Energy Space Time
Air pollution concentrations - national
2
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
Birmingham City
Council
Exeter City Council City of Edinburgh
Council
Colchester
Borough Council
NOxasNO2µg/m3
Total_NOx_11
Rural_11
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
Birmingham City
Council
Exeter City
Council
City of Edinburgh
Council
Colchester
Borough Council
PM2.5µg/m3
Total_PM2.5_11
Exc Res+salt
PM_secondary_11
UK Defra concentration
projections
==
Energy Space Time
Model and data
flow
4
Spatiotemporal
demands:
heat
electricity
gas
Supply models
District heat
Electricity
Gas
Stationary scenario:
efficiency
supply shares
SECTOR/CITY TOTALS
Energy, carbon & air pollution emissions
costs, fuel poverty
Transport scenario:
mode
technology
Public supply
Design
Technologies
Energy service cost Fuel
poverty
People, households, businesses
Non-transport demand
model
(mainly buildings)
Transport model
Air pollution concentrations and health impact
National energycosts
and carbon
National emissions
Energy Space Time
A sample national scenario context
5
Electricity
• replace fossil with renewable or nuclear
• CO2 and air pollution emissions per kWh
fall
• calculate costs per kWh
Emissions (anthropogenic)
• Energy related from energy scenario
• Other emissions (e.g. ammonia) from
Defra projections & extensions
• Note importance of ~constant
ammonia emission for secondary
PM2.5
Electricity and emissions
0
100
200
300
400
500
600
700
800
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
TWh
Renewable: variable
Renewable: biomass/hydro
Nuclear
Coal
Oil
Gas
0
100
200
300
400
500
600
700
800
900
1000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
kt
NOx
PM2.5 (primary)
Ammonia
Sulphur dioxide
NMVOC
Energy Space Time
A sample national scenario context
6
Primary fuel costs
Electricity and
hydrogen costs
- Different for on
peak, off-peak,
district heat
- Electricity carbon
content
0
1
2
3
4
5
6
7
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
p/kWh
Gas
Oil
Coal
Nuclear
Biowaste
BioCrop
0
100
200
300
400
500
600
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
gCO2e/kWh
Ele average
EleOff
EleHeaOn
EleDH
Hydrogen
0
2
4
6
8
10
12
14
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
p/kWh
EleAve
EleOff
EleHeaOn
EleDH
Hydrogen
Bulk costs and carbon of city energy imports
Energy Space Time
Air pollution projections - national
0%
20%
40%
60%
80%
100%
120%
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065Index
Transport demand
Transport electrification
Transport chemical fuel emission
index
Transport overall emission index
0
200
400
600
800
1000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
kt
NOx
PM2.5 (primary)
0%
20%
40%
60%
80%
100%
120%
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
NOx background
PM2.5 Secondary
PM2.5 resid+salt
Transport
National primary
emissions
Background
concentration indices
7
Energy Space Time
Scenario (London): transport energy
Passenger energy by
technology
Energy for passenger and
freight
14
0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065TJ
Pla_Liq
Boa_Ele
Boa_Liq
Tra_Ele
Tra_Liq
Bus_Ele
Bus_H2F
Bus_ICd
Car_Ele
Car_H2F
Car_ICp
Car_ICd
Mcy_Ele
Mcy_ICp
Cyc_Ele
Cyc_Hum
0
20000
40000
60000
80000
100000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
TJ
Hydrogen
Electricity
Liquid
Energy Space Time
Deliveries
Shift from fossil gas
and oil to
electricity and DH
Electricity
consumption
Increase for heating
and transport
Electricity generation
Steady increase in
solar PV and
increase then
decline in CHP
Scenario (London)– demand and supply
15
0
50000
100000
150000
200000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
TJ
Hydrogen
DH heat pumps
DH pumping
Transport
Heat
AirCon
Non-heat stationary
0
5000
10000
15000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
TJ
Other generation DH
CHP DH
CHP individual
Solar PV
0
100000
200000
300000
400000
500000
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
TJ
Hydrogen
Heat
Electricity
Solid
Liquid
Gas
Energy Space Time
Birmingham emissions air pollution and CO2
16
PM2.5
Excluding dust resuspension
How much brake dust with
regenerative braking?
