SlideShare a Scribd company logo
1 of 42
Download to read offline
Dr. Hassan Z. Harraz
hharraz2006@yahoo.com
Autum 2023
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
Enrichment Iron Values OF Low-grade
Iron Ore Resources
Using
Reduction Roasting-Magnetic
Separation Techniques -a review
Abstract
❑ Because of the rapid depletion of easily processed iron ores, the utilization of refractory ores has
attracted increasing attention .
❑ There several billion tonnes iron deposits, and most are refractory ores, which are difficult to
process by conventional methods because of the low iron grade, fine grain size and complex
mineralogy.
➢ The beneficiation of low-grade iron ores to meet the growing demand for iron and steel is
an important research topic.
➢ At present, magnetization roasting followed by magnetic separation is one of the most
effective technologies for the beneficiation of refractory iron ores.
❑ However, certain ores do not qualify to be treated in physical separation processes, and hence,
alternative strategies are being looked into for upgrading their iron content.
➢ Reduction roasting has many advantages over the physical beneficiation process, such as
enhanced iron recovery and processing of complex and poorly liberated iron ores.
❑ The objective of this presentation is to compile and amalgamate the crucial information regarding
the beneficiation of low-grade iron ores using carbothermic reduction followed by magnetic
separation, which is a promising technique to treat iron ores with complex mineralogy and
liberation issues.
❑ Reduction roasting studies done for different types low-grade iron ores including oolitic iron ores,
banded iron ores, iron ore slimes and tailings, and industrial wastes have been discussed.
❑ Reduction roasting followed by magnetic separation is a promising method to recover the iron
values from low-grade iron ores.
➢ The process involves the reduction of the goethite and hematite phases to magnetite,
which can subsequently be recovered using a low-intensity magnetic separation unit.
❑ The large-scale technological advancements in reduction roasting and the possibilities of the
application of alternative reductants as substitutes for coal have also been highlighted.
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
2
Contents
1. INTRODUCTION
2. REDUCTION ROASTING AND MAGNETIC SEPARATION
2.1. Oolitic iron ores
2.2. Goethitic and limonitic ores
2.3. Iron ore fines and tailings
2.4. Other low-grade iron ore resources
2.5. Other resources
3. EMERGING TRENDS IN REDUCTION ROASTING
3.1. Microwave-assisted reduction roasting
3.2. Biomass as reductants
3.3. Self-magnetizing roasting
4. LARGE SCALE STUDIES OF REDUCTION ROASTING TECHNIQUE
5. CONCLUDING REMARKS
6. REFERENCES
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
3
Keywords:
•Low-grade iron ore
•Beneficiation
•Reduction roasting
•Microwave
•Magnetization Roasting
•Magnetic Separation
•Refractory Iron Ores.
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
4
Objective
❑The objective of the present communication is,
➢ to investigate and summarize the related literature
papers on reduction roasting-magnetic separation of low-
grade iron ore resources.
➢It is anticipated that summarizing the knowledge and
experience on this topic would help the research
community to work further in the appropriate direction
towards the commercialization of the process.
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
5
References
@Hassan Harraz 2023
Enrichment of Fe by Reduction Roasting-Magnetic Separation
41
1) B. Das, S.S. Rath, Existing and new processes for beneficiation of Indian Iron ores, Trans. Indian Inst. Metals 73 (3) (2020) 505–514, https://doi.org/10.1007/ s12666-020-01878-z.
2) D. Xiong, L. Lu, R.J. Holmes, Developments in the physical separation of iron ore, Iron Ore, Elsevier 2015, pp. 283–307. https://linkinghub.elsevier.com/retrieve/pii/ B9781782421566000095, Accessed date: 7 September 2019.
3) M. Dworzanowski, Maximizing the recovery of fine iron ore using magnetic separation, J. South. Afr. Inst. Min. Metall. 112 (2012) 197–202.
4) D.C. Yang, P. Bozzato, G. Ferrara, Iron ore beneficiation with packed column jig, J. Miner. Mater. Charact. Eng. 2 (2003) 43–51, https://doi.org/10.4236/jmmce.2003. 21004.
5) H. Akbari, M. Noaparast, S.Z. Shafaei, A. Hajati, S. Aghazadeh, H. Akbari, A beneficiation study on a low grade Iron ore by gravity and magnetic separation, Russ. J. Non-Ferr. Met. 59 (2018) 353–363, https://doi.org/10.3103/S1067821218040028.
6) R.G. Richards, D.M. MacHunter, P.J. Gates, M.K. Palmer, Gravity separation of ultrafine (−0.1mm) minerals using spiral separators, Miner. Eng. 13 (2000) 65–77, https://doi.org/10.1016/S0892-6875(99)00150-8.
7) A.A.S. Seifelnassr, E.M. Moslim, A.-Z.M. Abouzeid, Effective processing of low-grade iron ore through gravity and magnetic separation techniques, Physicochem. Probl. Miner. Process. 48 (2012) 567–578.
8) S.S. Rath, H. Sahoo, S.K. Das, B. Das, B.K. Mishra, Influence of band thickness of banded hematite quartzite (BHQ) ore in flotation, Int. J. Miner. Process. 130 (2014) 48–55, https://doi.org/10.1016/j.minpro.2014.05.006.
9) I. Iwasaki, M.S. Prasad, Processing techniques for difficult-to-treat ores by combining chemical metallurgy and mineral processing, Miner. Process. Extr. Metall. Rev. 4 (1989) 241–276, https://doi.org/10.1080/08827508908952639.
10) S. Song, E.F. Campos-Toro, A. López-Valdivieso, Formation of micro-fractures on an oolitic iron ore under microwave treatment and its effect on selective fragmentation, Powder Technol. 243 (2013) 155–160, https://doi.org/10.1016/j.powtec. 2013.03.049.
11) M. Omran, T. Fabritius, R. Mattila, Thermally assisted liberation of high phosphorus oolitic iron ore: a comparison between microwave and conventional furnaces, Powder Technol. 269 (2015) 7–14, https://doi.org/10.1016/j.powtec.2014.08.073.
12) M. Omran, T. Fabritius, N. Abdel-Khalek, M. El-Aref, A.E.-H. Elmanawi, M. Nasr, A. Elmahdy, Microwave assisted liberation of high phosphorus Oolitic Iron ore, J. Miner. Mater. Charact. Eng. 2 (2014) 414–427, https://doi.org/10.4236/jmmce. 2014.25046.
13) K.E. Waters, N.A. Rowson, R.W. Greenwood, A.J. Williams, The effect of heat treatment on the magnetic properties of pyrite, Miner. Eng. 21 (2008) 679–682, https:// doi.org/10.1016/j.mineng.2008.01.008.
14) Q. Cao, J. Cheng, Q. Feng, S. Wen, B. Luo, Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite, Powder Technol. 311 (2017) 390–397, https://doi.org/10.1016/j.powtec.2017.01.069.
