  q1p 2 p 4 MK7,9  q1 p 2 q4 MK7,10  q1 p 2 p3 MK7,11  q1p 2 p 3p4 MK7,12  q1 p2 p 3q4 MK7,13  q1 p2 q3 MK7,14  q1 p2 p 4 q3 MK7,15  q1 p2 q 3q4 MK7,16 1 1 q  q1q 2  p 2 4 M K8,9 q 1  q 2 q4 MK8,10  q1 q 2 p3 MK8,11  q1q 2 p 3p4 MK8,12  q1 q2 p 3q4 MK8,13  q1 q2 q3 MK8,14  q1 q2 p 4 q3 MK8,15  q1 q2 q 3q4 MK8,16  (42) 2 2 2 2 2 2 2 2 2 L q L p L p p L p q L q LK6  p 2 q1 LK7  q1q2 LK8  pp4 LK9  q4 LK10  p3 LK11  p3p4 LK12  p3q4 LK13  q3 LK14  p q L q q L p p M p q M p 2 p3 M2 1,11  p 2 p3p4 M2 1,12  p2 p 3q4 M2 1,13  p2 q3 M2 1,14  p2 p 4q3 M2 1,15  p2 q 3q4 M2 1,16 K K K K K K q p M q p p M2 2,12  q2 p3q4 M2 2,13  q2 q3 M2 2,14  q2 p 4q3 M2 2,15  q2 q 3q4 M2 2,16  p1p4 M2 3,9  p1q4 M2 3,10 qqM q pM K K K K K K K 2 4 p p M pppM pp q M p q M2 3,14  p1 p 4q3 M2 3,15  p1 q 3q4 M2 3,16  p1 p 2 p4 M2 4,9  p1 p 2q4 M2 4,10  p1 p 2 p3 M2 4,11 K K K K K K 1 3 2  2 K1 2 2  4 3 K15 2 2 2 2     K2 1 2 K 4 1 2 K5 1 1 K3 2 2 2    3 4 K16 2 4 K1,9 2 4 K1,10 2 2 2    K 2 ,9 2 4 K 2,10 2 3 K 2,11 2 3 4 2 2 2  1   K 3,11 3 4 K3,12 1 3 4 K3,13 1 3 E(T )  2 p  p1p 2 p 2 3 p4 M K 4,12 p (43) p p3q4 M2 4,13  p1 p2 q3 M2 4,14  p1 p2 p 4q3 M2 4,15  p1 p2 q 3q4 M2 4,16  p1 q 2 p4 M2 5,9  p1 q 2 q4 M2 5,10  p1 q 2 p3 M2 5,11  p1q 2 p3p4 M2 5,12 K K K K K K K K 1 2 q p3q4 M2 5,13  p1 q2 q3 M2 5,14  p1 q2 p 4q3 M2 5,15  p1 q2 q 3q4 M2 5,16  q1p4 M2 6,9  q1q4 M2 6,10  q1p3 M2 6,11  q1p3p4 M2 6,12  q1 p3q4 M2 6,13  q1 q3 M2 6,14 K K K K K K K K K K 2 2 2 2 2 2 2 2 2  q p q MK 6,15  q q q MK 6,16  q p p MK 7,9  q p q MK 7,10  q p p MK 7,11  q1p p p MK 7,12  q p p q MK 7,13  q p q MK 7,14  q p p q MK 7,15 1 2 4 2 3 1 4 3 1 3 4 1 2 4 1 2 3 1 2 3 4 1 2 3 1 2 4 3 p 1 2 4 q p q 3q4 M2 7,16  q1q 2 p4 M2 8,9  q1 q 2q4 M2 8,10  q1 q 2 p3 M2 8,11  q1q 2 p3p4 M2 8,12  q1 q2 p3q4 M2 8,13  q1 q2 q3 M2 8,14  q1 q2 p 4q3 M2 8,15  q1 q2 q 3q4 M2 8,16  K K K K K K K K K   1 2 where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16. (44) 1 1 and M Kb, d  k (1  B Ka ) k (1  B Kb B Kd )  L Ka BK1  g x ( k ) (2  2), BK 2  g x ( k ) (2), BK 3  g x ( k ) (1  1), BK 4  g x ( k ) (1 1 2  2), * * * * BK 5  g x (k ) (1  2  2), BK 6  g x ( k ) (1), BK 7  g x (k ) (1  2  2), BK8  g x (k ) (1  2), * * * * BK 9  g x ( k ) (4  4), BK10  g x ( k ) (4), BK11  g x ( k ) (3  3), BK12  g x ( k ) (3  3 4  4), * * * * BK13  g x ( k ) (3 4  3), BK14  g x (k ) (3), BK15  g x (k ) (3 4  4), BK16  g x ( k ) (3 4) * * * * (45) If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t ) E (T )  p2 PK1  q 2 PK 2  p1 PK 3  p1p2 PK 4  p1q 2 PK 5  q1 PK 6  p 2 q1 PK 7  q1q 2 PK8  p(p4 PK 9  q 4 PK10  p3 PK11  p 3 p4 PK12        p p 3q 4 P K13 q3 PK14  p 4 q3 P K15 q 3q 4 P K16 p 2 4 QK1,9 p 2 q 4 QK1,10 p 2 p3 QK1,11 p 2 3 p4 QK1,12 p2 p 3 q 4 QK1,13 p p q 2 q3 QK1,14  p2 p 4 q3 QK1,15  p2 q 3q 4 QK1,16  q 2 p 4 QK 2,9  q 2 q4 QK 2,10  q 2 p3 QK 2,11  q 2 p 3 p4 QK 2,12  q 2 p 3q 4 QK 2,13 q QK 2,14  q 2 p 4 q3 QK 2,15  q2 q 3q 4 QK 2,16  p1p 4 QK 3,9  p1q 4 QK 3,10  p1p3 QK 3,11  p1p 3 p4 QK 3,12  p1 p 3q4 QK 3,13 2 3 p q3 QK 3,14  p1 p 4 q3 QK 3,15  p1 q 3q 4 QK 3,16  p1p 2 p 4 QK 4,9  p1 p 2 q4 QK 4,10  p1 p 2 p3 QK 4,11  p1p 2 p 3 p4 QK 4,12 p p2 p 3q 4 QK 4,13  p1 p2 q3 QK 4,14  p1 p2 p 4 q3 QK 4,15  p1 p2 q 3q 4 QK 4,16  p1q 2 p 4 QK 5,9  p1 q 2 q4 QK 5,10  p1 q 2 p3 QK 5,11 1 1  p1q q 2 p 3 p4 QK 5,12  p1 q 2 p 3q 4 QK 5,13  p1 q2 q3 QK 5,14  p1 q 2 p 4 q3 QK 5,15  p1 q2 q 3q 4 QK 5,16  q1p 4 QK 6,9  q1q 4 QK 6,10       q1p p Q  p 1p3 QK 6,11 q1 3 p4 QK 6,12 q1 p 3 q 4 QK 6,13 q1 q3 QK 6,14 q1 p 4 q3 QK 6,15 q1 q 3 q 4 QK 6,16 2 4 K 7,9 q1 p 2 q 4 QK 7,10 q p 2 p3 QK 7,11  q1p 2 p 3 p4 QK 7,12  q1 p2 p 3q 4 QK 7,13  q1 p2 q3 QK 7,14  q1 p2 p 4 q3 QK 7,15  q1 p2 q 3q 4 QK 7,16  q1q 2 p 4 QK8,9 q  q 2 q 4 QK8,10  q1 q 2 p3 QK8,11  q1q 2 p 3 p4 QK8,12  q1 q2 p 3q 4 QK8,13  q1 q2 q3 QK8,14  q1 q 2 p 4 q3 QK8,15  q1 q2 q 3q 4 QK8,16   1 1 www.ijera.com (46) 320 | P a g e
  • 7. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 2  www.ijera.com 2 2 2 2 2 2 2 2 2 2 2 2 P K1  q 2 P K 2  p1 P K3  p1p2 P K 4  p1q 2 P K5  q1 P K 6  p2 q1 P K 7  q1q 2 P K8  pp4 P K9  q 4 P K10  p3 P K11  p3 p4 P K12 2 2 2 2 2 2 2 2  p q P K13  q P K14  p q P K15  q q P K16  p p Q    p 3 4 3 4 4 3 2 4 K1,9 p 2 q 4 Q K1,10 p 2 p3 Q K1,11 p 2 3 p 4 Q K1,12 3 2 2 2 2 2 2 2 p p q Q p q Q p p q Q p q q Q q p Q   2 4 K 2,9 q 2 q 4 Q K 2,10 q 2 p3 Q K 2,11 K1,13 K1,14 K1,15 K1,16 2 3 4 2 3 2 4 3 2 3 4 E(T )  2 p 2  q2 p 2 p 3 4 Q K 2,12 q 2 2 2 2 2 2 2 p3 q 4 QK 2,13  q 2 q3 QK 2,14  q 2 p4 q3 QK 2,15  q 2 q3 q 4 QK 2,16  p1p4 QK3,9  p1q 4 QK3,10 2 2 2 2 2 2 2 p p Q       p 1 3 K 3,11 p1 3 p 4 Q K 3,12 p1 p3 q 4 Q K 3,13 p1 q 3 Q K 3,14 p1 p 4 q 3 Q K 3,15 p1 q3 q 4 Q K 3,16 p1 p 2 p 4 Q K 4,9 2 p 1 2 2 2 2 2 p2 q 4 QK 4,10  p1 p2 p3 QK 4,11  p1p2 p3 p4 QK 4,12  p1 p2 p3 q 4 QK 4,13  p1 p2 q3 QK 4,14  p1 p2 p4 q3 QK 4,15 2 2 2 2 2 2 p p2 q3 q 4 QK 4,16  p1q 2 p4 QK5,9  p1q 2 q 4 QK5,10  p1q 2 p3 QK5,11  p1q 2 p3 p4 QK5,12  p1q 2 p3 q 4 QK5,13 p q 2 q3 QK5,14  p1q 2 p4 q3 QK5,15  p1q 2 q3 q 4 QK5,16  q1p4 QK 6,9  q1q 4 QK 6,10  q1p3 QK 6,11  q1p3 p4 QK 6,12 q p3 q 4 QK 6,13  q1q3 QK 6,14  q1 p4 q3 QK 6,15  q1q3 q 4 QK 6,16  q1p2 p4 QK 7,9  q1 p2 q 4 QK 7,10  q1 p2 p3 QK 7,11 1 2 1 2 1  q1 p 1 2 3 p 4 Q K 7,12 2 2 2 1 2 2 2 2 2 2 2 2 2 2 p2 p3 q 4 QK 7,13  q1 p2 q3 QK 7,14  q1 p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p4 QK8,9 2 2 2 2 2 2  2 (N 2  p  p q2 p1 p1 p2 p1q 2 q1 q1 p2 q1q 2  p q4 2    2 4  M )         (  M )  2 N  1  BK1 1  BK 2 1  BK 3 1  BK 4 1  BK 5 1  BK 6 1  BK 7 1  BK8    1  BK 9 1  BK10     p3  q 2 q 2 q 4 QK8,10  q1q 2 p3 QK8,11  q1q 2 p3 p4 QK8,12  q1q 2 p3 q 4 QK8,13  q1q 2 q3 QK8,14  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16     1  2 p 2 2 2 q  2 