NOx
CO2
16 0
1000
2000
3000
4000
5000
6000
2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
kt
CO2 indirect
CO2 direct
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
kt
N:Point sources
C:Other
C:Industry+Supp
C:Dom+NonDom
C:Road transport
0.00
0.05
0.10
0.15
0.20
0.25
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
kt
PM2.5 brakes
PM2.5 tyres/road
PM2.5 exhaust
Energy Space Time
Air pollution emission and city concentration projections
17
NOx emission indices
City NOx concentration
0.00
0.20
0.40
0.60
0.80
1.00
1.20
0.0
5.0
10.0
15.0
20.0
25.0
30.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
Normalfactor
µg/m3
Calculated
Normalised
Normal fac
City NO2 calculated concentration
17
0%
20%
40%
60%
80%
100%
120%
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
Index
C:Road transport
C:Dom+NonDom
C:Industry+Supp
C:Other
N:Point sources
N:Rural
City Total
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
µg/m3
N:Rural
N:Point sources
C:Other
C:Industry+Supp
C:Dom+NonDom
C:Road transport
Energy Space Time
Air pollution emission and concentration projections
NOx
(NO2 similar change)
PM2.5
18
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
µg/m3
N:Rural
N:Point sources
C:Other
C:Industry+Supp
C:Dom+NonDom
C:Road transport
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
ug/m3
N:Res+Salt
N:Secondary
N:Primary
C:Industry+Supp
C:Other
C:Dom+NonDom
C:Road transport
Energy Space Time
Air pollution health impacts
Years of lost life
Premature deaths
19
0
2000
4000
6000
8000
10000
12000
14000
0.0
2.0
4.0
6.0
8.0
10.0
12.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
Population(k)
Premateuredeaths(k)
PD NO2
PD PM2.5
PD combined
Pop: all
Pop: over 30 yrs
0
2000
4000
6000
8000
10000
12000
14000
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
Populatio(k)
Yearslostlife(k)
YLL NO2
YLL PM2.5
YLL combined
Pop: all
Pop: over 30 yrs
Energy Space Time
Air pollution health impacts: Birmingham
(any increasing trends are due to increasing population)
20
Premature deaths by
pollutant and source
Premature deaths
affected by policy
NB: assumption that
natural sources have
heath impacts
0
2
4
6
8
10
12
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
k
NO2: city source
PM2.5: city source
NO2: national source
PM2.5 primary: national source
PM2.5 secondary: national
source
0
2
4
6
8
10
12
2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065
k
City policy
National policy
Natural, beyond
policy
Energy Space Time21
UK renewable electrification takes us a long way:
• Eliminates almost all stationary energy and transport fuel related
emissions
• Reduces NOx emission to levels
But these notably remain:
• PM2.5: tyre/wheel/road, brake (?) and resuspension particle emission
• PM2.5: secondary particles from UK ammonia but needs NOx SO2 etc.
• PM2.5: industrial, construction etc.
• NOx: aviation, maybe shipping fuelled with hydrogen/ ammonia.
• long range transboundary imports
• natural sources
Almost, but not quite
Energy Space Time
Air pollution premature deaths
25
NOx: C:Road
transport
24%
NOx:
C:Dom+NonDom
4%
NOx:
C:Industry+Supp
3%NOx: C:Other
10%
NOx: N:Point
sources
1%
NOx: N:Rural
13%
PM2.5
C:Road
transport
5%
PM2.5
C:Dom+NonDom
1%
PM2.5
C:Other
2%
PM2.5
C:Industry+Supp
2%
PM2.5 N:Primary
1%
PM2.5
N:Secondary
18%
PM2.5 N:Res+Salt
16%
Energy Space Time
Air pollution calculation
1. Collate base year concentrations by source for city
2. Project city and national emissions
3. Project concentrations using:
a. changes in emissions from sources
b. NOx oxidation
c. Secondary PM formation
4. Calculate premature deaths and years of lost life
26
Energy Space Time
Air pollution base year concentration by source - Birmingham
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Concentrationsareasug.m-3NOxasNO2
0
1
2
3
4
5
6
ug.m-3gravimetricPM2.5
NOx as NO2
PM2.5
27
Energy Space Time
Emission to concentration model
Multiply base year concentrations Cb for each source by
the ratio of future emission/formation index (Icf) which is the
calculated future year NO2 (primary and ‘rural’) and PM2.5
(primary and secondary) divided by the calculated base
year index (Icb) to obtain future concentrations Cf.
For each source:
Cf = Cb Icf / Icb µg/m3
The proposed methods for calculating the NOx and PM2.5
indices are on the next 2 slides.
28
Energy Space Time
NOx to NO2
29
For base and future year:
1. Estimate city and national (and European?) NOx emissions
(kt) from different sectors – transport, electricity etc.
2. Estimate fraction f(NO2) of city and national NOx from these
sources that is emitted as nitrogen dioxide (NO2), with the
rest being nitric oxide (NO)
3. Estimate oxidation of city and national NO to NO2 using
oxidation equation with NO2 and ozone oxidants
4. Normalise calculated NO2 to Defra base year value.
5. Result is city and rural (or background) concentration indices;
IcNO2(c) and IcNO2(r) (µg/m3)
Energy Space Time
Secondary PM2.5
30
For base and future year:
1. Assume UK (and Europe) emissions of:
• Primary PM2.5
• PM2.5 precursors: nitrate, sulphate and ammonium
2. Estimate formation of secondary PM2.5 to obtain
background concentration index for each city with a linear
equation:
IcPM2.5 = k1 NOx + k2 SO2 + (k3 NH3 assumed constant)
3. Add national primary and secondary PM2.5 to give PM2.5
(rural/background) concentration index for city; IcPM2.5(r)
Energy Space Time
Health model
The relative risk RR (a fraction) is the concentration response factor CRF
raised to the power ((change in concentration dC)/10):
RR = CRF(dC/10)
The attributable fraction AF due to air pollution is calculated:
AF = (RR-1)/RR
The premature deaths PD per year is the population over 30 yrs old Pop30
times the baseline mortality rate Mb times the attributable fraction AF:
PD= Pop30 Mb AF
The years of life lost (years) YLL is the premature deaths PD times the years
of life per premature death YLLd (assumed to be 12 years)
YLL = PD YLLd
Notes:
• It is conventionally assumed that the combined impact of several
pollutants is less than the sum of the individual impacts.
• Currently natural particulate pollutants (dust, salt etc.) are assumed to
have the same impacts as anthropogenic pollutants
31