SlideShare a Scribd company logo
1 of 21
Download to read offline
Running a GPU burst for Multi-
Messenger Astrophysics with
IceCube across all available
GPUs in the Cloud
Frank Würthwein
OSG Executive Director
UCSD/SDSC
Jensen Huang keynote
yesterday
2
The Largest Cloud Simulation in History
50k NVIDIA GPUs in the Cloud
350 Petaflops for 2 hours
Distributed across US, Europe & Asia
On Saturday morning we bought all GPU capacity that was for sale in
Amazon Web Services, Microsoft Azure, and Google Cloud Platform worldwide
The Science Case
IceCube
4
A cubic kilometer of ice at the
south pole is instrumented
with 5160 optical sensors.
Astrophysics:
• Discovery of astrophysical neutrinos
• First evidence of neutrino point source (TXS)
• Cosmic rays with surface detector
Particle Physics:
• Atmospheric neutrino oscillation
• Neutrino cross sections at TeV scale
• New physics searches at highest energies
Earth Science:
• Glaciology
• Earth tomography
A facility with very
diverse science goals
Restrict this talk to
high energy Astrophysics
High Energy Astrophysics
Science case for IceCube
5
Universe is opaque to light
at highest energies and
distances.
Only gravitational waves
and neutrinos can pinpoint
most violent events in
universe.
Fortunately, highest energy
neutrinos are of cosmic origin.
Effectively “background free” as long
as energy is measured correctly.
High energy neutrinos from
outside the solar system
6
First 28 very high energy neutrinos from outside the solar system
Red curve is the photon flux
spectrum measured with the
Fermi satellite.
Black points show the
corresponding high energy
neutrino flux spectrum
measured by IceCube.
This demonstrates both the opaqueness of the universe to high energy
photons, and the ability of IceCube to detect neutrinos above the maximum
energy we can see light due to this opaqueness.
Science 342 (2013). DOI:
10.1126/science.1242856
Understanding the Origin
7
We now know high energy events happen in the universe. What are they?
p + g D + p + 0 p + g g
p + g D + n + + n + +
Co
Aya Ishihara
The hypothesis:
The same cosmic events produce
neutrinos and photons
We detect the electrons or muons from neutrino that interact in the ice.
Neutrino interact very weakly => need a very large array of ice instrumented
to maximize chances that a cosmic neutrino interacts inside the detector.
Need pointing accuracy to point back to origin of neutrino.
Telescopes the world over then try to identify the source in the direction
IceCube is pointing to for the neutrino.
Multi-messenger Astrophysics
The ν detection challenge
8
Optical Pro
Aya Ishiha
Combining all the possible info
These features are included in
We re al a s be de eloping h
Nature never tell us a perfec
satisfactory agreem
Ice properties change with
depth and wavelength
Observed pointing resolution at high
energies is systematics limited.
Central value moves
for different ice models
Improved e and τ reconstruction
Þ increased neutrino flux
detection
Þ more observations
Photon propagation through
ice runs efficiently on single
precision GPU.
Detailed simulation campaigns
to improve pointing resolution
by improving ice model.
Improvement in reconstruction with
better ice model near the detectors
First evidence of an origin
9
First location of a source of very high energy neutrinos.
Neutrino produced high energy muon
near IceCube. Muon produced light as it
traverses IceCube volume. Light is
detected by array of phototubes of
IceCube.
IceCube alerted the astronomy community of the
observation of a single high energy neutrino on
September 22 2017.
A blazar designated by astronomers as TXS
0506+056 was subsequently identified as most likely
source in the direction IceCube was pointing. Multiple
telescopes saw light from TXS at the same time
IceCube saw the neutrino.
Science 361, 147-151
(2018). DOI:10.1126/science.aat2890
IceCube’s Future Plans
10
| IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018
The IceCube-Gen2 Facility
Preliminary timeline
MeV- to EeV-scale physics
Surface array
High Energy
Array
Radio array
PINGU
IC86
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 … 2032
Today
Surface air shower
ConstructionR&D Design & Approval
IceCube Upgrade
IceCube Upgrade
Deployment
Near term:
add more phototubes to deep core to increase granularity of measurements.
Longer term:
• Extend instrumented
volume at smaller
granularity.
• Extend even smaller
granularity deep core
volume.
• Add surface array.
Improve detector for low & high energy neutrinos
Details on the Cloud Burst
The Idea
• Integrate all GPUs available for sale
worldwide into a single HTCondor pool.
- use 28 regions across AWS, Azure, and Google
Cloud for a burst of a couple hours, or so.
• IceCube submits their photon propagation
workflow to this HTCondor pool.
- we handle the input, the jobs on the GPUs, and
the output as a single globally distributed system.
12
Run a GPU burst relevant in scale
for future Exascale HPC systems.
A global HTCondor pool
• IceCube, like all OSG user communities, relies on
HTCondor for resource orchestration
- This demo used the standard tools
• Dedicated HW setup
- Avoid disruption of OSG production system
- Optimize HTCondor setup for the spiky nature of the demo
§ multiple schedds for IceCube to submit to
§ collecting resources in each cloud region, then collecting from all
regions into global pool
13
HTCondor Distributed CI
14
Collector
Collector Collector
Collector
Collector
Negotiator
Scheduler SchedulerScheduler
IceCube
VM
VM
VM
10 schedd’s
One global resource pool
Using native Cloud storage
• Input data pre-staged into native Cloud storage
- Each file in one-to-few Cloud regions
§ some replication to deal with limited predictability of resources per region
- Local to Compute for large regions for maximum throughput
- Reading from “close” region for smaller ones to minimize ops
• Output staged back to region-local Cloud storage
• Deployed simple wrappers around Cloud native file
transfer tools
- IceCube jobs do not need to customize for different Clouds
- They just need to know where input data is available
(pretty standard OSG operation mode)
15
The Testing Ahead of Time
16
~250,000 single threaded jobs
run across 28 cloud regions
during 80 minutes.
Peak at 90,000
jobs running.
up to 60k jobs started in ~10min.
Regions across US, EU, and
Asia were used in this test.
Demonstrated burst capability
of our infrastructure on CPUs.
Want scale of GPU burst to be limited
only by # of GPUs available for sale.
Science with 51,000 GPUs
achieved as peak performance
17
Time in Minutes
Each color is a different
cloud region in US, EU, or Asia.
Total of 28 Regions in use.
Peaked at 51,500 GPUs
~350 Petaflops of fp32
8 generations of NVIDIA GPUs used.
A Heterogenous Resource Pool
18
28 cloud Regions across 4 world regions
providing us with 8 GPU generations.
No one region or GPU type dominates!
Science Produced
19
Distributed High-Throughput
Computing (dHTC) paradigm
implemented via HTCondor provides
global resource aggregation.
Largest cloud region provided 10.8% of the total
dHTC paradigm can aggregate
on-prem anywhere
HPC at any scale
and multiple clouds
IceCube is ready for Exascale
• Humanity has built extraordinary instruments by pooling
human and financial resources globally.
• The computing for these large collaborations fits perfectly to
the cloud or scheduling holes in Exascale HPC systems due
to its “ingeniously parallel” nature. => dHTC
• The dHTC computing paradigm applies to a wide range of
problems across all of open science.
- We are happy to repeat this with anybody willing to spend $50-200k in
the clouds.
20
Contact us at: help@opensciencegrid.org
Or me personally at: fkw@ucsd.edu
Demonstrated elastic burst at 51,500 GPUs
IceCube is ready for Exascale
Acknowledgements
• This work was partially sponsored by
NSF grants OAC-1941481,
MPS-1148698, OAC-1841530 and
OAC-1826967.
21