1  BK11  p3 p 4 1  BK12  p3 q 4 1  BK13  q3 1  BK14  q3 p4 1  BK15  q3 q 4 1  BK16  p4 p2 1  BK1 BK 9  p2 q 4 1  BK1 BK10  p 2 p3 1  BK1 BK11  p 2 p3 p 4 p 2 p3 q 4 p2 q3 p4 p2 q3 q 4 q 2 p3 p2 q3 q 2 p4 q2 q4        1  BK1 BK12 1  BK1 BK13 1  BK1 BK14 1  BK1 BK15 1  BK1 BK16 1  BK 2 BK 9 1  BK 2 BK10 1  BK 2 BK11  q 2 p3 p 4 q 2 p3 q 4 q 2 q3 p4 q 2 q3 q 4 p1p3 q 2 q3 p4 p1 p1q 4        1  BK 2 BK12 1  BK 2 BK13 1  BK 2 BK14 1  BK 2 BK15 1  BK 2 BK16 1  BK 3 BK 9 1  BK 3 BK10 1  BK 3 BK11  p1p3 p4 p1p3 q 4 p1q3 p4 p1q3 q 4 p1 p2 p3 p1q3 p1 p4 p2 p1 p2 q 4        1  BK 3 BK12 1  BK 3 BK13 1  BK 3 BK14 1  BK 3 BK15 1  BK 3 BK16 1  BK 4 BK 9 1  BK 4 BK10 1  BK 4 BK11  p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p4 p1p2 q3 q 4 p1q 2 p3 p1 p2 q3 p1 p4 q 2 p1q 2 q 4        1  BK 4 BK12 1  BK 4 BK13 1  BK 4 BK14 1  BK 4 BK15 1  BK 4 BK16 1  BK 5 BK 9 1  BK 5 BK10 1  BK 5 BK11  q1p3 p1q 2 p3 p4 p1q 2 p3 q 4 p1q 2 q3 p4 p1q 2 q3 q 4 p1q 2 q3 p4 q1 q1q 4        1  BK 5 BK12 1  BK 5 BK13 1  BK 5 BK14 1  BK 5 BK15 1  BK 5 BK16 1  BK 6 BK 9 1  BK 6 BK10 1  BK 6 BK11  q1p3 p4 q1p3 q 4 q1q3 p4 q1q3 q 4 q1 p2 p3 q1q3 q1 p4 p2 q1 p2 q 4        1  BK 6 BK12 1  BK 6 BK13 1  BK 6 BK14 1  BK 6 BK15 1  BK 6 BK16 1  BK 7 BK 9 1  BK 7 BK10 1  BK 7 BK11  q1 p2 p3 p4 q1 p2 p3 q 4 q1 p2 q3 p4 q1 p2 q3 q 4 q1q 2 p3 q1 p2 q3 q1 p4 q 2 q1q 2 q 4        1  BK 7 BK12 1  BK 7 BK13 1  BK 7 BK14 1  BK 7 BK15 1  BK 7 BK16 1  BK8 BK 9 1  BK8 BK10 1  BK8 BK11  q1q 2 p3 p4 q1q 2 p3 q 4 q1q 2 q3 p4 q1q 2 q3 q 4  q1q 2 q3      1  BK8 BK12 1  BK8 BK13 1  BK8 BK14 1  BK8 BK15 1  BK8 BK16    (47) where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16. N PKa  (1  If g ( t )  E (T )  p 2 BKa ) and Q Kb,d g x (1) ( t ), f ( t ) R I1  q 2  (48) N (1  BKb BKd)  f u (k ) (t ) R I2  p  p p R I 4  p q R I5  q R I6  p q R I7  q q R I8  p(p R I9  q R I10  p R I11  p p R I12  p q R I13 3 4 3 4 1 2 1 2 2 1 1 2 1 R I3 1 4 4 3  p4 q3 R I15  q3 q 4 R I16  p2 p4SI1,9  p2 q 4 SI1,10  p2 p3SI1,11  p2 p3 p4 SI1,12  p2 p3 q 4 SI1,13  p2 q3SI1,14  p2 p4 q3SI1,15 3 R I14  p q q SI1,16  q p S        2 4 I 2,9 q 2 q 4 SI 2,10 q 2 p3SI 2,11 q 2 p3 p4 SI 2,12 q 2 p3 q 4 SI 2,13 q 2 q3SI 2,14 q 2 p4 q3SI 2,15 q 2 q3 q 4 SI 2,16 2 3 4 q p p p S         1 4 I3,9 p1q 4 SI3,10 p1 p3SI3,11 p1 p3 p 4 SI3,12 p1 p3 q 4 SI3,13 p1 q3SI3,14 p1 p4 q3SI3,15 p1 q3 q 4 SI3,16 p1 2 p4 SI 4,9 p p2 q 4 SI4,10  p1 p2 p3SI4,11  p1p2 p3 p4 SI4,12  p1 p2 p3 q 4 SI4,13  p1 p2 q3SI4,14  p1 p2 p4 q3SI4,15  p1 p2 q3 q 4 SI4,16  p1q 2 p4SI5,9 p q 2 q 4 SI5,10  p1q 2 p3SI5,11  p1q 2 p3 p4 SI5,12  p1q 2 p3 q 4 SI5,13  p1q 2 q3SI5,14  p1q 2 p4 q3SI5,15  p1q 2 q3 q 4 SI5,16  q1p4SI6,9 1 1  q q SI6,10  q p SI6,11  q1 p p SI6,12  q p q SI6,13  q q SI6,14  q p q SI6,15  q q q SI6,16  q1 p p S  1 4 1 3 2 4 I7,9 q1 p2 q 4 SI7,10 1 3 4 1 3 1 4 3 1 3 4 3 4 q 1 p2 p3SI7,11  q1p2 p3 p4 SI7,12  q1 p2 p3 q 4 SI7,13  q1 p2 q3SI7,14  q1 p2 p4 q3SI7,15  q1 p2 q3 q 4 SI7,16  q1q 2 p4SI8,9 (49)  q q p SI8,11  q1q p p SI8,12  q q p q SI8,13  q q q SI8,14  q q p q SI8,15  q q q q SI8,16   q q 2 3 4 1 2 4 SI8,10 1 2 3 1 2 3 4 1 2 3 1 2 4 3 1 2 3 4  q www.ijera.com 321 | P a g e
  • 8. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 2  www.ijera.com 2 2 2 2 2 2 2 2 2 2 2 2 2 R I1  q 2 R I2  p1 R I3  p1 p2 R I4  p1q 2 R I5  q1 R I6  p2 q1 R I7  q1q 2 R I8  pp4 R I9  q 4 R I10  p3 R I11  p3 p4 R I12  p3 q 4 R I13 2 2 2 2 2 2 2 2 2 2  q R I14  p q R I15  q q R I16  p p SI1,9  p q SI1,10  p p SI1,11  p2 p p SI1,12  p p q SI1,13  p q SI1,14  p p q SI1,15 3 4 4 3 2 4 2 4 2 3 3 2 3 4 2 3 2 4 3 3 4 2 2 2 2 2 2 2 2 2  p q q SI1,16  q p SI 2,9  q q SI 2,10  q p SI 2,11  q 2 p p SI 2,12  q p q SI 2,13  q q SI 2,14  q p q SI 2,15  q q q SI 2,16 2 4 2 4 2 3 2 3 4 2 3 4 2 3 2 4 3 2 3 4 3 4 E(T )  2 p 2 2 2 2 2 2 2 2 2 2  p p SI3,9  p q SI3,10  p p SI3,11  p1 p p SI3,12  p p q SI3,13  p q SI3,14  p p q SI3,15  p q q SI3,16  p p p SI 4,9 1 4 1 4 1 3 1 3 4 1 3 1 4 3 1 3 4 1 2 4 3 4 p 1 p 1 2  I 4,10 p2 q 4 S 2  I5,10 q2 q4S 2  I 4,11 p1 p2 p3S 2  I5,11 p1 q 2 p3S 2 2  I 4,12 p1 p2 p3 p4 S 2  I5,12 p1q 2 p3 p4 S 2 2  I 4,13 p1 p2 p3 q 4 S 2  I5,13 p1 q 2 p3 q 4 S 2 2 2  I 4,14 2  I 4,15 p1 p2 p4 q3S p1 p2 q3S 2  I5,14 p1 q 2 q3S 2 2  I5,15 p1 q 2 p4 q3S 2 2  I 4,16 p1 p2 q3 q 4 S 2  I5,16 p1 q 2 q3 q 4 S 2 p1 q 2 p4 S25,9 I q1 p4 S26,9 I 2 2  q q SI6,10  q p SI6,11  q1 p p SI6,12  q p q SI6,13  q q SI6,14  q p q SI6,15  q q q SI6,16  q p p SI7,9  q p q SI7,10 1 2 4 1 4 1 3 1 3 4 1 3 1 4 3 1 3 4 1 2 4 3 4 2  I7,11 2  I7,12 q1 p2 p3 p4 S 2  I 7,13 2  I7,14 2  I7,15 2  I7,16 q p 2 p3 S q  q 2 p3S28,11  q1q 2 p3 p4 S28,12  q1q 2 p3 q 4 S28,13  q1 q 2 q3S28,14  q1 q 2 p4 q3S28,15  q1 q 2 q3 q 4 S28,16    I I I I I I  1 1      p1 1  BI3  q3 q 4 1  BI16 p1 p2 1  BI 4   p1q 2 1  BI5 p4 p2 1  BI1 BI9   q1 p2 p3 q 4 S q1 1  BI6 p2 q 4 1  BI1 BI10   q1 p2 1  BI7  q1 p2 q3S q1 p2 p4 q3S q1 p2 q3 q 4 S 2 I8,9 q1q 2 p4 S 1  2 q 1 q 2 q 4 S28,10 I  p q2 2  2 ( N  M )   1  BI1 1  BI 2   p p3 p3 p 4 p3 q 4 q3 q3 p4 q1q 2  p 2 q4   4  (  M )       2 N 1  BI8    1  BI9 1  BI10 1  BI11 1  BI12 1  BI13 1  BI14 1  BI15    p 2 p3 p 2 p3 p 4 p 2 p3 q 4 p2 q3 p4 p2 q3 q 4 p2 q3 q 2 p4 q2 q4        1  BI1 BI11 1  BI1 BI12 1  BI1 BI13 1  BI1 BI14 1  BI1 BI15 1  BI1 BI16 1  BI 2 BI9 1  BI 2 BI10 (50) q 2 p3 q 2 p3 p 4 q 2 p3 q 4 q 2 q3 p4 q 2 q3 q 4 p1 p3 p1 p3 p4 p1 p3 q 4 q 2 q3 p4 p1 p1q 4           1  BI 2 BI11 1  BI 2 BI12 1  BI 2 BI13 1  BI 2 BI14 1  BI 2 BI15 1  BI 2 BI16 1  BI3 BI9 1  BI3 BI10 1  BI3 BI11 1  BI3 BI12 1  BI3 BI13 p1 q3 1  BI3 BI14 p1 p4 q 2   1  BI5 BI9 p1q3 p4 p1q3 q 4 p1 p2 p3 p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p1 p2 q3 p4 p1 p2 q3 q 4 p1 p4 p2 p1 p2 q 4          1  BI3 BI15 1  BI3 BI16 1  