15) E. Donskoi, A.F. Collings, A. Poliakov, W.J. Bruckard, Utilisation of ultrasonic treatment for upgrading of hematitic/goethitic iron ore fines, Int. J. Miner. Process. 114–117 (2012) 80–92, https://doi.org/10.1016/j.minpro.2012.10.005.
16) S. Singh, H. Sahoo, S.S. Rath, B.B. Palei, B. Das, Separation of hematite from banded hematite jasper (BHJ) by magnetic coating, J. Cent. South Univ. 22 (2015) 437–444, https://doi.org/10.1007/s11771-015-2540-8.
17) S. Singh, H. Sahoo, S.S. Rath, A.K. Sahu, B. Das, Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating, Powder Technol. 269 (2015) 38–45, https://doi.org/10.1016/j.powtec.2014.08.065.
18) S. Prakash, B. Das, B.K. Mohapatra, R. Venugopal, Recovery of Iron values from Iron ore slimes by selective magnetic coating, Sep. Sci. Technol. 35 (2000) 2651–2662, https://doi.org/10.1081/SS-100102361.
19) D. Zhu, Q. Zhao, G.-Z. Qiu, J. Pan, Z.-Q. Wang, C.-J. Pan, Magnetizing roasting-magnetic separation of limonite ores from Anhui Province in East China, Beijing Keji Daxue Xuebao, J. Univ. Sci. Technol. Beijing 32 (2010) 713–718.
20) H. Huang, J. Hu, H. Ya, F. Yang, W. Sun, Study on the technology and mechanism of magnetic roasting and separation of a refractory red iron ore, Min. Metall. Eng. 30 (2010) 38–41.
21) Y. Man, J. Feng, Effect of iron ore-coalpellets during reduction with hydrogen and carbon monoxide, Powder Technol. 301 (2016) 1213–1217, https://doi.org/10. 1016/j.powtec.2016.07.057.
22) S. He, H. Sun, C. Hu, J. Li, Q. Zhu, H. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol. 313 (2017) 161–168, https://doi.org/ 10.1016/j.powtec.2017.03.007.
23) Z. Wei, J. Zhang, B. Qin, Y. Dong, Y. Lu, Y. Li, W. Hao, Y. Zhang, Reduction kinetics of hematite ore fines with H2 in a rotary drum reactor, Powder Technol. 332 (2018) 18–26, https://doi.org/10.1016/j.powtec.2018.03.054.
24) Y. Lu, Z. Wei, Y. Wang, J. Zhang, G. Li, Y. Zhang, Research on the characteristics and kinetics of direct reduction of limonite ore fines under CO atmosphere in a rotary drum reactor, Powder Technol. 352 (2019) 240–250, https://doi.org/10.1016/j. powtec.2019.04.069.
25) C.W. Dannatt, H.J.T. Ellingham, Roasting and reduction processes. Roasting and reduction processes—a general survey, Discuss Faraday Soc. 4 (1948) 126–139, https://doi.org/10.1039/DF9480400126.
26) V. Ravisankar, R. Venugopal, H. Bhat, Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation, Miner. Process. Extr. Metall. 128 (2019) 175–182, https://doi.org/10.1080/03719553.2017. 1412876.
27) K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng. 126 (2018) 89–100, https://doi.org/10.1016/j.mineng.2018.06.018.
28) T. Peng, X. Gao, Q. Li, L. Xu, L. Luo, L. Xu, Phase transformation during roasting process and magnetic beneficiation of oolitic-iron ores, Vacuum. 146 (2017) 63–73, https://doi.org/10.1016/j.vacuum.2017.09.029.
29) Y. Zimmels, S. Weissberger, I.J. Lin, Effect of oolite structure on direct reduction of oolitic iron ores, Int. J. Miner. Process. 24 (1988) 55–71, https://doi.org/10.1016/ 0301-7516(88)90031-2.
30) G.G.O.O. Uwadiale, R.J. Whewell, Effect of temperature on magnetizing reduction of agbaja iron ore, Metall. Trans. B19 (1988) 731–735, https://doi.org/10.1007/ BF02650192.
31) M.A. Youssef, M.B. Morsi, Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed, Can. Metall. Q. 37 (1998) 419–428, https://doi.org/10.1016/S0008-4433(98)00009-3.
32) Y. Yu, C. Qi, Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore, J. Wuhan Univ. Technol. Mater. Sci. Ed. 26 (2011) 176–181, https://doi.org/10.1007/s11595-011-0192-6.
33) L.-Q. Luo, M. Chen, H.-T. Yan, S.-S. Cui, Y.-J. Zhang, Magnetic reduction roasting and magnetic separation of oolitic iron ore, Guocheng Gongcheng Xuebao, Chin. J. Process Eng. 14 (2014) 593–598.
34) R. Wang, Y.-X. Han, Y.-J. Li, Y.-S. Zhang, Research on magnetic properties of oolitic hematite roasted by suspension roasting furnace, Dongbei Daxue Xuebao, J. Northeast. Univ. 36 (2015) 1024–1028, https://doi.org/10.3969/j.issn.1005-3026.2015. 07.024.
35) H. Zhang, Z. Zhang, L. Luo, H. Yu, Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite, Energy Sources Part Recovery Util. Environ. Eff. 41 (2019) 47–64, https://doi.org/10.1080/15567036. 2018.1496195.
36) T. Peng, L. Xu, L. Luo, Quantitative investigation of roasting-magnetic separation for hematite oolitic-ores: mechanisms and industrial application, Open Chem. 15 (2017) https://doi.org/10.1515/chem-2017-0043.
37) D. Zhu, Z. Guo, J. Pan, F. Zhang, Synchronous upgrading Iron and phosphorus removal from high phosphorus Oolitic hematite ore by high temperature flash reduction, Metals 6 (2016) 123, https://doi.org/10.3390/met6060123.
38) D. Huang, Y. Zong, R. Wei, W. Gao, X. Liu, Direct reduction of high-phosphorus Oolitic hematite ore based on biomass pyrolysis, J. Iron Steel Res. Int. 23 (2016) 874–883, https://doi.org/10.1016/S1006-706X(16)30134-0.
39) H. Han, D. Duan, P. Yuan, S. Chen, Recovery of metallic iron from high phosphorus oolitic hematite by carbothermic reduction and magnetic separation, Ironmak. Steelmak. 42 (2015) 542–547, https://doi.org/10.1179/1743281214Y.0000000259.
40) J. Gao, L. Guo, Z. Guo, Separation of P phase and Fe phase in high phosphorus Oolitic Iron ore by ultrafine grinding and gaseous reduction in a rotary furnace, Metall. Mater. Trans. BProcess Metall. Mater. Process. Sci. 46 (2015) 2180–2189, https:// doi.org/10.1007/s11663-015-0400-4.
41) S. Dey, M.K. Mohanta, R. Singh, Mineralogy and textural impact on beneficiation of goethitic ore, Int. J. Min. Sci. Technol. 27 (2017) 445–450, https://doi.org/10.1016/j. ijmst.2017.03.017.
42) H.-Q. Zhang, Y.-F. Yu, Z.-Y. Peng, W. Chen, Study on flash magnetizing roasting of huangmei limonitic ore, Kang TiehIron Steel Peking. 44 (2009) 11–14.
43) G.F. Zhang, Q.R. Yang, Y.D. Yang, P. Wu, A. McLean, Recovery of iron from waste slag of pyrite processing using reduction roasting magnetic separation method, Can. Metall. Q. 52 (2013) 153–159, https://doi.org/10.1179/1879139512Y. 0000000055.
44) N. Faris, J. Tardio, R. Ram, S. Bhargava, M.I. Pownceby, Investigation into coal-based magnetizing roasting of an iron-rich rare earth ore and the associated mineralogical transformations, Miner. Eng. 114 (2017) 37–49, https://doi.org/10.1016/j. mineng.2017.09.007.
45) F. Wu, J. Deng, B. Mi, Z. Xiao, J. Kuang, H. Liu, M. Liang, B. Liu, P. Yu, Insight into effect of CaCO3 on reduction roasting of fine-grained silicate type iron oxide ore and its application on Fe separation and recovery, Powder Technol. 356 (2019) 170–176,