More Related Content

What's hot

Using A100 MIG to Scale Astronomy Scientific Output
Using A100 MIG to Scale Astronomy Scientific OutputUsing A100 MIG to Scale Astronomy Scientific Output
Using A100 MIG to Scale Astronomy Scientific OutputIgor Sfiligoi
 
Using commercial Clouds to process IceCube jobs
Using commercial Clouds to process IceCube jobsUsing commercial Clouds to process IceCube jobs
Using commercial Clouds to process IceCube jobsIgor Sfiligoi
 
Managing Cloud networking costs for data-intensive applications by provisioni...
Managing Cloud networking costs for data-intensive applications by provisioni...Managing Cloud networking costs for data-intensive applications by provisioni...
Managing Cloud networking costs for data-intensive applications by provisioni...Igor Sfiligoi
 
GeoSpatially enabling your Spark and Accumulo clusters with LocationTech
GeoSpatially enabling your Spark and Accumulo clusters with LocationTechGeoSpatially enabling your Spark and Accumulo clusters with LocationTech
GeoSpatially enabling your Spark and Accumulo clusters with LocationTechRob Emanuele
 
The OpenStack Cloud at CERN - OpenStack Nordic
The OpenStack Cloud at CERN - OpenStack NordicThe OpenStack Cloud at CERN - OpenStack Nordic
The OpenStack Cloud at CERN - OpenStack NordicTim Bell
 
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...Andrew Howard
 
OpenStack @ CERN, by Tim Bell
OpenStack @ CERN, by Tim BellOpenStack @ CERN, by Tim Bell
OpenStack @ CERN, by Tim BellAmrita Prasad
 