BI 4 BI9 1  BI 4 BI10 1  BI 4 BI11 1  BI 4 BI12 1  BI 4 BI13 1  BI 4 BI14 1  BI 4 BI15 1  BI 4 BI16 p1q 2 q 4 1  BI5 BI10  q1 p3 p1 q 2 p3 p1 q 2 p3 p4 p1 q 2 p3 q 4 p1 q 2 q3 p1 q 2 q3 p4 p1q 2 q3 q 4 p4 q1 q1 q 4         1  BI5 BI11 1  BI5 BI12 1  BI5 BI13 1  BI5 BI14 1  BI5 BI15 1  BI5 BI16 1  BI6 BI9 1  BI6 BI10 1  BI6 BI11  q1 p3 p4 q1 p3 q 4 q1q3 p4 q1q3 q 4 q1 p2 p3 q1 p2 p3 p4 q1 p2 p3 q 4 q1 p2 q3 q1 q3 q1 p4 p2 q1 p2 q 4           1  BI6 BI12 1  BI6 BI13 1  BI6 BI14 1  BI6 BI15 1  BI6 BI16 1  BI7 BI9 1  BI7 BI10 1  BI7 BI11 1  BI7 BI12 1  BI7 BI13 1  BI7 BI14  q1 p2 q3 p4 q1 p2 q3 q 4 q1 p4 q 2 q1q 2 p3 q1q 2 p3 p4 q1q 2 p3 q 4 q1 q 2 q3 q1q 2 q3 p4 q1 q 2 q3 q 4  q1 q 2 q 4            1  BI7 BI15 1  BI7 BI16 1  BI8 BI9 1  BI8 BI10 1  BI8 BI11 1  BI8 BI12 1  BI8 BI13 1  BI8 BI14 1  BI8 BI15 1  BI8 BI16   where for a=1,2….16, b=1,2,3,4,5,6,7,8 and d=9,10,11,12,13,14,15,16. R Ia  (51) N N and S Ib, d   (1  B Ia)  (1  B Ib B Id) III. MODEL DESCRIPTION AND ANALYSIS OF MODEL-II For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are taken as Y=min (Y1, Y2) and Z=min (Z1, Z2). All the other assumptions and notations are as in model-I. Case (i): The distribution of optional and mandatory thresholds follow exponential distribution For this case the first two moments of time to recruitment are found to be Proceeding as in model-I, it can be shown for the present model that If g ( t )  g ( t ), f ( t )  f u (1) ( t ) x (1) E (T )  C I3  p(C I6  H I3,6)  E (T 2 )  2 C I 3  p(C I 6  H I 3, 6 2 2 2 (52)  (53) where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 C Ia , H Ib, d are given by (16) If g(t )  g (t ), f (t )  f (t ) u (1) x (k ) E (T )  (54) LK 3  p(LK 6  M K 3,6) 2 2 2 2 E(T )  2(LK3  p(LK6  MK3,6  (55) where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 L Ka , M Kb, d are given by (20). If g(t )  g (t ), f (t )  f u (k ) (t ) x(k) E(T)  PK3  p(PK6  Q (56) ) K3,6 2  2 E (T )  2 PK 3  p P 2 K6 2 Q   1  2 K 3,6    N 2    1  p M  1  DK3  2   N 2    1 1  M  1   DK 6 1  D K3 DK 6    (57) where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 P Ka , Q Kb, d are given by (24) If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t ) www.ijera.com 322 | P a g e
  • 9. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 E (T )  www.ijera.com (58) R I3  p(R I6  SI3,6) E (T 2 )  2 R  p 2 R 2  2  1  S I 3, 6    M  2   p 1  2   M  1  1    1  DI 3 D   I6  N N  1  1 D   D (59)     where for a = 1, 2…6. b=1, 2, 3 and d=4, 5, 6 R Ia , SIb, d are given by (26). Case (ii): The distribution of optional and mandatory thresholds follow extended exponential distribution If g(t )  g (t ), f (t )  f (t ) I3 I6 2 2 I3 u (1) x (1) I6  E(T)  4CI3  2CI7  2CI8  CI11  p 4CI6  2CI12  2CI13  CI16 16HI3,6  8HI3,12  8HI3,13  4HI3,16  8HI7,6 (60)   4HI7,12  4HI7,13  2HI7,6  8HI8,6  4HI8,12  4HI8,13  2HI8,16  4HI11,6  2HI11,12  2HI11,13  HI11,16   (61) E(T )  2 4CI3  2CI7  2CI8  CI11  p 4CI6  2CI12  2CI13  C1I6 16HI3,6  8HI3,12  8HI3,13  4HI3,16  8HI7,6  4HI7,12 2 2  4H 2 2  I7,13 2 2H 2  I7,16 2 8H 2  I8,6 2 4H 2 2  I8,12 4H 2 2  I8,13 2 2H 2  I8,16 2 4H 2  I11,6 2 2H 2  I11,12 2 2H 2  I11,13 2 2 H 2  2 I11,16 where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 C Ia , H Ib, d are given by (16) If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t )  E(T)  4LK 3  2LK 7  2LK8  LK11  p 4LK 6  2LK12  2LK13  LK16 16MK 3,6  8MK 3,12  8MK 3,13  4MK 3,16  8MK 7,6  (62)  4MK 7,12  4MK 7,13  2MK 7,6  8MK8,6  4MK8,12  4MK8,13  2MK8,16  4MK11,6  2MK11,12  2MK11,13  MK11,16  2 2 2 2  2 2 2 2 2 2 2 2 2 2 E(T )  2 4LK3  2LK 7  2LK8  LK11  p 4LK 6  2LK12  2LK13  LK16 16LK3,6  8LK3,12  8LK3,13  4LK3,16  8LK 7,6  8L  4L 4L 2L 4L 4L 2L 4L 2L 2L L where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 L Ka , M Kb, d are given by (20). If g(t )  g (t ), f (t )  f u (k ) (t ) 2  K 7,12 2  K 7,13 2  K8,6 2  K 7,16 2  K8,12 2  K8,13 2  K8,16 2  K11,6 2  K11,12 2  K11,13 2 K11,16 (63) x (k ) E(T)  4PK 3  2PK 7  2PK8  PK11  p  4Q K 7,12  2 E(T )  2 4P  8Q 2  K3 2 K8,6 2P  4Q K 7,13 2  K7  4Q 2P 2 K8,12 2  K8  4Q P  2Q 4PK6  2PK12  2PK13  PK16 16QK3,6  8QK3,12  8QK3,13  4QK3,16  8QK7,6 K 7, 6 2 p K11 2 K8,13  8Q 2  K6 2  K12 4P  2Q 2 K8,16 K8,6 2P  4Q 2 K11,6 2P  4Q K8,12 2  K13  2Q P 2 K11,12  4Q K8,13  2Q K8,16  4Q K11,6  2Q K11,12  2Q K11,13   Q K11,16  16QK3,6  8QK3,12  8QK3,13  4QK3,16  8QK7,6  4QK7,12  4QK7,13  2QK7,16 2 2  K16  2Q 2 K11,13 Q 2 2 2 2 2 2 (64) 2 (65)  1    1 ( 2  M) 4  2  2     2 N K11,16    1 DK3 1  DK7 1  DK8 1  DK11    2   4 2 2 1 16 8 8 4 8 4 2  (  M)          2 N  1  DK 6 1  DK12 1  DK13 1  DK16 1  DK3 DK 6 1  DK3 DK12 1  DK3 DK13 1  DK3 DK16 1  DK 7 DK 6 1  DK 7 DK12  p   4 2 8 4 4 2 4 2 2 1           1  DK 7 DK13 1  DK 7 DK 6 1  DK8 DK 6 1  DK8 DK12 1  DK8 DK13 1  DK8 DK16 1  DK11 DK 6 1  DK11 DK12 1  DK11 DK13 1  DK11 DK16   where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 P Ka , Q Kb, d are given by (24) . If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )  E(T)  4R I3  2R I7  2R I8  R I11  p 4R I6  2R I12  2R I13  R I16 16SI3,6  8SI3,12  8SI3,13  4SI3,16  8SI7,6  (66)  4SI7,12  4SI7,13  2SI7,6  8SI8,6  4SI8,12  4SI8,13  2SI8,16  4SI11,6  2SI11,12  2SI11,13  SI11,16   E(T )  2 4R I3  2R I7  2R I8  R I11  p 4R I6  2R I12  2R I13  R1I6 16SI3,6  8SI3,12  8SI3,13  4SI3,16  8SI7,6  4SI7,12  4SI7,13  2SI7,16  8SI8,6 2 2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  4  4 2 2 1  p 2 2 2  ( N  M )    (  M )  2 N  1  1  DI3 1  DI7 1  DI8 1  DI11    DI6 1  DI12 2 1 16 8 8 4 8 4 4 2 8            1  DI13 1  DI16 1  DI3 DI6 1  DI3 DI12 1  DI3 DI13 1  DI3 DI16 1  DI7 DI6 1  DI7 DI12 1  DI7 DI13 1  DI7 DIK 6 1  DI8 DI6 2 2 2 2 2 2 2  4SI8,12  4SI8,13  2SI8,16  4SI11,6  