https://doi.org/10.1016/j.powtec.2019.08.020.
46) J. Hanna, I.J. Anazia, Processing of hematitic iron ores, in: J. Hanna, Y.A. Attia (Eds.), Adv. Fine Part. Process, Springer US, Boston, MA 1990, pp. 413–425. http://link. springer.com/10.1007/978-1-4684-7959-1_35, Accessed date: 7 September 2019.
47) G.G.O.O. Uwadiale, Upgrading fine-grained iron ores: (i) general review (ii) Agbaja Iron ore, in: J. Hanna, Y.A. Attia (Eds.), Adv. Fine Part. Process, Springer US, Boston, MA 1990, pp. 401–411. http://link.springer.com/10.1007/978-1-4684-7959-1_34, Accessed date:7 September 2019.
48) C. Li, H. Sun, J. Bai, L. Li, Innovative methodology for comprehensive utilization of iron ore tailings, J. Hazard. Mater. 174 (2010) 71–77, https://doi.org/10.1016/j. jhazmat.2009.09.018.
49) K. Jang, V.R.M. Nunna, S. Hapugoda, A.V. Nguyen, W.J. Bruckard, Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation, Miner. Eng. 60 (2014) 14–22, https://doi.org/ 10.1016/j.mineng.2014.01.021.
50) B. Zhang, X. Xue, H. Yang, X. Huang, Gas-based magnetizing roasting for recycling iron in baotou rare earth tailings, Zhongguo Xitu Xuebao, J. Chin. Rare Earth Soc. 33 (2015) 378–384, https://doi.org/10.11785/S1000-4343.20150317.
51) Y. Jianwen, H. Yuexin, G. Peng, L. Yanjun, Y. Shuai, L. Wenbo, An innovative methodology for recycling iron from magnetic pre-concentrate of an iron ore tailing, Physicochem. Probl. Miner. Process. (2018) https://doi.org/10.5277/ ppmp1863ISSN 2084–4735.
52) J. Yu, Y. Han, Y. Li, P. Gao, Beneficiation of an iron ore fines by magnetization roasting and magnetic separation, Int. J. Miner. Process. 168 (2017) 102–108, https://doi.org/10.1016/j.minpro.2017.09.012.
53) W. Li, Y. Han, X. Liu, Y. Shan, Y. Li, Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings, Physicochem. Probl. Miner. Process. (2019) https://doi.org/10.5277/ ppmp19010ISSN 2084–4735.
54) H. Sahoo, S.S. Rath, D.S. Rao, B.K. Mishra, B. Das, Role of silica and alumina content in the flotation of iron ores, Int. J. Miner. Process. 148 (2016) 83–91, https://doi. org/10.1016/j.minpro.2016.01.021.
55) N. Ray, D. Nayak, N. Dash, S.S. Rath, Utilization of low-grade banded hematite jasper ores: recovery of iron values and production of ferrosilicon, Clean Techn. Environ. Policy 20 (2018) 1761–1771, https://doi.org/10.1007/s10098-018-1566-7.
56) D. Zhu, Y. Xiao, T. Chun, B. Chen, J. Pan, Upgrading and removing phosphorus from low-grade and high phosphorus containing iron ores, XXV, Int. Miner. Process. Congr. 3 (2010) 1667–1676.
57) Y. Li, T. Zhu, Recovery of low grade haematite via fluidised bed magnetising roasting: investigation of magnetic properties and liberation characteristics, Ironmak. Steelmak. 39 (2012) 112–120, https://doi.org/10.1179/1743281211Y. 0000000071.
58) S.S. Rath, H. Sahoo, N. Dhawan, D.S. Rao, B. Das, B.K. Mishra, Optimal recovery of iron values from a low grade iron ore using reduction roasting and magnetic separation, Sep. Sci. Technol. 49 (2014) 1927–1936, https://doi.org/10.1080/ 01496395.2014.903280.
59) S.S. Rath, N. Dhawan, D.S. Rao, B. Das, B.K. Mishra, Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting, Powder Technol. 301 (2016) 1016–1024, https://doi.org/10.1016/j.powtec.2016.07.044.
60) Q. Zhao, J. Xue, W. Chen, Mechanism of improved magnetizing roasting of siderite– hematite iron ore using a synergistic CO–H2 mixture, J. Iron SteelRes. Int. (2019) https://doi.org/10.1007/s42243-019-00242-w.
61) Q. Zhao, J. Xue, W. Chen, Upgrading of iron concentrate by fluidized-bed magnetizing roasting of siderite to magnetite in CO–H2–N2 atmosphere, Trans. Indian Inst. Metals 72 (2019) 1381–1391, https://doi.org/10.1007/s12666-019-01636-w.
62) Y. Zhang, H. Li, X. Yu, Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation, J. Hazard. Mater. 213–214 (2012) 167–174, https://doi.org/10.1016/j.jhazmat.2012.01.076.
63) L. Bailong, Z. Zhaohui, L. Linbo, W. Yujie, Recovery of gold and Iron from the cyanide tailings by magnetic roasting, Rare Met. Mater. Eng. 42 (2013) 1805–1809, https://doi.org/10.1016/S1875-5372(14)60009-6.
64) M. Li, B. Peng, L. Chai, N. Peng, H. Yan, D. Hou, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, J. Hazard. Mater. 237–238 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.08.052.
65) C. Lei, B. Yan, T. Chen, X.-M. Xiao, Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation, J. Clean. Prod. 158 (2017) 73–80, https://doi.org/10.1016/j.jclepro.2017.04.164.
66) Y. Man, J. Feng, Effect of gas composition on reduction behavior in red mud and iron ore pellets, Powder Technol. 301 (2016) 674–678, https://doi.org/10.1016/j. powtec.2016.06.013.
67) M. Samouhos, M. Taxiarchou, G. Pilatos, P.E. Tsakiridis, E. Devlin, M. Pissas, Controlled reduction of red mud by H2 followed by magnetic separation, Miner. Eng. 105 (2017) 36–43, https://doi.org/10.1016/j.mineng.2017.01.004.
68) S.W. Kingman, N.A. Rowson, Microwave treatment of minerals-a review, Miner. Eng. 11 (1998) 1081–1087, https://doi.org/10.1016/S0892-6875(98)00094-6.
69) K.E. Haque, Microwave energy for mineral treatment processes—a brief review, Int. J. Miner. Process. 57 (1999) 1–24, https://doi.org/10.1016/S0301-7516(99)00009-5.
70) M. Hayashi, K. Takeda, K. Kashimura, T. Watanabe, K. Nagata, Carbothermic reduction of hematite powders by microwave heating, ISIJ Int. 53 (2013) 1125–1130, https://doi.org/10.2355/isijinternational.53.1125.
71) K. Kashimura, M. Sato, M. Hotta, D. Kumar Agrawal, K. Nagata, M. Hayashi, T. Mitani, N. Shinohara, Iron production from Fe3O4 and graphite by applying 915MHz microwaves, Mater. Sci. Eng. A556 (2012) 977–979, https://doi.org/10.1016/j.msea.2012.07.049.
72) M. Samouhos, M. Taxiarchou, P.E. Tsakiridis, K. Potiriadis, Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process, J. Hazard. Mater. 254–255 (2013) 193–205, https://doi. org/10.1016/j.jhazmat.2013.03.059.
74) F. Wu, Z. Cao, S. Wang, H. Zhong, Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores, J. Clean. Prod. 171 (2018) 831–843, https://doi.org/10.1016/j.jclepro.2017.09.198.
75) V. Rayapudi, N. Dhawan, Up-gradation of banded iron ores for pellet grade concentrate, Mater. Today Proc. 5 (2018) 17035–17040, https://doi.org/10.1016/j.matpr. 2018.04.109.
76) V. Rayapudi, S. Agrawal, N. Dhawan, Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore, Miner. Eng. 138 (2019) 204–214, https://doi.org/10.1016/j.mineng.2019.05.004.
2-5

