White layer thickness (WLT) formed and surface roughness in wire electric discharge turning (WEDT) of tungsten carbide composite has been made to model through response surface methodology (RSM). A Taguchi’s standard Design of experiments involving five input variables with three levels has been employed to establish a mathematical model between input parameters and responses. Percentage of cobalt content, spindle speed, Pulse on-time, wire feed and pulse off-time were changed during the experimental tests based on the Taguchi’s orthogonal array L27 (3^13). Analysis of variance (ANOVA) revealed that the mathematical models obtained can adequately describe performance within the parameters of the factors considered. There was a good agreement between the experimental and predicted values in this study.
White layer thickness (WLT) formed and surface roughness in wire electric discharge turning (WEDT) of tungsten carbide composite has been made to model through response surface methodology (RSM). A Taguchi’s standard Design of experiments involving five input variables with three levels has been employed to establish a mathematical model between input parameters and responses. Percentage of cobalt content, spindle speed, Pulse on-time, wire feed and pulse off-time were changed during the experimental tests based on the Taguchi’s orthogonal array L27 (3^13). Analysis of variance (ANOVA) revealed that the mathematical models obtained can adequately describe performance within the parameters of the factors considered. There was a good agreement between the experimental and predicted values in this study.