OpenStack at CERN : A 5 year perspective
OpenStack at CERN : A 5 year perspectiveOpenStack at CERN : A 5 year perspective
OpenStack at CERN : A 5 year perspectiveTim Bell
 
Cycle Computing Record-breaking Petascale HPC Run
Cycle Computing Record-breaking Petascale HPC RunCycle Computing Record-breaking Petascale HPC Run
Cycle Computing Record-breaking Petascale HPC Runinside-BigData.com
 
20170926 cern cloud v4
20170926 cern cloud v420170926 cern cloud v4
20170926 cern cloud v4Tim Bell
 
20150924 rda federation_v1
20150924 rda federation_v120150924 rda federation_v1
20150924 rda federation_v1Tim Bell
 
20181219 ucc open stack 5 years v3
20181219 ucc open stack 5 years v320181219 ucc open stack 5 years v3
20181219 ucc open stack 5 years v3Tim Bell
 
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013Amazon Web Services
 
Differential data processing for energy efficiency of wireless sensor networks
Differential data processing for energy efficiency of wireless sensor networksDifferential data processing for energy efficiency of wireless sensor networks
Differential data processing for energy efficiency of wireless sensor networksDaniel Lim
 
BioPig for scalable analysis of big sequencing data
BioPig for scalable analysis of big sequencing dataBioPig for scalable analysis of big sequencing data
BioPig for scalable analysis of big sequencing dataZhong Wang
 
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...NECST Lab @ Politecnico di Milano
 
20161025 OpenStack at CERN Barcelona
20161025 OpenStack at CERN Barcelona20161025 OpenStack at CERN Barcelona
20161025 OpenStack at CERN BarcelonaTim Bell
 
Towards Exascale Simulations of Stellar Explosions with FLASH
Towards Exascale  Simulations of Stellar  Explosions with FLASHTowards Exascale  Simulations of Stellar  Explosions with FLASH
Towards Exascale Simulations of Stellar Explosions with FLASHGanesan Narayanasamy
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceinside-BigData.com
 

What's hot (20)

Using A100 MIG to Scale Astronomy Scientific Output
Using A100 MIG to Scale Astronomy Scientific OutputUsing A100 MIG to Scale Astronomy Scientific Output
Using A100 MIG to Scale Astronomy Scientific Output
 
Using commercial Clouds to process IceCube jobs
Using commercial Clouds to process IceCube jobsUsing commercial Clouds to process IceCube jobs
Using commercial Clouds to process IceCube jobs
 
Managing Cloud networking costs for data-intensive applications by provisioni...
Managing Cloud networking costs for data-intensive applications by provisioni...Managing Cloud networking costs for data-intensive applications by provisioni...
Managing Cloud networking costs for data-intensive applications by provisioni...
 
GeoSpatially enabling your Spark and Accumulo clusters with LocationTech
GeoSpatially enabling your Spark and Accumulo clusters with LocationTechGeoSpatially enabling your Spark and Accumulo clusters with LocationTech
GeoSpatially enabling your Spark and Accumulo clusters with LocationTech
 
The OpenStack Cloud at CERN - OpenStack Nordic
The OpenStack Cloud at CERN - OpenStack NordicThe OpenStack Cloud at CERN - OpenStack Nordic
The OpenStack Cloud at CERN - OpenStack Nordic
 
Federated HPC Clouds applied to Radiation Therapy
Federated HPC Clouds applied to Radiation TherapyFederated HPC Clouds applied to Radiation Therapy
Federated HPC Clouds applied to Radiation Therapy
 
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...
inGeneoS: Intercontinental Genetic sequencing over trans-Pacific networks and...
 
OpenStack @ CERN, by Tim Bell
OpenStack @ CERN, by Tim BellOpenStack @ CERN, by Tim Bell
OpenStack @ CERN, by Tim Bell
 
OpenStack at CERN : A 5 year perspective
OpenStack at CERN : A 5 year perspectiveOpenStack at CERN : A 5 year perspective
OpenStack at CERN : A 5 year perspective
 
Cycle Computing Record-breaking Petascale HPC Run
Cycle Computing Record-breaking Petascale HPC RunCycle Computing Record-breaking Petascale HPC Run
Cycle Computing Record-breaking Petascale HPC Run
 
20170926 cern cloud v4
20170926 cern cloud v420170926 cern cloud v4
20170926 cern cloud v4
 
20150924 rda federation_v1
20150924 rda federation_v120150924 rda federation_v1
20150924 rda federation_v1
 
20181219 ucc open stack 5 years v3
20181219 ucc open stack 5 years v320181219 ucc open stack 5 years v3
20181219 ucc open stack 5 years v3
 