More Related Content

What's hot

223306733 laboratorio-de-metalurgia-general-nº2
223306733 laboratorio-de-metalurgia-general-nº2223306733 laboratorio-de-metalurgia-general-nº2
223306733 laboratorio-de-metalurgia-general-nº2Zathex Kaliz
 
Diseño tanques lixiviacion
Diseño tanques lixiviacionDiseño tanques lixiviacion
Diseño tanques lixiviacionJairo Jaramillo
 
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdf
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdfCHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdf
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdfWeldebrhan Tesfaye
 
Fundamentals of Flotation
Fundamentals of FlotationFundamentals of Flotation
Fundamentals of FlotationHimesh Patel
 
245197868 flotacion-de-plomo-y-zinc
245197868 flotacion-de-plomo-y-zinc245197868 flotacion-de-plomo-y-zinc
245197868 flotacion-de-plomo-y-zincZathex Kaliz
 
Wilfley table / shaking table for mineral Processing (extractive metallurgy)
Wilfley table / shaking table for mineral Processing (extractive metallurgy)Wilfley table / shaking table for mineral Processing (extractive metallurgy)
Wilfley table / shaking table for mineral Processing (extractive metallurgy)SOHINI MONDAL
 
Variables cianuracion
Variables cianuracionVariables cianuracion
Variables cianuracionElyLucia
 
VACUUM DE-GASING OF METALS
VACUUM DE-GASING OF METALSVACUUM DE-GASING OF METALS
VACUUM DE-GASING OF METALSarif ali
 

What's hot (20)

Hidrometalurgia
HidrometalurgiaHidrometalurgia
Hidrometalurgia
 
Extractive Metallurgy_week 1.pdf
Extractive Metallurgy_week 1.pdfExtractive Metallurgy_week 1.pdf
Extractive Metallurgy_week 1.pdf
 
223306733 laboratorio-de-metalurgia-general-nº2
223306733 laboratorio-de-metalurgia-general-nº2223306733 laboratorio-de-metalurgia-general-nº2
223306733 laboratorio-de-metalurgia-general-nº2
 
Diseño tanques lixiviacion
Diseño tanques lixiviacionDiseño tanques lixiviacion
Diseño tanques lixiviacion
 
Lixiviación metalurgia
Lixiviación metalurgia Lixiviación metalurgia
Lixiviación metalurgia
 
Metalurgia
MetalurgiaMetalurgia
Metalurgia
 
Oro
OroOro
Oro
 
CHROMITE ORE DEPOSITS IN EGYPT
CHROMITE ORE DEPOSITS IN EGYPTCHROMITE ORE DEPOSITS IN EGYPT
CHROMITE ORE DEPOSITS IN EGYPT
 
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdf
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdfCHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdf
CHAPTER 01 INTRODUCTION TO PRINCIPLE OF EXTRACTION.pdf
 
Hidrometalurgia del cu
Hidrometalurgia del cuHidrometalurgia del cu
Hidrometalurgia del cu
 
Nickel_Processes.ppt
Nickel_Processes.pptNickel_Processes.ppt
Nickel_Processes.ppt
 
Fundamentals of Flotation
Fundamentals of FlotationFundamentals of Flotation
Fundamentals of Flotation
 
Preparación del carbón
Preparación del carbónPreparación del carbón
Preparación del carbón
 
Antapite
AntapiteAntapite
Antapite
 
245197868 flotacion-de-plomo-y-zinc
245197868 flotacion-de-plomo-y-zinc245197868 flotacion-de-plomo-y-zinc
245197868 flotacion-de-plomo-y-zinc
 
Wilfley table / shaking table for mineral Processing (extractive metallurgy)
Wilfley table / shaking table for mineral Processing (extractive metallurgy)Wilfley table / shaking table for mineral Processing (extractive metallurgy)
Wilfley table / shaking table for mineral Processing (extractive metallurgy)
 
Variables cianuracion
Variables cianuracionVariables cianuracion
Variables cianuracion
 
VACUUM DE-GASING OF METALS
VACUUM DE-GASING OF METALSVACUUM DE-GASING OF METALS
VACUUM DE-GASING OF METALS
 
pdf-unidad-3-electroobtencion.pptx
pdf-unidad-3-electroobtencion.pptxpdf-unidad-3-electroobtencion.pptx
pdf-unidad-3-electroobtencion.pptx
 
Sublevel stoping..Underground mining methods
Sublevel stoping..Underground mining methodsSublevel stoping..Underground mining methods
Sublevel stoping..Underground mining methods
 

Similar to ENRICHMENT IRON BY REDUCTION ROASTING-MAGNETIC SEPARATION.pdf

Mineral Processing Tech ppt.pptx
Mineral Processing Tech ppt.pptxMineral Processing Tech ppt.pptx
Mineral Processing Tech ppt.pptxUrvashiMehta13
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Pawan Kumar
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Pawan Kumar
 
Posters for Exhibition
Posters for ExhibitionPosters for Exhibition
Posters for ExhibitionMohit Rajput
 
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...Jagpreet Singh
 
Preparation and characterization of Al doped nano crystalline Ni ferrites
Preparation and characterization of Al doped nano crystalline Ni ferritesPreparation and characterization of Al doped nano crystalline Ni ferrites
Preparation and characterization of Al doped nano crystalline Ni ferritesIJERA Editor
 
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...B P Ravi
 
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...IOSR Journals
 
Morgan tms ods 2015 02-29 v4.4 dist
Morgan tms ods 2015 02-29 v4.4 distMorgan tms ods 2015 02-29 v4.4 dist
Morgan tms ods 2015 02-29 v4.4 distddm314
 

Similar to ENRICHMENT IRON BY REDUCTION ROASTING-MAGNETIC SEPARATION.pdf (20)

Magnetization Roasting of Refractory Iron.pdf
Magnetization Roasting of Refractory Iron.pdfMagnetization Roasting of Refractory Iron.pdf
Magnetization Roasting of Refractory Iron.pdf
 
Minerals phase transformation by hydrogen reduction.pdf
Minerals phase transformation by hydrogen reduction.pdfMinerals phase transformation by hydrogen reduction.pdf
Minerals phase transformation by hydrogen reduction.pdf
 
Mineral Processing Tech ppt.pptx
Mineral Processing Tech ppt.pptxMineral Processing Tech ppt.pptx
Mineral Processing Tech ppt.pptx
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
 
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
Synthesis of flower-like magnetite nanoassembly: Application in the efficient...
 