2SI11,12  2SI11,13  SI11,16   1  2  4 4 2 4 2 2 1        1  DI8 DI12 1  DI8 DI13 1  DI8 DI16 1  DI11 DI6 1  DI11 DI12 1  DI11 DI13 1  DI11 DI16   (67) where for a=3, 6,7,8,11,12, 13,16 ,b=3,7,8,11,and d=6,12,13,16 R Ia , SIb, d are given by (26). Case (iii): The distributions of optional and mandatory thresholds possess SCBZ property. If g ( t )  g ( t ), f ( t )  f u (1) ( t ) x (1) (68) p1p2 CI 4  p1q 2 CI5  p2 q1CI7  q1q 2 CI8  p(p3 p4 CI12  p3 q 4 CI13  p4 q3 CI15  q3 q 4 CI16  p1p p p H I 4,12  p p p q H I 4,13  p p q p H I 4,15  p p q q H I 4,16  p1q p p H I5,12 2 3 4 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 E (T )  p q 2 p3 q 4 H I5,13  p1q 2 p4 q3 H I5,15  p1q 2 q3 q 4 H I5,16  q1p2 p3 p4 H I7,12  q1 p2 p3 q 4 H I7,13 q  p2 p4 q3 H I7,15  q1 p2 q3 q 4 H I7,16  q1q 2 p3 p4 H I8,12  q1q 2 p3 q 4 H I8,13  q1q 2 p4 q3 H I8,15  q1q 2 q3 q 4 H I8,16   1 1 www.ijera.com 323 | P a g e
  • 10. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com 2 2 2 2 2 2 2 2 2 E(T )  2 p p CI 4  p q CI5  p q CI7  q q CI8  p p p CI12  p q CI13  p q CI15  q q CI16   3 4 3 4 1 2 2 1 1 2 4 3  1 2  3 4 p2 p3q4 H24,13  p1p2 p4 q3 H24,15  p1p2 q3q4 H24,16  p1q2 p3 p4 H25,12 I I I I 2 2 2 2 2 2  p q p q H I5,13  p q p q H I5,15  p q q q H I5,16  q1p p p H I7,12  q p p q H I7,13  q p p q H I7,15 2 3 4 1 2 3 4 1 2 4 3 1 2 3 4 1 2 3 4 1 2 4 3  p1p q 1 2 p 2 3 p4 H I 4,12 p 1  p2 q3q4 H27,16  q1q2 p3 p4 H28,12  q1q2 p3q4 H28,13  q1q2 q3 H28,14  q1q2 p4 q3 H28,15  q1q2 q3q4 H28,16   I I I I I I  (69) where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. C Ia , H Ib, d are given by (39) . If g ( t )  g x ( k ) ( t ), f ( t )  f u (1) ( t ) E (T )  p1p2 LK 4  p1q 2 LK5  p2 q1 LK 7  q1q 2 LK8  p(p3 p4 LK12  p3 q 4 LK13  p4 q3 LK15  q3 q 4 LK16     p1q p p M K 5,12 p 2 3 p4 M K 4,12 p1 p2 p3 q 4 M K 4,13 p1 p2 q3 p4 M K 4,15 p1 p2 q3 q 4 M K 4,16 2 3 4 (70)  p1 p p q 2 p3 q 4 M K5,13  p1q 2 p4 q3 M K5,15  p1q 2 q3 q 4 M K5,16  q1p2 p3 p4 M K 7,12  q1 p2 p3 q 4 M K 7,13 q  p2 p4 q3 M K 7,15  q1 p2 q3 q 4 M K 7,16  q1q 2 p3 p4 M K8,12  q1q 2 p3 q 4 M K8,13  q1q 2 p4 q3 M K8,15  q1q 2 q3 q 4 M K8,16  1 1 2 2 2 2 2 2 2 2 2 2   E(T )  2 p p LK 4  p q LK 5  p q LK 7  q q LK8  p p p LK12  p q LK13  p q LK15  q q LK16  p1p p p M K 4,12 3 4 3 4 2 3 4 1 2 2 1 1 2 4 3  1 2  3 4 p2 p3 q4 M2 4,13  p1 p2 p4 q3 M2 4,15  p1 p2 q3 q 4 M2 4,16  p1q2 p3 p4 M2 5,12  p1q 2 p3 q 4 M2 5,13  p1q 2 p4 q3 M2 5,15 K K K K K K 2 2 2 2 2 2  p q q q M K 5,16  q1p p p M K 7,12  q p p q M K 7,13  q p p q M K 7,15  q p q q M K 7,16  q1q p p M K8,12 2 3 2 3 1 2 3 4 1 2 3 4 1 2 4 3 1 2 3 4 p 1 4 4  q p q 2  q1q 2 q3 M2 8,14  q1q 2 p4 q3 M 2 8,15  q1q 2 q3 q 4 M2 8,16  K K K 1 2 3 4 M K 8,13  q (71) where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. L Ka , M Kb, d are given by (44). If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t ) p1p2 PK 4  p1q 2 PK 5  p2 q1 PK 7  q1q 2 PK8  p(p3 p4 PK12  p3 q 4 PK13 p4 q3 PK15  q3 q 4 PK16  p1p p p Q     p1q p p Q 2 3 4 K 4,12 p1 p2 p3 q 4 QK 4,13 p1 p2 q3 p4 QK 4,15 p1 p2 q3 q 4 QK 4,16 2 3 4 K 5,12 E (T )  p q 2 p3 q 4 QK 5,13  p1q 2 p4 q3 QK 5,15  p1q 2 q3 q 4 QK 5,16  q1p2 p3 p4 QK 7,12  q1 p2 p3 q 4 QK 7,13 q  p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p3 p4 QK8,12  q1q 2 p3 q 4 QK8,13  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16   1 1 (72) E(T )  2 p p P K 4  p q P K 5  p q P K 7  q q P K8  p p p P K12  p q P K13  p q P K15  q q P K16  p1 p p p Q   3 4 3 4 2 3 4 K 4,12 1 2 2 1 1 2 4 3  1 2  3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 p p2 p3 q 4 QK 4,13  p1 p2 p4 q3 QK 4,15  p1 p2 q3 q 4 QK 4,16  p1q 2 p3 p4 QK5,12  p1q 2 p3 q 4 QK5,13  p1q 2 p4 q3 QK5,15 p q 2 q3 q 4 QK5,16  q1p2 p3 p4 QK 7,12  q1 p2 p3 q 4 QK 7,13  q1 p2 p4 q3 QK 7,15  q1 p2 q3 q 4 QK 7,16  q1q 2 p3 p4 QK8,12 q  q 2 p3 q 4 QK8,13  q1q 2 q3 QK8,14  q1q 2 p4 q3 QK8,15  q1q 2 q3 q 4 QK8,16     1 1 2 2 2 2 1  p p p1q 2 q1 p2 2 1 2  ( N  M)  1  DK 4 1  DK 5 1  DK 7    p p p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p4 p3 q 4 q3 p4 q3 q 4 q1q 2  p 2   3 4   (  M)       2 N 1  DK8   1  DK12 1  DK13 1  DK15 1  DK16 1  DK 4 DK12 1  DK 4 DK13 1  DK 4 DK15    p1p2 q3 q 4 p1q 2 q3 q 4 p1q 2 p3 p4 p1q 2 p3 q 4 p1q 2 q3 p4 q1 p2 p3 p4 q1 p2 p3 q 4        1  DK 4 DK16 1  DK 5 DK12 1  DK 5 DK13 1  DK 5 DK15 1  DK 5 DK16 1  DK 7 DK12 1  DK 7 DK13 q1 p2 q3 p4 q1 p2 q3 q 4 q1q 2 p3 p4 q1q 2 p3 q 4 q1q 2 q3 p4 q1q 2 q3 q 4         1  DK 7 DK15 1  DK 7 DK16 1  DK8 DK12 1  DK8 DK13 1  DK8 DK15 1  DK8 DK16    1 2 (73) where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. P Ka , Q Kb, d are given by (48). If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t ) E (T )  p p R I 4  p q R I5  p q R I7  q q R I8  p(p p R I12  p q R I13  p q R I15  q q R I16 3 4 3 4 3 4 1 2 1 2 2 1 1 2 4 3  p1p p p SI 4,12  p p p q SI 4,13  p p q p SI 4,15  p p q q SI 4,16  p1q p p SI5,12 2 3 4 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4  p q p q SI5,13  p q p q SI5,15  p q q q SI5,16  q1p p p SI7,12  q p p q SI7,13 2 3 4 1 2 3 4 1 2 4 3 1 2 3 4 1 2 3 4 q 1  p2 p4 q3 SI7,15  q1 p2 q3q 4 SI7,16  q1q2 p3 p4 SI8,12  q1 q 2 p3q 4 SI8,13  q1 q 2 p4 q3 SI8,15  q1 q 2 q3q 4 SI8,16   www.ijera.com (74) 324 | P a g e