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013
Empowering Congress with Data-Driven Analytics (BDT304) | AWS re:Invent 2013
 
Differential data processing for energy efficiency of wireless sensor networks
Differential data processing for energy efficiency of wireless sensor networksDifferential data processing for energy efficiency of wireless sensor networks
Differential data processing for energy efficiency of wireless sensor networks
 
BioPig for scalable analysis of big sequencing data
BioPig for scalable analysis of big sequencing dataBioPig for scalable analysis of big sequencing data
BioPig for scalable analysis of big sequencing data
 
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
XeMPUPiL: Towards Performance-aware Power Capping Orchestrator for the Xen Hy...
 
20161025 OpenStack at CERN Barcelona
20161025 OpenStack at CERN Barcelona20161025 OpenStack at CERN Barcelona
20161025 OpenStack at CERN Barcelona
 
Towards Exascale Simulations of Stellar Explosions with FLASH
Towards Exascale  Simulations of Stellar  Explosions with FLASHTowards Exascale  Simulations of Stellar  Explosions with FLASH
Towards Exascale Simulations of Stellar Explosions with FLASH
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
 

Similar to Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all available GPUs in the Cloud

NASA Advanced Computing Environment for Science & Engineering
NASA Advanced Computing Environment for Science & EngineeringNASA Advanced Computing Environment for Science & Engineering
NASA Advanced Computing Environment for Science & Engineeringinside-BigData.com
 
Detecting solar farms with deep learning
Detecting solar farms with deep learningDetecting solar farms with deep learning
Detecting solar farms with deep learningJason Brown
 
From pixels to point clouds - Using drones,game engines and virtual reality t...
From pixels to point clouds - Using drones,game engines and virtual reality t...From pixels to point clouds - Using drones,game engines and virtual reality t...
From pixels to point clouds - Using drones,game engines and virtual reality t...ARDC
 
Science and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraScience and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraLarry Smarr
 
Toward a National Research Platform
Toward a National Research PlatformToward a National Research Platform
Toward a National Research PlatformLarry Smarr
 
Toward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureToward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureLarry Smarr
 
TeraGrid and Physics Research
TeraGrid and Physics ResearchTeraGrid and Physics Research
TeraGrid and Physics Researchshandra_psc
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情NVIDIA Japan
 
Efficient data reduction and analysis of DECam images using multicore archite...
Efficient data reduction and analysis of DECam images using multicore archite...Efficient data reduction and analysis of DECam images using multicore archite...
Efficient data reduction and analysis of DECam images using multicore archite...Roberto Muñoz
 
Scalable Deep Learning in ExtremeEarth-phiweek19
Scalable Deep Learning in ExtremeEarth-phiweek19Scalable Deep Learning in ExtremeEarth-phiweek19
Scalable Deep Learning in ExtremeEarth-phiweek19ExtremeEarth
 
Seismic sensor
Seismic sensorSeismic sensor
Seismic sensorajsatienza
 
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...InfluxData
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesLarry Smarr
 
The World Wide Distributed Computing Architecture of the LHC Datagrid
The World Wide Distributed Computing Architecture of the LHC DatagridThe World Wide Distributed Computing Architecture of the LHC Datagrid
The World Wide Distributed Computing Architecture of the LHC DatagridSwiss Big Data User Group
 
2020 ml swarm ascend presentation
2020 ml swarm ascend presentation2020 ml swarm ascend presentation
2020 ml swarm ascend presentationKyongsik Yun
 
Report to the NAC
Report to the NACReport to the NAC
Report to the NACLarry Smarr
 
Colloborative computing
Colloborative computing Colloborative computing
Colloborative computing Cisco
 
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...Larry Smarr
 

Similar to Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all available GPUs in the Cloud (20)

NASA Advanced Computing Environment for Science & Engineering
NASA Advanced Computing Environment for Science & EngineeringNASA Advanced Computing Environment for Science & Engineering
NASA Advanced Computing Environment for Science & Engineering
 
Detecting solar farms with deep learning
Detecting solar farms with deep learningDetecting solar farms with deep learning
Detecting solar farms with deep learning
 
From pixels to point clouds - Using drones,game engines and virtual reality t...
From pixels to point clouds - Using drones,game engines and virtual reality t...From pixels to point clouds - Using drones,game engines and virtual reality t...
From pixels to point clouds - Using drones,game engines and virtual reality t...
 