Posters for Exhibition
Posters for ExhibitionPosters for Exhibition
Posters for Exhibition
 
Vijay
VijayVijay
Vijay
 
Kl3617891796
Kl3617891796Kl3617891796
Kl3617891796
 
Io3614891497
Io3614891497Io3614891497
Io3614891497
 
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
Synthesis and Characterization of Copper Oxide Nanoparticles and its Applicat...
 
electrical steel.docx
electrical steel.docxelectrical steel.docx
electrical steel.docx
 
Preparation and characterization of Al doped nano crystalline Ni ferrites
Preparation and characterization of Al doped nano crystalline Ni ferritesPreparation and characterization of Al doped nano crystalline Ni ferrites
Preparation and characterization of Al doped nano crystalline Ni ferrites
 
Cyanobacteria ppt
Cyanobacteria pptCyanobacteria ppt
Cyanobacteria ppt
 
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...
Hydrometallurgy.dealing with the exratcion of precdous, light metals by leach...
 
Ij3115691576
Ij3115691576Ij3115691576
Ij3115691576
 
Loutfy Hamid Madkour
Loutfy Hamid MadkourLoutfy Hamid Madkour
Loutfy Hamid Madkour
 
20320130406010 2
20320130406010 220320130406010 2
20320130406010 2
 
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...
Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Sem...
 
Morgan tms ods 2015 02-29 v4.4 dist
Morgan tms ods 2015 02-29 v4.4 distMorgan tms ods 2015 02-29 v4.4 dist
Morgan tms ods 2015 02-29 v4.4 dist
 
A REVIEW OF IRONMAKING BY DIRECT REDUCTION PROCESSES.pdf
A REVIEW OF IRONMAKING BY DIRECT REDUCTION PROCESSES.pdfA REVIEW OF IRONMAKING BY DIRECT REDUCTION PROCESSES.pdf
A REVIEW OF IRONMAKING BY DIRECT REDUCTION PROCESSES.pdf
 

More from Geology Department, Faculty of Science, Tanta University

More from Geology Department, Faculty of Science, Tanta University (20)

INDUSTRIAL APPLICATIONS OF MINERALS AND ROCKS.pdf
INDUSTRIAL APPLICATIONS OF MINERALS AND ROCKS.pdfINDUSTRIAL APPLICATIONS OF MINERALS AND ROCKS.pdf
INDUSTRIAL APPLICATIONS OF MINERALS AND ROCKS.pdf
 
ESSENTIALS OF IRON ORE DEPOSITS and INDUSTRIES.pdf
ESSENTIALS OF IRON ORE DEPOSITS and INDUSTRIES.pdfESSENTIALS OF IRON ORE DEPOSITS and INDUSTRIES.pdf
ESSENTIALS OF IRON ORE DEPOSITS and INDUSTRIES.pdf
 
GLOBAL IRON ORE.pdf
GLOBAL IRON ORE.pdfGLOBAL IRON ORE.pdf
GLOBAL IRON ORE.pdf
 
Ferrous Scrap FUTURE.pdf
Ferrous Scrap  FUTURE.pdfFerrous Scrap  FUTURE.pdf
Ferrous Scrap FUTURE.pdf
 
Direct Reduced Iron-Production.pdf
Direct Reduced Iron-Production.pdfDirect Reduced Iron-Production.pdf
Direct Reduced Iron-Production.pdf
 
IRONWORKS.pdf
IRONWORKS.pdfIRONWORKS.pdf
IRONWORKS.pdf
 
Processes for phosphorus removal from iron ore -.pdf
Processes for phosphorus removal from iron ore -.pdfProcesses for phosphorus removal from iron ore -.pdf
Processes for phosphorus removal from iron ore -.pdf
 
Iron Types-HBI-DRI.pdf
Iron Types-HBI-DRI.pdfIron Types-HBI-DRI.pdf
Iron Types-HBI-DRI.pdf
 
IRON ORE DEPOSITS.pdf
IRON ORE DEPOSITS.pdfIRON ORE DEPOSITS.pdf
IRON ORE DEPOSITS.pdf
 
STEEL INDUSTRY IN EGYPT-Companies and Markets.pdf
STEEL INDUSTRY IN EGYPT-Companies and Markets.pdfSTEEL INDUSTRY IN EGYPT-Companies and Markets.pdf
STEEL INDUSTRY IN EGYPT-Companies and Markets.pdf
 
Cv english-harraz
Cv english-harrazCv english-harraz
Cv english-harraz
 
Rodruin prospecting area conf
Rodruin prospecting area confRodruin prospecting area conf
Rodruin prospecting area conf
 
Crusher; Crushing; and Classification Equipment
Crusher; Crushing; and Classification EquipmentCrusher; Crushing; and Classification Equipment
Crusher; Crushing; and Classification Equipment
 
The garnet group
The garnet groupThe garnet group
The garnet group
 
Hydrothermal alterations
Hydrothermal alterationsHydrothermal alterations
Hydrothermal alterations
 
Lecture 10 textures of ore deposits and associated features
Lecture 10 textures of ore deposits and associated featuresLecture 10 textures of ore deposits and associated features
Lecture 10 textures of ore deposits and associated features
 
Introduction to petroleum Economics
Introduction to petroleum EconomicsIntroduction to petroleum Economics
Introduction to petroleum Economics
 
Tailing beach in eastern desert egypt
Tailing beach in eastern desert egyptTailing beach in eastern desert egypt
Tailing beach in eastern desert egypt
 
Tailings
TailingsTailings
Tailings
 
History of egyptian gold production
History of egyptian gold productionHistory of egyptian gold production
History of egyptian gold production
 

Recently uploaded

The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxjmorse8
 
Mbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptxMbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptxnuriaiuzzolino1
 
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTelling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTechSoup
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Mohamed Rizk Khodair
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxheathfieldcps1
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxCeline George
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfmstarkes24
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPragya - UEM Kolkata Quiz Club
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointELaRue0
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeSaadHumayun7
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resourcesaileywriter
 
The Ultimate Guide to Social Media Marketing in 2024.pdf
The Ultimate Guide to Social Media Marketing in 2024.pdfThe Ultimate Guide to Social Media Marketing in 2024.pdf
The Ultimate Guide to Social Media Marketing in 2024.pdfdm4ashexcelr
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文中 央社
 
Behavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfBehavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfaedhbteg
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online PresentationGDSCYCCE
 
....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdf....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdfVikramadityaRaj
 
How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17Celine George
 

Recently uploaded (20)

The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptx
 
Mbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptxMbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptx
 