  • 11. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com 2 2 2 2 2 2 2 2 2 2 2 E(T )  2 p p R I 4  p q R I5  p q R I7  q q R I8  p p p R I12  p q R I13  p q R I15  q q R I16  p1 p p p SI 4,12  p p p q SI 4,13   3 4 3 4 2 3 4 1 2 2 1 1 2 4 3 1 2 3 4  1 2  3 4 p2 p4 q3S24,15  p1 p2 q3 q 4 S24,16  p1q 2 p3 p4 S25,12  p1 q 2 p3 q 4 S25,13  p1 q 2 p4 q3S25,15  p1 q 2 q3 q 4 S25,16  q1 p2 p3 p4 S27,12 I I I I I I I 2 2 2 2 2 2 2  q p p q SI7,13  q p p q SI7,15  q p q q SI7,16  q1q p p SI8,12  q q p q SI8,13  q q q SI8,14  q q p q SI8,15 2 3 4 1 2 3 4 1 2 4 3 1 2 3 4 1 2 3 4 1 2 3 1 2 4 3 p 1 q  q 2 q3 q 4 S28,16    I  1  p p  p p p3 q 4 q3 p4 q3 q 4 p1 q 2 q1 p2 q1 q 2  p 2 2    3 4 ( N  M ) 1 2     (  M )    2 N  1  D I 4 1  D I5 1  D I7 1  D I8    1  D I12 1  D I13 1  D I15 1  D I16      p1 p2 p3 p4 p1 p2 p3 q 4 p1 p2 q3 p4 p1 p2 q3 q 4 p1 q 2 p3 p4 p1 q 2 p3 q 4 p1 q 2 q3 p4 p1q 2 q3 q 4        1  D I 4 D I12 1  D I 4 D I13 1  DI 4 D15 1  D I 4 D I16 1  D I5 D I12 1  DI5 D I13 1  D I5 D I15 1  D I5 D I16 q p2 p3 p4 q1 p2 p3 q 4 q1 p2 q3 p4 q1 p2 q3 q 4 q1 q 2 p3 p4 q1 q 2 p3 q 4 q1 q 2 q3 p4 q1 q 2 q3 q 4    1         1  D I7 D I12 1  D I7 D I13 1  DI7 D I15 1  D I7 D I16 1  DI8 D I12 1  D I8 D I13 1  D I8 D I15 1  D I8 D I16   1 2  (75) where for a=4,5,7,8, 12, 13,15,16 ,b=4,5,7,8 and d=12, 13,15,16. R Ia , SIb, d are given by (51). IV. MODEL DESCRIPTION AND ANALYSIS OF MODEL-III For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are taken as Y=Y1+Y2 and Z=Z1+ Z2 .All the other assumptions and notations are as in model-I. Proceeding as in model-I, it can be shown for the present model that Case (i): The distributions of optional and mandatory thresholds follow exponential distribution. If g ( t )  g x (1) ( t ), f ( t )  f u (1) ( t )  E (T )  A2 CI 2  A1 CI1  p A5 CI5  A4 CI 4  A1 A4 HI1,4  A2 A4 HI1,4  A1 A5 HI1,5  A2 A5 HI 2,5  (76)   2 2 2 2 2 2 2 2 2  E(T )  2 A2 C I2  A1 C I1  p A5 CI5  A4 C I4  A1 A4 H I1,4  A2 A4 H I1,4  A1 A5 H I1,5  A2 A5 H I2,5    where (77) 2 , 1 , 2 , 1 A2  A4  A5  1  2 1  2 1   2 1   2 A1  for a=1, 2, 4, 5, b=1,2and d=4, 5 C Ia , H Ib, d are given by equation (16). If g ( t )  g E (T )  x (k ) ( t ), f ( t )  f u (1) ( t ) A 2 LK 2  A1 LK1  pA5 LK5  A 4 LK 4  A1 A 4 M K1,4  A 2 A 4 M K1,4  A1 A5 M K1,5  A 2 A5 M K 2,5 (78) (79)   2 2 2 2 2 2 2 2 2  E(T )  2 A2 LK 2  A1 LK1  p A5 LK5  A 4 LK 4  A1 A4 MK1,4  A 2 A4 MK1,4  A1 A5 MK1,5  A2 A5 MK 2,5    where for a=1, 2, 4, 5, b=1,2and d=4, 5 L Ka , M Kb, d are given by (20). If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )  E(T )  A 2 P K 2  A1 P K1  p A5 P K 5  A 4 P K 4  A1 A 4 Q  K1, 4  A2 A4 Q K1, 4  A1 A5 Q K1,5  A 2 A5 Q   (80) K 2, 5   A2 A1  2 2 2  E(T )  2 A2 P K 2  A1 P K1  p A5 PK 5  A4 P K 4  A1 A4 Q K1,4  A2 A4 Q K1,4  A1 A5 Q K1,5  A2 A5 Q K 2,5    ( N  M )   1    2  DK 2 1  DK1    2 p  2 2 2 2 2 2 2 1   A5 A4  A1A4  A 2 A4  A1A5  A 2 A5  2 ( N  M)   1  DK 5 1  DK 4 1  DK1 DK 4 1  DK1 DK 4 1  DK1 DK 5 1  DK 2 DK 5   (81) where for a=1, 2, 4, 5, b=1,2and d=4, 5 P Ka , Q Kb, d are given by (24) . If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t ) E(T)  A2 R I 2  A1 R I1  p 2 E (T )  2 A5 R I5  A4 R I4  A1 A4 SI1,4  A2 A4 SI1,4  A1 A5 SI1,5  A2 A5 SI2,5 (82) A2 R I22  A1 R I12  pA5 R 25  A4 R I42  A1 A4 SI1,42  A2 A4 SI1,42  A1 A5 SI1,52  A2 A5 SI2,52     I   A2 1 A1   p ( 2  M) A5  A4  A1A4  A 2 A4  A1A5  A 2 A5  2     (  M )  N 2 N 1 1  DI2 1  DI1  2 DI5 1  DI 4 1  DI1 DI 4 1  DI1 DI 4 1  DI1 DI5 1  DI 2 DI5       (83) where for a=1, 2, 4, 5, b=1,2and d=4, 5 R Ia , SIb, d are given by (27). Case (ii): If the distributions of optional and mandatory thresholds follow extended exponential distribution with shape parameter 2. If g ( t )  ( t ), f ( t )  (t) g x (1)  f u (1) E(T)  S1 CI1  S2 CI9  S3 CI2  S4 CI10  p S5 CI4  S6 CI14  S7 CI5  S8 CI5  S1S5 HI1,4  S1S6 H  S2 S7 H I9,5  S2 S8 HI9,15  S3S5 HI2,4  S3S6 H www.ijera.com I2,14  S3S7 H I2,5 I1,14  S1S7 H  S3S8 HI2,15  S4 S5 HI4,10  S4 S6 H I1,5 I10,14  S1S8 HI1,15  S2 S5 HI9,4  S2 S6 H  S4 S7 H I10,5   S4 S8 HI10,15 I9,14 (84) 325 | P a g e
  • 12. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com  2 2 2 2 2 2 2 2 2 2 2 2 2 2 E(T )  2 S1 CI1  S2 CI9  S3 CI2  S4 CI10  pS5 CI4  S6 CI14  S7 CI5  S8 CI5  S1S5 H I1,4  S1S6 H I1,14  S1S7 H I1,5  S1S8H I1,15  S2 S5 H I9,4    S2 S6 H I9,14 2 2 2 2 2 2 2 2 2 2 2 S2 S7HI9,5  S2 S8HI9,15  S3 S5 HI2,4  S3 S6HI2,14  S3 S7HI2,5  S3 S8HI2,15  S4 S5 HI4,10  S4 S6HI10,14  S4 S7HI10,5  S4 S8HI10,15      (85) Where for a=1, 2, 4, 5, 9,10,14,15 b=1, 2,9,10 and d=4, 5, 14, 15. C Ia , H Ib, d are given by (15) 4 4 1 2 1 ,S  ,S  S1     2  S  1 2 1 22  2 1  221  2 3 1  221  2  4 1  21  22 2 2 2 2 4 2 4 1 2 1 S5    1  22 , S6  1  221  2 S7  1  221  2 , S8  1  21  22 1 2 If g(t )  g (t ), f (t )  f u (1) (t ) 2 2 x (k ) 2 2  E (T )  S1 LK1  S2 LK 9  S3 LK 2  S4 LK10  p S5 LK 4  S6 LK14  S7 LK 5  S8 LK 5  S1S5 M K1, 4  S1S6 M  S1S7 M K1,5  S3S7 M E(T 2   S1S8 M K1,15  S2 S5 M K 9, 4  S2 S6 M K 9,14  S3S8 M K 2,15  S4 S5 M K 4,10  S4 S6 M K 2 ,5  S2 S7 M K10,14  S4 S7 M K1,14  S2 S8 M K 9,15  S3S5 M K 2, 4  S3S6 M K 9 ,5 K10,5 (86)  K 2,14  S4 S8 M K10,15 (87) 2 2 2 2 2 2 )  2 S1 LK1  S2 LK9  S3 LK 2  S4 LK10  p S5 LK 4  S6 LK14  S7 LK5  S8 LK15  S1S5 M K1,4  S1S6 M K1,14   2 2 2 2 2 2 2  S1S7 M K1,5  S1S8 M K1,15  S2 S5 M K9,4  S2 S6 M K9,14 2 2 2 2  S2 S7 M K9,5  S2 S8 M K9,15  S3S5 M K 2,4  S3S6 M K 2,14 2 (88) 2 2 2 2 2 2  S3S7 M K 2,5  S3S8 M K 2,15  S4 S5 M K 4,10  S4 S6 M K10,14  S4 S7 M K10,5  S4 S8 M K10,15     where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 L Ka , M Kb, d are given by (20). If g ( t )  g x (k ) ( t ), f ( t )  f u ( k ) ( t )  E(T)  S1 PK1  S2 PK 9  S3 PK 2  S4 PK10  p S5 PK 4  S6 PK14  S7 PK 5  S8 PK 5  S1 S5 Q  S1 S7 Q  S1 S8 Q  S3 S7 Q  S3 S8 Q K1,5  K 2,5 K1,15  S2 S5 Q K 9, 4 K 2,15  S4 S5 Q K1, 4  S2 S6 Q K 4,10 K 9,14  S4 S6 Q  S2 S7 Q K 9,5 K10,14  S4 S7 Q  S2 S8 Q K 9,15 K10,5  S4 S8 Q  S1 S6 Q K1,14  S3 S5 Q K 2, 4  S3 S6 Q K 2,14   K10,15  (89) 2 E(T )  2 S1 P K1  S2 P K9  S3 P K 2  S4 P K10  p S5 P K 4  S6 P K14  S7 P K5  S8 P K15  S1S5 QK1,4  S1S6 QK1,14   2 2 2 2 2 2 2 2 2 2 2  S1S7 QK1,5  S1S8 QK1,15  S2 S5 QK9,4  S2 S6 QK9,14  S2 S7 