Science and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated EraScience and Cyberinfrastructure in the Data-Dominated Era
Science and Cyberinfrastructure in the Data-Dominated Era
 
Toward a National Research Platform
Toward a National Research PlatformToward a National Research Platform
Toward a National Research Platform
 
Toward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing CyberinfrastructureToward a Global Interactive Earth Observing Cyberinfrastructure
Toward a Global Interactive Earth Observing Cyberinfrastructure
 
TeraGrid and Physics Research
TeraGrid and Physics ResearchTeraGrid and Physics Research
TeraGrid and Physics Research
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
 
Efficient data reduction and analysis of DECam images using multicore archite...
Efficient data reduction and analysis of DECam images using multicore archite...Efficient data reduction and analysis of DECam images using multicore archite...
Efficient data reduction and analysis of DECam images using multicore archite...
 
CLIM Program: Remote Sensing Workshop, Optimization Methods in Remote Sensing...
CLIM Program: Remote Sensing Workshop, Optimization Methods in Remote Sensing...CLIM Program: Remote Sensing Workshop, Optimization Methods in Remote Sensing...
CLIM Program: Remote Sensing Workshop, Optimization Methods in Remote Sensing...
 
Scalable Deep Learning in ExtremeEarth-phiweek19
Scalable Deep Learning in ExtremeEarth-phiweek19Scalable Deep Learning in ExtremeEarth-phiweek19
Scalable Deep Learning in ExtremeEarth-phiweek19
 
Seismic sensor
Seismic sensorSeismic sensor
Seismic sensor
 
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...
Frossie Economou & Angelo Fausti [Vera C. Rubin Observatory] | How InfluxDB H...
 
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean SciencesThe Emerging Cyberinfrastructure for Earth and Ocean Sciences
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
 
The World Wide Distributed Computing Architecture of the LHC Datagrid
The World Wide Distributed Computing Architecture of the LHC DatagridThe World Wide Distributed Computing Architecture of the LHC Datagrid
The World Wide Distributed Computing Architecture of the LHC Datagrid
 
2020 ml swarm ascend presentation
2020 ml swarm ascend presentation2020 ml swarm ascend presentation
2020 ml swarm ascend presentation
 
Report to the NAC
Report to the NACReport to the NAC
Report to the NAC
 
Colloborative computing
Colloborative computing Colloborative computing
Colloborative computing
 
TEAMCD_SDR_Briefing
TEAMCD_SDR_BriefingTEAMCD_SDR_Briefing
TEAMCD_SDR_Briefing
 
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...
A Campus-Scale High Performance Cyberinfrastructure is Required for Data-Int...
 

More from Igor Sfiligoi

Preparing Fusion codes for Perlmutter - CGYRO
Preparing Fusion codes for Perlmutter - CGYROPreparing Fusion codes for Perlmutter - CGYRO
Preparing Fusion codes for Perlmutter - CGYROIgor Sfiligoi
 
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...Igor Sfiligoi
 
Comparing single-node and multi-node performance of an important fusion HPC c...
Comparing single-node and multi-node performance of an important fusion HPC c...Comparing single-node and multi-node performance of an important fusion HPC c...
Comparing single-node and multi-node performance of an important fusion HPC c...Igor Sfiligoi
 
The anachronism of whole-GPU accounting
The anachronism of whole-GPU accountingThe anachronism of whole-GPU accounting
The anachronism of whole-GPU accountingIgor Sfiligoi
 
Auto-scaling HTCondor pools using Kubernetes compute resources
Auto-scaling HTCondor pools using Kubernetes compute resourcesAuto-scaling HTCondor pools using Kubernetes compute resources
Auto-scaling HTCondor pools using Kubernetes compute resourcesIgor Sfiligoi
 
Speeding up bowtie2 by improving cache-hit rate
Speeding up bowtie2 by improving cache-hit rateSpeeding up bowtie2 by improving cache-hit rate
Speeding up bowtie2 by improving cache-hit rateIgor Sfiligoi
 
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsPerformance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsIgor Sfiligoi
 
Comparing GPU effectiveness for Unifrac distance compute
Comparing GPU effectiveness for Unifrac distance computeComparing GPU effectiveness for Unifrac distance compute
Comparing GPU effectiveness for Unifrac distance computeIgor Sfiligoi
 
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory AccessAccelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory AccessIgor Sfiligoi
 
Modest scale HPC on Azure using CGYRO
Modest scale HPC on Azure using CGYROModest scale HPC on Azure using CGYRO
Modest scale HPC on Azure using CGYROIgor Sfiligoi
 
Scheduling a Kubernetes Federation with Admiralty
Scheduling a Kubernetes Federation with AdmiraltyScheduling a Kubernetes Federation with Admiralty
Scheduling a Kubernetes Federation with AdmiraltyIgor Sfiligoi
 