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdfTelling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
Telling Your Story_ Simple Steps to Build Your Nonprofit's Brand Webinar.pdf
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdfPost Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
Post Exam Fun(da) Intra UEM General Quiz 2024 - Prelims q&a.pdf
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tube
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
The Ultimate Guide to Social Media Marketing in 2024.pdf
The Ultimate Guide to Social Media Marketing in 2024.pdfThe Ultimate Guide to Social Media Marketing in 2024.pdf
The Ultimate Guide to Social Media Marketing in 2024.pdf
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
Behavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdfBehavioral-sciences-dr-mowadat rana (1).pdf
Behavioral-sciences-dr-mowadat rana (1).pdf
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation
 
....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdf....................Muslim-Law notes.pdf
....................Muslim-Law notes.pdf
 
Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17
 

ENRICHMENT IRON BY REDUCTION ROASTING-MAGNETIC SEPARATION.pdf

  • 1. Dr. Hassan Z. Harraz hharraz2006@yahoo.com Autum 2023 @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation Enrichment Iron Values OF Low-grade Iron Ore Resources Using Reduction Roasting-Magnetic Separation Techniques -a review
  • 2. Abstract ❑ Because of the rapid depletion of easily processed iron ores, the utilization of refractory ores has attracted increasing attention . ❑ There several billion tonnes iron deposits, and most are refractory ores, which are difficult to process by conventional methods because of the low iron grade, fine grain size and complex mineralogy. ➢ The beneficiation of low-grade iron ores to meet the growing demand for iron and steel is an important research topic. ➢ At present, magnetization roasting followed by magnetic separation is one of the most effective technologies for the beneficiation of refractory iron ores. ❑ However, certain ores do not qualify to be treated in physical separation processes, and hence, alternative strategies are being looked into for upgrading their iron content. ➢ Reduction roasting has many advantages over the physical beneficiation process, such as enhanced iron recovery and processing of complex and poorly liberated iron ores. ❑ The objective of this presentation is to compile and amalgamate the crucial information regarding the beneficiation of low-grade iron ores using carbothermic reduction followed by magnetic separation, which is a promising technique to treat iron ores with complex mineralogy and liberation issues. ❑ Reduction roasting studies done for different types low-grade iron ores including oolitic iron ores, banded iron ores, iron ore slimes and tailings, and industrial wastes have been discussed. ❑ Reduction roasting followed by magnetic separation is a promising method to recover the iron values from low-grade iron ores. ➢ The process involves the reduction of the goethite and hematite phases to magnetite, which can subsequently be recovered using a low-intensity magnetic separation unit. ❑ The large-scale technological advancements in reduction roasting and the possibilities of the application of alternative reductants as substitutes for coal have also been highlighted. @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation 2
  • 3. Contents 1. INTRODUCTION 2. REDUCTION ROASTING AND MAGNETIC SEPARATION 2.1. Oolitic iron ores 2.2. Goethitic and limonitic ores 2.3. Iron ore fines and tailings 2.4. Other low-grade iron ore resources 2.5. Other resources 3. EMERGING TRENDS IN REDUCTION ROASTING 3.1. Microwave-assisted reduction roasting 3.2. Biomass as reductants 3.3. Self-magnetizing roasting 4. LARGE SCALE STUDIES OF REDUCTION ROASTING TECHNIQUE 5. CONCLUDING REMARKS 6. REFERENCES @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation 3
  • 4. Keywords: •Low-grade iron ore •Beneficiation •Reduction roasting •Microwave •Magnetization Roasting •Magnetic Separation •Refractory Iron Ores. @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation 4
  • 5. Objective ❑The objective of the present communication is, ➢ to investigate and summarize the related literature papers on reduction roasting-magnetic separation of low- grade iron ore resources. ➢It is anticipated that summarizing the knowledge and experience on this topic would help the research community to work further in the appropriate direction towards the commercialization of the process. @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation 5
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41. References @Hassan Harraz 2023 Enrichment of Fe by Reduction Roasting-Magnetic Separation 41 1) B. Das, S.S. Rath, Existing and new processes for beneficiation of Indian Iron ores, Trans. Indian Inst. Metals 73 (3) (2020) 505–514, https://doi.org/10.1007/ s12666-020-01878-z. 2) D. Xiong, L. Lu, R.J. Holmes, Developments in the physical separation of iron ore, Iron Ore, Elsevier 2015, pp. 283–307. https://linkinghub.elsevier.com/retrieve/pii/ B9781782421566000095, Accessed date: 7 September 2019. 3) M. Dworzanowski, Maximizing the recovery of fine iron ore using magnetic separation, J. South. Afr. Inst. Min. Metall. 112 (2012) 197–202. 4) D.C. Yang, P. Bozzato, G. Ferrara, Iron ore beneficiation with packed column jig, J. Miner. Mater. Charact. Eng. 2 (2003) 43–51, https://doi.org/10.4236/jmmce.2003. 21004. 5) H. Akbari, M. Noaparast, S.Z. Shafaei, A. Hajati, S. Aghazadeh, H. Akbari, A beneficiation study on a low grade Iron ore by gravity and magnetic separation, Russ. J. Non-Ferr. Met. 59 (2018) 353–363, https://doi.org/10.3103/S1067821218040028. 6) R.G. Richards, D.M. MacHunter, P.J. Gates, M.K. Palmer, Gravity separation of ultrafine (−0.1mm) minerals using spiral separators, Miner. Eng. 13 (2000) 65–77, https://doi.org/10.1016/S0892-6875(99)00150-8. 7) A.A.S. Seifelnassr, E.M. Moslim, A.-Z.M. Abouzeid, Effective processing of low-grade iron ore through gravity and magnetic separation techniques, Physicochem. Probl. Miner. Process. 48 (2012) 567–578. 8) S.S. Rath, H. Sahoo, S.K. Das, B. Das, B.K. Mishra, Influence of band thickness of banded hematite quartzite (BHQ) ore in flotation, Int. J. Miner. Process. 