QK9,5 2 2 2 2 2 2 2  S2 S8 QK9,15  S3S5 QK 2,4  S3S6 QK 2,14  S 2 2 2 2 2 2 1 2 1  S3S7 QK 2,5  S3S8 QK 2,15  S4 S5 QK 4,10  S4 S6 QK10,14  S4 S7 QK10,5  S4 S8 QK10,15    ( N  M )   1   2 DK1  S2 1  DK9  S3 1  DK 2  S1S5 S4   p ( 2  M) S5  S6  S7  S8    2 N 1 1  DK10  DK 4 1  DK14 1  DK5 1  DK15 1  DK1D     K4 S1S6 1  DK1 D K14 S3S5 S3S6 S1S7 S1S8 S2S5 S2S6 S2S7 S2S8         1  DK1 D 1  DK1 D 1  DK 2 D 1  DK 2 D 1  DK9 D 1  DK9 D 1  DK9 D 1  DK9 D K5 K15 K4 K14 K4 K14 K5 K15  S3S7 S3S8 S4S5 S4S6 S4S7 S4S8          1  DK 2 D 1  DK 2 D 1  DK10 D 1  DK10 D 1  DK10 D 1  DK10 D K5 K15 K4 K14 K5 K15  (90) where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 P Ka , Q Kb, d are given by (24) . If g ( t )  g x (1) ( t ), f ( t )  f u ( k ) ( t )  E (T )  S1 R I1  S2 R I9  S3 R I 2  S4 R I10  p S5 R I 4  S6 R I14  S7 R I5  S8 R I5  S1S5 SI1, 4  S1S6S  S1S7S I1,5  S3 S7S I1,14  S1S8 SI1,15  S2 S5 SI9, 4  S2 S6S I 2,5 I9,14  S3 S8 SI 2,15  S4 S5 SI 4,10  S4 S6S  S2 S7S I10,14 I 9, 5  S4 S7S  S2 S8 SI9,15  S3 S5 SI 2, 4  S3 S6S I10,5 I 2,14   S4 S8 SI10,15 (91)  2 2 2 2 2 2 2 2 2 2 2 E (T )  2 S1 R I1  S2 R I9  S3 R I 2  S4 R I10  p S5 R I 4  S6 R I14  S7 R I5  S8 R I5  S1S5 SI1,4  S1S6 SI1,14   2 2 2 2  S1S7 SI1,5  S1S8SI1,15  S2 S5 SI9,4  S2 S6 SI9,14  S2 S7 SI9,5 2 2 2 2  S2 S8SI9,15  S3S5 SI 2,4  S3S6 SI 2,14  2 2 2 2 2 2 1 2  S3S7 SI 2,5  S3S8SI 2,15  S4 S5 SI 4,10  S4 S6 SI10,14  S4 S7 SI10,5  S4 S8SI10,15    ( N  M ) S1  1   2 DI1   S2 1  D I9  S3 1  DI 2  S4   p ( 2  M) S5  S6  S7  S8  S1S5   2 N 1 1  DI10  DI 4 1  DI14 1  DI5 1  DI15 1  DI1D     I4 S1S6 1  DI1D I14 S3S5  S3S6 S1S7  S1S8 S2S5  S2S6 S2S7  S2S8     1  DI1D 1  DI1D 1  DI 2 D 1  DI 2 D 1  DI9 D 1  DI9 D 1  DI9 D 1  DI9 D I5 I15 I4 I14 I4 I14 I5 I15  S3S7  S3S8 S4S5 S4S6 S4S7 S4S8         1  DI 2 D 1  DI 2 D 1  DI10 D 1  DI10 D 1  DI10 D 1  DI10 D I5 I15 I4 I14 I5 I15  (92) where for a=1, 2,4,5 ,9,10,14,15 b=1,2,9,10 and d=4,5,14,15 R Ia , SIb, d are given by (27). Case (iii):The distributions of optional and the mandatory thresholds possess SCBZ property. www.ijera.com 326 | P a g e
  • 13. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 www.ijera.com If g(t )  g (t ), f (t )  f (t ) u (1) x (1) E (T )  R1  R 2 CI1  R 3  R 4 CI3  R 5  R 6 CI6  R 7  R 8 CI 2  pR 9  R10CI9  R13  R14CI10  R11  R12CI11  R15  R16CI14  R1  R 2 R 9  R10 H I1,9  R13  R14 H I1,10  R11  R12 H I1,11   R15  R16H I1,14 R 7  R 8 R 9  R10 H I 2,9  R13  R14 H I 2,10  R11  R12 H I 2,11  R15  R16H I 2,14    R 3  R 4 R 9  R10 H I3,9  R13  R14 H I3,10  R11  R12 H I3,11  R15  R16H I3,14 R 5  R 6 R 9  R10 H I6,9  R13  R14 H I6,10  R11  R12 H I6,11  R15  R16H I6,14 (93) R1  R 2 C I12  R 3  R 4 C I32  R 5  R 6 C I62  R 7  R 8C I22  pR 9  R10C I92 2 2 2 2  R13  R14C I10  R11  R12C I11  R15  R16C I14  R1  R 2 R 9  R10 H I1,9 2 2 2 2  R13  R14 H I1,10  R11  R12 H I1,11  R15  R16H I1,14   R 7  R 8 R 9  R10 H I 2,9  2 2 2 2  R13  R14 H I 2,10  R11  R12 H I 2,11  R15  R16H I 2,14   R 3  R 4 R 9  R10 H I3,9  2 2 2 2  R13  R14 H I3,10  R11  R12 H I3,11  R15  R16H I3,14   R 5  R 6 R 9  R10 H I6,9 2 E (T )  2   R13  R14H I6,102  R11  R12H I6,112  R15  R16H I6,142      (94)  where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14. C Ia , H Ib, d are given by (39). 1   p p2 2   p p2 2   q1p q p  pq qq R1    1 1  , R 2   1 1  2 , R 3    2 1  , R 4   21  2  R 5    2   2 , R 6  2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 1 2 4  1 p p4 1  1p1q2 ,  1q11 2 ,  3  3p3 p4 q  q p4  p q4 ,R7  R 8     R 9        R10   3 3   , R11    4 3  , R12   4 3    1    2 3 4 3 4 3 4 3 4 3 2 3 4 3  1q4 p3  13q3q4 ,  4  4p34 q3 ,4  4 q3q4 4 3  R13       R14     R15      R16     3 4 3 3 4 3 4 4 3 4 If g ( t )  g x (k ) ( t ), f ( t )  (95) f u (1) ( t ) R1  R 2 LK1  R 3  R 4LK3  R 5  R 6 LK 6  R 7  R 8LK 2  pR 9  R10LK9  R13  R14LK10 R11  R12LK11  R15  R16LK14  R1  R 2 R 9  R10M K1,9  R13  R14M K1,10  R11  R12M K1,11 R15  R16M K1,14 R 7  R 8R 9  R10M K 2,9  R13  R14M K 2,10  R11  R12M K 2,11  R15  R16M K 2,14  R 3  R 4R 9  R10M K3,9  R13  R14MK3,10  R11  R12M K3,11  R15  R16MK3,14  R 5  R 6 R 9  R10M K 6,9  R13  R14M K 6,10  R11  R12M K 6,11  R15  R16M K 6,14  2 2 2 2 2 2 2 2 E(T )  2R1  R 2 LK1  R 3  R 4 LK3  R 5  R 6 LK 6  R 7  R 8LK 2  pR 9  R10LK9  R13  R14LK10  R11  R12LK11 2 2 2 2 2  R15  R16LK14  R1  R 2 R 9  R10M K1,9  R13  R14M K1,10  R11  R12M K1,11  R15  R16M K1,14   2 2 2 2   R 7  R 8R 9  R10M K 2,9  R13  R14M K 2,10  R11  R12M K 2,11  R15  R16M K 2,14   2 2 2 2   R 3  R 4 R 9  R10M K3,9  R13  R14M K3,10  R11  R12M K3,11  R15  R16M K3,14   2 2 2 2   R 5  R 6 R 9  R10M K 6,9  R13  R14M K 6,10  R11  R12M K 6,11  R15  R16M K 6,14     E (T )      (96) (97)  where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 L Ka , M Kb, d are given by (44). If g ( t )  g x ( k ) ( t ), f ( t )  f u ( k ) ( t )         R 9  R10PK9  R13  R14PK10        K1,9 R13  R14QK1,10  R11  R12QK1,11    R15  R16Q  R 7  R 8R 9  R10QK 2,9  R13  R14QK 2,10  R11  R12QK 2,11  R15  R16QK 2,14   K1,14      R 3  R 4 R 9  R10Q  R13  R14Q  R11  R12Q  R15  R16Q  K 3,9 K 3,10 K 3,11 K 3,14     R 5  R 6 R 9  R10Q  R13  R14Q  R11  R12Q  R15  R16Q  K 6,9 K 6,10 K 6,11 K 6,14   E (T )  R1  R 2 PK1  R 3  R 4 PK 3  R 5  R 6 PK 6  R 7  R 8 PK 2  p  R11  R12 PK11  R15  R16 PK14  R1  R 2 R 9  R10 Q  2 R1  R 2PK12  R 3  R 4PK32  R 5  R 6PK62  R 7  R 8PK 22  pR 9  R10PK92  R13  R14PK102 2 2 2 2 2  R11  R12P K11  R15  R16P K14  R1  R 2 R 9  R10QK1,9  R13  R14QK1,10  R11  R12QK1,11 2 2 2 2 2   R15  R16QK1,14   R 7  R 8R 9  R10QK 2,9  R13  R14QK 2,10  R11  R12QK 2,11  R15  R16QK 2,14  (98) E (T )  2  (99)  R 3  R 4R 9  R10QK3,92  R13  R14QK3,102  R11  R12QK3,112  R15  R16QK3,142   R 5  R 6R 9  R10QK6,92      R  R  R  R  R  R  R  R   2 2 2 1 2 3 4  5 6  7 8  1 2       M           R13 R14 QK 6,10 R11 R12 QK 6,11 R15 R16 QK 6,14 N   1 1  BI3 1  BI6 1  BI 2     2 BI1                R 9 R10  R13 R14  R11 R12  R15 R16   R 9 R10  R13 R14  R11 R12  R15 R16   2 N M R1  R 2  1   1 1  BI10 1  BI11 1  BI14 BI9 BI1 BI9 1  BI1 BI10 1  BI1 BI11 1  BI1 BI14                   R 7  R 8  R 9 R10  R13 R14  R11 R12  R15 R16   R 3  R 4  R 9 R10  R13 R14  R11 R12  R15 R16   1 1 BI2 BI9 1  BI2 BI10 1  BI2 BI11 1  BI2 BI14  BI3 BI9 1  BI3 BI10 1  BI3 BI11 1  BI3 BI14        R R     9 10  R 13 R 14  R 11 R 12  R 15 R 16     R5  R6   1 BI6 BI9 1  BI6 BI10 1  BI6 BI11 1  BI6 BI14      p  2                                             where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 P Ka , Q Kb, d are given by (48). www.ijera.com 327 | P a g e