Accelerating microbiome research with OpenACC
Accelerating microbiome research with OpenACCAccelerating microbiome research with OpenACC
Accelerating microbiome research with OpenACCIgor Sfiligoi
 
Porting and optimizing UniFrac for GPUs
Porting and optimizing UniFrac for GPUsPorting and optimizing UniFrac for GPUs
Porting and optimizing UniFrac for GPUsIgor Sfiligoi
 
Demonstrating 100 Gbps in and out of the public Clouds
Demonstrating 100 Gbps in and out of the public CloudsDemonstrating 100 Gbps in and out of the public Clouds
Demonstrating 100 Gbps in and out of the public CloudsIgor Sfiligoi
 
TransAtlantic Networking using Cloud links
TransAtlantic Networking using Cloud linksTransAtlantic Networking using Cloud links
TransAtlantic Networking using Cloud linksIgor Sfiligoi
 
Bursting into the public Cloud - Sharing my experience doing it at large scal...
Bursting into the public Cloud - Sharing my experience doing it at large scal...Bursting into the public Cloud - Sharing my experience doing it at large scal...
Bursting into the public Cloud - Sharing my experience doing it at large scal...Igor Sfiligoi
 
Demonstrating 100 Gbps in and out of the Clouds
Demonstrating 100 Gbps in and out of the CloudsDemonstrating 100 Gbps in and out of the Clouds
Demonstrating 100 Gbps in and out of the CloudsIgor Sfiligoi
 
Serving HTC Users in Kubernetes by Leveraging HTCondor
Serving HTC Users in Kubernetes by Leveraging HTCondorServing HTC Users in Kubernetes by Leveraging HTCondor
Serving HTC Users in Kubernetes by Leveraging HTCondorIgor Sfiligoi
 
Characterizing network paths in and out of the Clouds
Characterizing network paths in and out of the CloudsCharacterizing network paths in and out of the Clouds
Characterizing network paths in and out of the CloudsIgor Sfiligoi
 
GRP 19 - Nautilus, IceCube and LIGO
GRP 19 - Nautilus, IceCube and LIGOGRP 19 - Nautilus, IceCube and LIGO
GRP 19 - Nautilus, IceCube and LIGOIgor Sfiligoi
 

More from Igor Sfiligoi (20)

Preparing Fusion codes for Perlmutter - CGYRO
Preparing Fusion codes for Perlmutter - CGYROPreparing Fusion codes for Perlmutter - CGYRO
Preparing Fusion codes for Perlmutter - CGYRO
 
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...
O&C Meeting - Evaluation of ARM CPUs for IceCube available through Google Kub...
 
Comparing single-node and multi-node performance of an important fusion HPC c...
Comparing single-node and multi-node performance of an important fusion HPC c...Comparing single-node and multi-node performance of an important fusion HPC c...
Comparing single-node and multi-node performance of an important fusion HPC c...
 
The anachronism of whole-GPU accounting
The anachronism of whole-GPU accountingThe anachronism of whole-GPU accounting
The anachronism of whole-GPU accounting
 
Auto-scaling HTCondor pools using Kubernetes compute resources
Auto-scaling HTCondor pools using Kubernetes compute resourcesAuto-scaling HTCondor pools using Kubernetes compute resources
Auto-scaling HTCondor pools using Kubernetes compute resources
 
Speeding up bowtie2 by improving cache-hit rate
Speeding up bowtie2 by improving cache-hit rateSpeeding up bowtie2 by improving cache-hit rate
Speeding up bowtie2 by improving cache-hit rate
 
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence SimulationsPerformance Optimization of CGYRO for Multiscale Turbulence Simulations
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
 
Comparing GPU effectiveness for Unifrac distance compute
Comparing GPU effectiveness for Unifrac distance computeComparing GPU effectiveness for Unifrac distance compute
Comparing GPU effectiveness for Unifrac distance compute
 
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory AccessAccelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access
Accelerating Key Bioinformatics Tasks 100-fold by Improving Memory Access
 
Modest scale HPC on Azure using CGYRO
Modest scale HPC on Azure using CGYROModest scale HPC on Azure using CGYRO
Modest scale HPC on Azure using CGYRO
 
Scheduling a Kubernetes Federation with Admiralty
Scheduling a Kubernetes Federation with AdmiraltyScheduling a Kubernetes Federation with Admiralty
Scheduling a Kubernetes Federation with Admiralty
 
Accelerating microbiome research with OpenACC
Accelerating microbiome research with OpenACCAccelerating microbiome research with OpenACC
Accelerating microbiome research with OpenACC
 
Porting and optimizing UniFrac for GPUs
Porting and optimizing UniFrac for GPUsPorting and optimizing UniFrac for GPUs
Porting and optimizing UniFrac for GPUs
 