130 (2014) 48–55, https://doi.org/10.1016/j.minpro.2014.05.006. 9) I. Iwasaki, M.S. Prasad, Processing techniques for difficult-to-treat ores by combining chemical metallurgy and mineral processing, Miner. Process. Extr. Metall. Rev. 4 (1989) 241–276, https://doi.org/10.1080/08827508908952639. 10) S. Song, E.F. Campos-Toro, A. López-Valdivieso, Formation of micro-fractures on an oolitic iron ore under microwave treatment and its effect on selective fragmentation, Powder Technol. 243 (2013) 155–160, https://doi.org/10.1016/j.powtec. 2013.03.049. 11) M. Omran, T. Fabritius, R. Mattila, Thermally assisted liberation of high phosphorus oolitic iron ore: a comparison between microwave and conventional furnaces, Powder Technol. 269 (2015) 7–14, https://doi.org/10.1016/j.powtec.2014.08.073. 12) M. Omran, T. Fabritius, N. Abdel-Khalek, M. El-Aref, A.E.-H. Elmanawi, M. Nasr, A. Elmahdy, Microwave assisted liberation of high phosphorus Oolitic Iron ore, J. Miner. Mater. Charact. Eng. 2 (2014) 414–427, https://doi.org/10.4236/jmmce. 2014.25046. 13) K.E. Waters, N.A. Rowson, R.W. Greenwood, A.J. Williams, The effect of heat treatment on the magnetic properties of pyrite, Miner. Eng. 21 (2008) 679–682, https:// doi.org/10.1016/j.mineng.2008.01.008. 14) Q. Cao, J. Cheng, Q. Feng, S. Wen, B. Luo, Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite, Powder Technol. 311 (2017) 390–397, https://doi.org/10.1016/j.powtec.2017.01.069. 15) E. Donskoi, A.F. Collings, A. Poliakov, W.J. Bruckard, Utilisation of ultrasonic treatment for upgrading of hematitic/goethitic iron ore fines, Int. J. Miner. Process. 114–117 (2012) 80–92, https://doi.org/10.1016/j.minpro.2012.10.005. 16) S. Singh, H. Sahoo, S.S. Rath, B.B. Palei, B. Das, Separation of hematite from banded hematite jasper (BHJ) by magnetic coating, J. Cent. South Univ. 22 (2015) 437–444, https://doi.org/10.1007/s11771-015-2540-8. 17) S. Singh, H. Sahoo, S.S. Rath, A.K. Sahu, B. Das, Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating, Powder Technol. 269 (2015) 38–45, https://doi.org/10.1016/j.powtec.2014.08.065. 18) S. Prakash, B. Das, B.K. Mohapatra, R. Venugopal, Recovery of Iron values from Iron ore slimes by selective magnetic coating, Sep. Sci. Technol. 35 (2000) 2651–2662, https://doi.org/10.1081/SS-100102361. 19) D. Zhu, Q. Zhao, G.-Z. Qiu, J. Pan, Z.-Q. Wang, C.-J. Pan, Magnetizing roasting-magnetic separation of limonite ores from Anhui Province in East China, Beijing Keji Daxue Xuebao, J. Univ. Sci. Technol. Beijing 32 (2010) 713–718. 20) H. Huang, J. Hu, H. Ya, F. Yang, W. Sun, Study on the technology and mechanism of magnetic roasting and separation of a refractory red iron ore, Min. Metall. Eng. 30 (2010) 38–41. 21) Y. Man, J. Feng, Effect of iron ore-coalpellets during reduction with hydrogen and carbon monoxide, Powder Technol. 301 (2016) 1213–1217, https://doi.org/10. 1016/j.powtec.2016.07.057. 22) S. He, H. Sun, C. Hu, J. Li, Q. Zhu, H. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol. 313 (2017) 161–168, https://doi.org/ 10.1016/j.powtec.2017.03.007. 23) Z. Wei, J. Zhang, B. Qin, Y. Dong, Y. Lu, Y. Li, W. Hao, Y. Zhang, Reduction kinetics of hematite ore fines with H2 in a rotary drum reactor, Powder Technol. 332 (2018) 18–26, https://doi.org/10.1016/j.powtec.2018.03.054. 24) Y. Lu, Z. Wei, Y. Wang, J. Zhang, G. Li, Y. Zhang, Research on the characteristics and kinetics of direct reduction of limonite ore fines under CO atmosphere in a rotary drum reactor, Powder Technol. 352 (2019) 240–250, https://doi.org/10.1016/j. powtec.2019.04.069. 25) C.W. Dannatt, H.J.T. Ellingham, Roasting and reduction processes. Roasting and reduction processes—a general survey, Discuss Faraday Soc. 4 (1948) 126–139, https://doi.org/10.1039/DF9480400126. 26) V. Ravisankar, R. Venugopal, H. Bhat, Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation, Miner. Process. Extr. Metall. 128 (2019) 175–182, https://doi.org/10.1080/03719553.2017. 1412876. 27) K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng. 126 (2018) 89–100, https://doi.org/10.1016/j.mineng.2018.06.018. 28) T. Peng, X. Gao, Q. Li, L. Xu, L. Luo, L. Xu, Phase transformation during roasting process and magnetic beneficiation of oolitic-iron ores, Vacuum. 146 (2017) 63–73, https://doi.org/10.1016/j.vacuum.2017.09.029. 29) Y. Zimmels, S. Weissberger, I.J. Lin, Effect of oolite structure on direct reduction of oolitic iron ores, Int. J. Miner. Process. 24 (1988) 55–71, https://doi.org/10.1016/ 0301-7516(88)90031-2. 30) G.G.O.O. Uwadiale, R.J. Whewell, Effect of temperature on magnetizing reduction of agbaja iron ore, Metall. Trans. B19 (1988) 731–735, https://doi.org/10.1007/ BF02650192. 31) M.A. Youssef, M.B. Morsi, Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed, Can. Metall. Q. 37 (1998) 419–428, https://doi.org/10.1016/S0008-4433(98)00009-3. 32) Y. Yu, C. Qi, Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore, J. Wuhan Univ. Technol. Mater. Sci. Ed. 26 (2011) 176–181, https://doi.org/10.1007/s11595-011-0192-6. 33) L.-Q. Luo, M. Chen, H.-T. Yan, S.-S. Cui, Y.-J. Zhang, Magnetic reduction roasting and magnetic separation of oolitic iron ore, Guocheng Gongcheng Xuebao, Chin. J. Process Eng. 14 (2014) 593–598. 34) R. Wang, Y.-X. Han, Y.-J. Li, Y.-S. Zhang, Research on magnetic properties of oolitic hematite roasted by suspension roasting furnace, Dongbei Daxue Xuebao, J. Northeast. Univ. 36 (2015) 1024–1028, https://doi.org/10.3969/j.issn.1005-3026.2015. 07.024. 35) H. Zhang, Z. Zhang, L. Luo, H. Yu, Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite, Energy Sources Part Recovery Util. Environ. Eff. 41 (2019) 47–64, https://doi.org/10.1080/15567036. 2018.1496195. 36) T. Peng, L. Xu, L. Luo, Quantitative investigation of roasting-magnetic separation for hematite oolitic-ores: mechanisms and industrial application, Open Chem. 15 (2017) https://doi.org/10.1515/chem-2017-0043. 37) D. Zhu, Z. Guo, J. Pan, F. Zhang, Synchronous upgrading Iron and phosphorus removal from high phosphorus Oolitic hematite ore by high temperature flash reduction, Metals 6 (2016) 123, https://doi.org/10.3390/met6060123. 38) D. Huang, Y. Zong, R. Wei, W. Gao, X. Liu, Direct reduction of high-phosphorus Oolitic hematite ore based on biomass pyrolysis, J. Iron Steel Res. Int. 23 (2016) 874–883, https://doi.org/10.1016/S1006-706X(16)30134-0. 