  • 14. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 If g ( t )  g x (1) ( t ), f ( t )  www.ijera.com f u (k ) (t ) R1  R 2R I1  R 3  R 4R I3  R 5  R 6R I6  R 7  R8R I2  pR 9  R10R I9  R13  R14R I10  R11  R12R I11  R15  R16R I14 R1  R 2R 9  R10SI1,9  R13  R14SI1,10  R11  R12SI1,11  R15  R16SI1,14  R 7  R8R 9  R10SI2,9  R13  R14SI2,10    R11  R12SI2,11  R15  R16SI2,14  R 3  R 4R 9  R10SI3,9  R13  R14SI3,10  R11  R12SI3,11  R15  R16SI3,14   R 5  R 6R 9  R10SI6,9  R13  R14SI6,10  R11  R12SI6,11  R15  R16SI6,14 (100) E (T )   2 R1  R 2R I12  R 3  R 4R I32  R 5  R 6R I62  R 7  R 8R I22  pR 9  R10R I92  R13  R14R I102  R11  R12R I112 R15  R16R I142  R1  R 2R 9  R10SI1,92  R13  R14SI1,102  R11  R12SI1,112  R15  R16SI1,142   R 7  R 8R 9  R10SI2,92    2 2 2 2 2 2   R13  R14SI2,10  R11  R12SI2,11  R15  R16SI2,14   R 3  R 4 R 9  R10SI3,9  R13  R14SI3,10  R11  R12SI3,11   R  R  2 2 2 2 2 1            2  M 1 2           E(T )  2  R15 R16 SI3,14   R 5 R 6 R 9 R10 SI6,9 R13 R14 SI6,10 R11 R12 SI6,11 R15 R16 SI6,14   (101) 2 N  1 BI1   R R R13  R14 9 10   R1  R 2  1  2 N  1  BI3 1  BI6 1  BI 2  1  BI9 1  BI10 1  BI11 1  BI14 BI1 BI9 1  BI1 BI10    R R  R R  R15  R16   R R R R  R R R R R R   R11 R12  R 7  R 8  1  9 10  1  13 14  1  11 12  1  15 16   R 3  R 4  1  9 10  1  13 14  1  11 12   1  BI1 BI11 1  BI1 BI14  BI2 BI9 BI2 BI10 BI2 BI11 BI2 BI14  BI3 BI9 BI3 BI10 BI3 BI11     R15  R16      R 9  R10  R13  R14  R11  R12  R15  R16        1  BI3 BI14   R 5 R 6  1  BI6 BI9 1  BI6 BI10 1  BI6 BI11 1  BI6 BI14        R 3  R 4  R 5  R 6  R 7  R 8              p     2  R 9  R10  R13  R14  R11  R12  R15  R16    M                           where for a=1, 2, 3,6,9,10,11,14 b=1, 2,3,6and d=9,10,11,14 R Ia , SIb, d are given by (51). V. NUMERICAL ILLUSTRATIONS The mean and variance of the time to recruitment for the above models are given in the following tables for the cases(i),(ii),(iii) respectively by keeping 1  0.4,  2  0.6, 1  0.5,  2  0.8, p  0.8. 1  0.6, 1  0.3, 1  0.7, 2  0.4, 2  0.7,  2  0.4, 3  0.8, 3  0.9, 3  0.5, 4  1, 4  1.5,  4  0.2,   1 fixed and varying c, k one at a time and the results are tabulated below . MODEL-I r=1 Case (i) r=k r=1 Case(ii) r=k r=1 Case(iii) r=k www.ijera.com Table – I (Effect of c, k, λ on performance measures) c 1.5 1.5 1.5 0.5 k 1 2 3 2 λ 1 1 1 1 E 6.9679 6.3557 6.1484 2.5225 n=1 V 25.6665 19.3505 17.3979 3.6283 E 6.9679 2.3650 1.3080 1.0798 n=k V 25.6665 3.1717 1.0148 0.8753 E 6.9679 19.0671 33.8154 7.5676 n=1 V 25.6665 161.4276 488.6549 28.1272 E 6.9679 7.0959 7.1940 3.2394 n=k V 25.6665 24.4003 24.2223 6.6552 E 7.7324 7.0834 6.8728 2.7970 n=1 V 43.6104 36.0639 33.5832 5.7270 E 7.7324 3.5027 1.4977 1.2753 n=k V 43.6104 3.1907 1.4998 1.0853 E 7.7324 21.2503 37.7996 8.3909 n=1 V 43.6104 319.2949 998.6626 50.7338 E 7.7324 8.0163 8.2373 3.7368 n=k V 43.6104 38.4822 35.3702 7.2110 E 6.7761 6.1834 5.9831 2.4527 n=1 V 29.2323 23.1644 21.2936 3.9963 E 6.7761 2.2433 1.2782 1.0315 n=k V 29.2323 3.6124 1.1285 0.8973 E 6.7761 18.5503 32.9067 7.3582 n=1 V 29.2323 196.1130 608.2081 31.0609 E 6.7761 6.7298 7.0299 3.0944 n=k V 29.2323 28.0247 26.4670 6.0124 1 2 1 4.4423 9.9659 1.7248 1.8559 13.3270 81.0386 5.1745 13.9834 4.9371 17.6908 2.1966 2.3381 14.8114 156.1554 5.8959 19.4178 4.3208 11.6062 1.6384 2.0285 12.9625 87.1721 4.9151 14.9796 1.5 2 1 6.3557 19.3505 2.3650 3.1717 19.0671 161.4276 7.0959 24.4003 7.0834 36.0639 3.5027 3.1907 21.2503 319.2949 8.0163 38.4822 6.1834 23.1644 2.2433 3.6124 18.5503 196.1130 6.7298 28.0247 328 | P a g e
  • 15. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 MODEL-II n=1 r=1 n=k Case (i) r=k n=1 n=k n=1 r=1 n=k Case(ii) r=k n=1 n=k n=1 r=1 n=k Case(iii) r=k n=1 n=k MODEL-III n=1 r=1 n=k Case (i) r=k n=1 n=k n=1 r=1 n=k Case(ii) r=k n=1 n=k n=1 r=1 n=k Case(iii) r=k n=1 n=k www.ijera.com c k λ E V E V E V E V E V E V E V E V E V E V E V E V c k λ E V E V E V E V E V E V E V E V E V E V E V E 1.5 1 1 3.0491 7.1810 3.0491 7.1810 3.0441 7.1810 3.0441 7.1810 4.4497 10.6673 4.4497 10.6673 4.4497 10.6673 4.4497 10.6673 2.9380 7.1321 2.9380 7.1321 2.9380 7.1321 2.9380 7.1321 1.5 1 1 8.7025 34.8211 8.7025 34.8211 8.7025 34.8211 8.7025 34.8211 11.9437 44.2200 11.9437 44.2200 11.9437 44.2200 11.9437 44.2200 8.4755 40.0820 8.4755 40.0820 8.4755 40.0820 8.4755 www.ijera.com 1.5 2 1 2.4841 4.4459 1.0669 0.9564 7.4522 40.0132 3.2008 6.4733 3.8440 6.6718 1.5259 1.4048 11.5320 52.3579 4.5776 9.5917 2.3862 4.5063 1.0271 0.9467 7.1587 33.4547 1.0271 0.9467 1.5 3 1 2.2929 3.6707 0.6046 0.3209 12.6107 111.0337 3.3253 6.0806 3.6369 5.4893 0.8502 0.4678 20.0024 144.2232 4.6762 9.0489 2.1980 3.7663 0.5761 0.3126 12.0889 94.9477 0.5761 0.3126 0.5 2 1 1.1966 1.1672 0.6467 0.4026 3.5897 10.5046 1.9402 2.3297 1.6790 1.7016 0.7959 0.5362 5.0370 11.9566 2.3877 3.2339 1.1588 1.1488 0.6355 0.3945 3.4765 6.4008 0.6355 0.3945 1 2 1 1.8442 2.5502 0.8546 0.6514 5.5326 22.9520 2.5638 