Demonstrating 100 Gbps in and out of the public Clouds
Demonstrating 100 Gbps in and out of the public CloudsDemonstrating 100 Gbps in and out of the public Clouds
Demonstrating 100 Gbps in and out of the public Clouds
 
TransAtlantic Networking using Cloud links
TransAtlantic Networking using Cloud linksTransAtlantic Networking using Cloud links
TransAtlantic Networking using Cloud links
 
Bursting into the public Cloud - Sharing my experience doing it at large scal...
Bursting into the public Cloud - Sharing my experience doing it at large scal...Bursting into the public Cloud - Sharing my experience doing it at large scal...
Bursting into the public Cloud - Sharing my experience doing it at large scal...
 
Demonstrating 100 Gbps in and out of the Clouds
Demonstrating 100 Gbps in and out of the CloudsDemonstrating 100 Gbps in and out of the Clouds
Demonstrating 100 Gbps in and out of the Clouds
 
Serving HTC Users in Kubernetes by Leveraging HTCondor
Serving HTC Users in Kubernetes by Leveraging HTCondorServing HTC Users in Kubernetes by Leveraging HTCondor
Serving HTC Users in Kubernetes by Leveraging HTCondor
 
Characterizing network paths in and out of the Clouds
Characterizing network paths in and out of the CloudsCharacterizing network paths in and out of the Clouds
Characterizing network paths in and out of the Clouds
 
GRP 19 - Nautilus, IceCube and LIGO
GRP 19 - Nautilus, IceCube and LIGOGRP 19 - Nautilus, IceCube and LIGO
GRP 19 - Nautilus, IceCube and LIGO
 

Recently uploaded

Quantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation ComputingQuantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation ComputingWSO2
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformWSO2
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...caitlingebhard1
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 

Recently uploaded (20)

Quantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation ComputingQuantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation Computing
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 

Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all available GPUs in the Cloud