4.1530 2.7663 3.8162 1.1631 0.9324 8.2990 28.8134 3.4894 6.0657 1.7761 2.5532 0.8291 0.6393 5.3284 17.4633 0.8291 0.6393 1.5 2 1 2.4841 4.4459 1.0669 0.9564 7.4522 40.0132 3.2008 6.4733 3.8440 6.6718 1.5259 1.4048 11.5320 52.3579 4.5776 9.5917 2.3862 4.5063 1.0271 0.9467 7.1587 33.4547 1.0271 0.9467 1.5 2 1 8.0800 26.8975 2.9422 4.2573 24.2401 225.9177 8.8266 32.4314 11.2767 33.4379 4.0179 5.4334 33.8301 278.3881 12.0536 40.8646 7.8757 32.4776 2.8689 4.8388 23.6271 276.5466 8.6067 1.5 3 1 7.8698 24.4103 1.6226 1.3523 43.2829 691.1652 8.9241 31.1711 11.0507 30.0115 2.2079 1.7299 60.7777 841.5110 12.1431 39.0814 7.6735 30.0962 1.5833 1.5246 42.2037 864.3347 8.7081 0.5 2 1 3.1046 4.8250 1.2767 1.0932 9.3139 37.2158 3.83 7.2859 4.1989 6.1929 1.6500 1.4021 12.5968 47.3386 4.95 9.3189 3.0222 5.3736 1.2449 1.1397 9.0665 42.3183 3.7341 1 2 1 5.5952 13.6770 2.118 2.4337 16.7855 111.9030 6.3355 17.6793 7.7414 17.2159 2.8369 3.1300 23.2243 139.4601 8.5106 22.4964 5.4512 16.0863 2.0589 2.6751 16.3536 133.8743 6.1768 1.5 2 1 8.0800 26.8975 2.9422 4.2573 24.2401 225.9177 8.8266 32.4314 11.2767 33.4379 4.0179 5.4334 33.8301 278.3881 12.0536 40.8646 7.8757 32.4776 2.8689 4.8388 23.6271 276.5466 8.6067 329 | P a g e
  • 16. P. Saranya et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.315-330 V 40.0820 37.8112 36.6164 7.7674 www.ijera.com 19.9579 37.8112 VI. FINDINGS The influence of nodal parameters on the performance measures namely mean and variance of the time to recruitment for all the models are reported below. i. It is observed that the mean time to recruitment decreases, with increase in k for the cases r=1,n=1 and r=1 ,n=k but increases for the cases r=k,n=1 and r=k,n=k. ii. If c increases, the average number of exits increases, which, in turn, implies that mean and variance of the time to recruitment increase for all the models. VII. CONCLUSION Note that while the time to recruitment is postponed in model-III, the time to recruitment is advanced in model-I and II .Therefore from the organization point of view, model III is more preferable. REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] D.J. Bartholomew, & A.F. Forbes, “Statistical Techniques for Manpower Planning”( John Wiley and Sons, 1979). J.B.Esther Clara, Contributions to the study on some stochastic models in manpower planning , doctoral diss.,Bharathidasan University ,Tiruchirappalli,2012. R.C. Grinold, & K.J. Marshall, Man Power Planning, North Holland, New York (1977). A. Muthaiyan, A. Sulaiman, and R. Sathiyamoorthi, A stochastic model based on order statistics for estimation of expected time to recruitment, Acta Ciencia Indica, 5(2), 2009, 501-508. A. Srinivasan, V. Vasudevan, Variance of the time to recruitment in an organization with two grades, Recent Research in Science and technology, 3(1), 2011 128-131. A. Srinivasan, V. Vasudevan ,A Stochastic model for the expected time to recruitment in a two graded manpower system, Antarctica Journal of Mathematics, 8(3),2011, 241-248. A. Srinivasan, V.Vasudevan, A manpower model for a two-grade system with univariate policy of recruitment, International review of pure and Applied Mathematics,7(1), 2011 ,79-88. A. Srinivasan, V. Vasudevan, A Stochastic model for the expected time to recruitment in a two graded manpower system with two discrete thresholds ,International Journal of Mathematical Analysis and Applications, 6(1),2011 ,119-126. J. Sridharan, P. Saranya., and A. Srinivasan , A Stochastic model based on order statistics for estimation of expected time to recruitment in a two-grade man-power system with different types of thresholds, International Journal of Mathematical Sciences and Engineering Applications ,6(5),2012 ,1-10. J. Sridharan, P. Saranya., and A. Srinivasan, Expected time to recruitment in an organization with twogrades involving two thresholds, Bulletin of Mathematical Sciences and Applications,1(2),2012,53-69. J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment for a two-grade manpower system with combined thresholds, Cayley Journal of Mathematics,1(2),2012 ,113-125. P. Saranya, J. Sridharan., and A. Srinivasan , Expected time to recruitment in an organization with twogrades involving two thresholds following SCBZ property, Antarctica journal of Mathematics , 10(4),2013 ,379-394. P. Saranya, J. Sridharan., and A. Srinivasan , A Stochastic model for estimation of expected time to recruitment in a two grade manpower system under correlated wastage ,Archimedes Journal of Mathematics ,3(3),2013 , 279-298. J. Sridharan, P. Saranya., and A. Srinivasan, A Stochastic model based on order statistics for estimation of expected time to recruitment in a two-grade man-power system using a univariate recruitment policy involving geometric threshold”, Antarctica journal of Mathematics ,10(1),2013,11-19. J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment in a two-grade man-power system with extended exponential thresholds using Order Statistics for inter-decision times , Archimedes journal of Mathematics, 3(1),2013,19-30. J. Sridharan, P. Saranya., and A. Srinivasan, Variance of time to recruitment in a two- grade manpower system with exponential and extended exponential thresholds using order statistics for inter-decision times, Bessel Journal of Mathematics ,3(1),2013,29-38. J. Sridharan, P. Saranya., and A. Srinivasan , A Stochastic model based on order statistics for estimation of expected time to recruitment in a two grade manpower system under correlated wastage, International Journal of Scientific Research and Publications ,3(7),2013,379-394. Medhi.J, Stochastic Processes (second edition , New Age international publishers). www.ijera.com 330 | P a g e