  • 1. Running a GPU burst for Multi- Messenger Astrophysics with IceCube across all available GPUs in the Cloud Frank Würthwein OSG Executive Director UCSD/SDSC
  • 2. Jensen Huang keynote yesterday 2 The Largest Cloud Simulation in History 50k NVIDIA GPUs in the Cloud 350 Petaflops for 2 hours Distributed across US, Europe & Asia On Saturday morning we bought all GPU capacity that was for sale in Amazon Web Services, Microsoft Azure, and Google Cloud Platform worldwide
  • 4. IceCube 4 A cubic kilometer of ice at the south pole is instrumented with 5160 optical sensors. Astrophysics: • Discovery of astrophysical neutrinos • First evidence of neutrino point source (TXS) • Cosmic rays with surface detector Particle Physics: • Atmospheric neutrino oscillation • Neutrino cross sections at TeV scale • New physics searches at highest energies Earth Science: • Glaciology • Earth tomography A facility with very diverse science goals Restrict this talk to high energy Astrophysics
  • 5. High Energy Astrophysics Science case for IceCube 5 Universe is opaque to light at highest energies and distances. Only gravitational waves and neutrinos can pinpoint most violent events in universe. Fortunately, highest energy neutrinos are of cosmic origin. Effectively “background free” as long as energy is measured correctly.
  • 6. High energy neutrinos from outside the solar system 6 First 28 very high energy neutrinos from outside the solar system Red curve is the photon flux spectrum measured with the Fermi satellite. Black points show the corresponding high energy neutrino flux spectrum measured by IceCube. This demonstrates both the opaqueness of the universe to high energy photons, and the ability of IceCube to detect neutrinos above the maximum energy we can see light due to this opaqueness. Science 342 (2013). DOI: 10.1126/science.1242856
  • 7. Understanding the Origin 7 We now know high energy events happen in the universe. What are they? p + g D + p + 0 p + g g p + g D + n + + n + + Co Aya Ishihara The hypothesis: The same cosmic events produce neutrinos and photons We detect the electrons or muons from neutrino that interact in the ice. Neutrino interact very weakly => need a very large array of ice instrumented to maximize chances that a cosmic neutrino interacts inside the detector. Need pointing accuracy to point back to origin of neutrino. Telescopes the world over then try to identify the source in the direction IceCube is pointing to for the neutrino. Multi-messenger Astrophysics
  • 8. The ν detection challenge 8 Optical Pro Aya Ishiha Combining all the possible info These features are included in We re al a s be de eloping h Nature never tell us a perfec satisfactory agreem Ice properties change with depth and wavelength Observed pointing resolution at high energies is systematics limited. Central value moves for different ice models Improved e and τ reconstruction Þ increased neutrino flux detection Þ more observations Photon propagation through ice runs efficiently on single precision GPU. Detailed simulation campaigns to improve pointing resolution by improving ice model. Improvement in reconstruction with better ice model near the detectors
  • 9. First evidence of an origin 9 First location of a source of very high energy neutrinos. Neutrino produced high energy muon near IceCube. Muon produced light as it traverses IceCube volume. Light is detected by array of phototubes of IceCube. IceCube alerted the astronomy community of the observation of a single high energy neutrino on September 22 2017. A blazar designated by astronomers as TXS 0506+056 was subsequently identified as most likely source in the direction IceCube was pointing. Multiple telescopes saw light from TXS at the same time IceCube saw the neutrino. Science 361, 147-151 (2018). DOI:10.1126/science.aat2890
  • 10. IceCube’s Future Plans 10 | IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018 The IceCube-Gen2 Facility Preliminary timeline MeV- to EeV-scale physics Surface array High Energy Array Radio array PINGU IC86 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 … 2032 Today Surface air shower ConstructionR&D Design & Approval IceCube Upgrade IceCube Upgrade Deployment Near term: add more phototubes to deep core to increase granularity of measurements. Longer term: • Extend instrumented volume at smaller granularity. • Extend even smaller granularity deep core volume. • Add surface array. Improve detector for low & high energy neutrinos
  • 11. Details on the Cloud Burst
  • 12. The Idea • Integrate all GPUs available for sale worldwide into a single HTCondor pool. - use 28 regions across AWS, Azure, and Google Cloud for a burst of a couple hours, or so. • IceCube submits their photon propagation workflow to this HTCondor pool. - we handle the input, the jobs on the GPUs, and the output as a single globally distributed system. 12 Run a GPU burst relevant in scale for future Exascale HPC systems.
  • 13. A global HTCondor pool • IceCube, like all OSG user communities, relies on HTCondor for resource orchestration - This demo used the standard tools • Dedicated HW setup - Avoid disruption of OSG production system - Optimize HTCondor setup for the spiky nature of the demo § multiple schedds for IceCube to submit to § collecting resources in each cloud region, then collecting from all regions into global pool 13
  • 14. HTCondor Distributed CI 14 Collector Collector Collector Collector Collector Negotiator Scheduler SchedulerScheduler IceCube VM VM VM 10 schedd’s One global resource pool
  • 15. Using native Cloud storage • Input data pre-staged into native Cloud storage - Each file in one-to-few Cloud regions § some replication to deal with limited predictability of resources per region - Local to Compute for large regions for maximum throughput - Reading from “close” region for smaller ones to minimize ops • Output staged back to region-local Cloud storage • Deployed simple wrappers around Cloud native file transfer tools - IceCube jobs do not need to customize for different Clouds - They just need to know where input data is available (pretty standard OSG operation mode) 15
  • 16. The Testing Ahead of Time 16 ~250,000 single threaded jobs run across 28 cloud regions during 80 minutes. Peak at 90,000 jobs running. up to 60k jobs started in ~10min. Regions across US, EU, and Asia were used in this test. Demonstrated burst capability of our infrastructure on CPUs. Want scale of GPU burst to be limited only by # of GPUs available for sale.
  • 17. Science with 51,000 GPUs achieved as peak performance 17 Time in Minutes Each color is a different cloud region in US, EU, or Asia. Total of 28 Regions in use. Peaked at 51,500 GPUs ~350 Petaflops of fp32 8 generations of NVIDIA GPUs used.
  • 18. A Heterogenous Resource Pool 18 28 cloud Regions across 4 world regions providing us with 8 GPU generations. No one region or GPU type dominates!
  • 19. Science Produced 19 Distributed High-Throughput Computing (dHTC) paradigm implemented via HTCondor provides global resource aggregation. Largest cloud region provided 10.8% of the total dHTC paradigm can aggregate on-prem anywhere HPC at any scale and multiple clouds
  • 20. IceCube is ready for Exascale • Humanity has built extraordinary instruments by pooling human and financial resources globally. • The computing for these large collaborations fits perfectly to the cloud or scheduling holes in Exascale HPC systems due to its “ingeniously parallel” nature. => dHTC • The dHTC computing paradigm applies to a wide range of problems across all of open science. - We are happy to repeat this with anybody willing to spend $50-200k in the clouds. 20 Contact us at: help@opensciencegrid.org Or me personally at: fkw@ucsd.edu Demonstrated elastic burst at 51,500 GPUs IceCube is ready for Exascale
  • 21. Acknowledgements • This work was partially sponsored by NSF grants OAC-1941481, MPS-1148698, OAC-1841530 and OAC-1826967. 21