39) H. Han, D. Duan, P. Yuan, S. Chen, Recovery of metallic iron from high phosphorus oolitic hematite by carbothermic reduction and magnetic separation, Ironmak. Steelmak. 42 (2015) 542–547, https://doi.org/10.1179/1743281214Y.0000000259. 40) J. Gao, L. Guo, Z. Guo, Separation of P phase and Fe phase in high phosphorus Oolitic Iron ore by ultrafine grinding and gaseous reduction in a rotary furnace, Metall. Mater. Trans. BProcess Metall. Mater. Process. Sci. 46 (2015) 2180–2189, https:// doi.org/10.1007/s11663-015-0400-4. 41) S. Dey, M.K. Mohanta, R. Singh, Mineralogy and textural impact on beneficiation of goethitic ore, Int. J. Min. Sci. Technol. 27 (2017) 445–450, https://doi.org/10.1016/j. ijmst.2017.03.017. 42) H.-Q. Zhang, Y.-F. Yu, Z.-Y. Peng, W. Chen, Study on flash magnetizing roasting of huangmei limonitic ore, Kang TiehIron Steel Peking. 44 (2009) 11–14. 43) G.F. Zhang, Q.R. Yang, Y.D. Yang, P. Wu, A. McLean, Recovery of iron from waste slag of pyrite processing using reduction roasting magnetic separation method, Can. Metall. Q. 52 (2013) 153–159, https://doi.org/10.1179/1879139512Y. 0000000055. 44) N. Faris, J. Tardio, R. Ram, S. Bhargava, M.I. Pownceby, Investigation into coal-based magnetizing roasting of an iron-rich rare earth ore and the associated mineralogical transformations, Miner. Eng. 114 (2017) 37–49, https://doi.org/10.1016/j. mineng.2017.09.007. 45) F. Wu, J. Deng, B. Mi, Z. Xiao, J. Kuang, H. Liu, M. Liang, B. Liu, P. Yu, Insight into effect of CaCO3 on reduction roasting of fine-grained silicate type iron oxide ore and its application on Fe separation and recovery, Powder Technol. 356 (2019) 170–176, https://doi.org/10.1016/j.powtec.2019.08.020. 46) J. Hanna, I.J. Anazia, Processing of hematitic iron ores, in: J. Hanna, Y.A. Attia (Eds.), Adv. Fine Part. Process, Springer US, Boston, MA 1990, pp. 413–425. http://link. springer.com/10.1007/978-1-4684-7959-1_35, Accessed date: 7 September 2019. 47) G.G.O.O. Uwadiale, Upgrading fine-grained iron ores: (i) general review (ii) Agbaja Iron ore, in: J. Hanna, Y.A. Attia (Eds.), Adv. Fine Part. Process, Springer US, Boston, MA 1990, pp. 401–411. http://link.springer.com/10.1007/978-1-4684-7959-1_34, Accessed date:7 September 2019. 48) C. Li, H. Sun, J. Bai, L. Li, Innovative methodology for comprehensive utilization of iron ore tailings, J. Hazard. Mater. 174 (2010) 71–77, https://doi.org/10.1016/j. jhazmat.2009.09.018. 49) K. Jang, V.R.M. Nunna, S. Hapugoda, A.V. Nguyen, W.J. Bruckard, Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation, Miner. Eng. 60 (2014) 14–22, https://doi.org/ 10.1016/j.mineng.2014.01.021. 50) B. Zhang, X. Xue, H. Yang, X. Huang, Gas-based magnetizing roasting for recycling iron in baotou rare earth tailings, Zhongguo Xitu Xuebao, J. Chin. Rare Earth Soc. 33 (2015) 378–384, https://doi.org/10.11785/S1000-4343.20150317. 51) Y. Jianwen, H. Yuexin, G. Peng, L. Yanjun, Y. Shuai, L. Wenbo, An innovative methodology for recycling iron from magnetic pre-concentrate of an iron ore tailing, Physicochem. Probl. Miner. Process. (2018) https://doi.org/10.5277/ ppmp1863ISSN 2084–4735. 52) J. Yu, Y. Han, Y. Li, P. Gao, Beneficiation of an iron ore fines by magnetization roasting and magnetic separation, Int. J. Miner. Process. 168 (2017) 102–108, https://doi.org/10.1016/j.minpro.2017.09.012. 53) W. Li, Y. Han, X. Liu, Y. Shan, Y. Li, Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings, Physicochem. Probl. Miner. Process. (2019) https://doi.org/10.5277/ ppmp19010ISSN 2084–4735. 54) H. Sahoo, S.S. Rath, D.S. Rao, B.K. Mishra, B. Das, Role of silica and alumina content in the flotation of iron ores, Int. J. Miner. Process. 148 (2016) 83–91, https://doi. org/10.1016/j.minpro.2016.01.021. 55) N. Ray, D. Nayak, N. Dash, S.S. Rath, Utilization of low-grade banded hematite jasper ores: recovery of iron values and production of ferrosilicon, Clean Techn. Environ. Policy 20 (2018) 1761–1771, https://doi.org/10.1007/s10098-018-1566-7. 56) D. Zhu, Y. Xiao, T. Chun, B. Chen, J. Pan, Upgrading and removing phosphorus from low-grade and high phosphorus containing iron ores, XXV, Int. Miner. Process. Congr. 3 (2010) 1667–1676. 57) Y. Li, T. Zhu, Recovery of low grade haematite via fluidised bed magnetising roasting: investigation of magnetic properties and liberation characteristics, Ironmak. Steelmak. 39 (2012) 112–120, https://doi.org/10.1179/1743281211Y. 0000000071. 58) S.S. Rath, H. Sahoo, N. Dhawan, D.S. Rao, B. Das, B.K. Mishra, Optimal recovery of iron values from a low grade iron ore using reduction roasting and magnetic separation, Sep. Sci. Technol. 49 (2014) 1927–1936, https://doi.org/10.1080/ 01496395.2014.903280. 59) S.S. Rath, N. Dhawan, D.S. Rao, B. Das, B.K. Mishra, Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting, Powder Technol. 301 (2016) 1016–1024, https://doi.org/10.1016/j.powtec.2016.07.044. 60) Q. Zhao, J. Xue, W. Chen, Mechanism of improved magnetizing roasting of siderite– hematite iron ore using a synergistic CO–H2 mixture, J. Iron SteelRes. Int. (2019) https://doi.org/10.1007/s42243-019-00242-w. 61) Q. Zhao, J. Xue, W. Chen, Upgrading of iron concentrate by fluidized-bed magnetizing roasting of siderite to magnetite in CO–H2–N2 atmosphere, Trans. Indian Inst. Metals 72 (2019) 1381–1391, https://doi.org/10.1007/s12666-019-01636-w. 62) Y. Zhang, H. Li, X. Yu, Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation, J. Hazard. Mater. 213–214 (2012) 167–174, https://doi.org/10.1016/j.jhazmat.2012.01.076. 63) L. Bailong, Z. Zhaohui, L. Linbo, W. Yujie, Recovery of gold and Iron from the cyanide tailings by magnetic roasting, Rare Met. Mater. Eng. 42 (2013) 1805–1809, https://doi.org/10.1016/S1875-5372(14)60009-6. 64) M. Li, B. Peng, L. Chai, N. Peng, H. Yan, D. Hou, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, J. Hazard. Mater. 237–238 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.08.052. 65) C. Lei, B. Yan, T. Chen, X.-M. Xiao, Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation, J. Clean. Prod. 158 (2017) 73–80, https://doi.org/10.1016/j.jclepro.2017.04.164. 66) Y. Man, J. Feng, Effect of gas composition on reduction behavior in red mud and iron ore pellets, Powder Technol. 301 (2016) 674–678, https://doi.org/10.1016/j. powtec.2016.06.013. 67) M. Samouhos, M. Taxiarchou, G. Pilatos, P.E. Tsakiridis, E. Devlin, M. Pissas, Controlled reduction of red mud by H2 followed by magnetic separation, Miner. Eng. 105 (2017) 36–43, https://doi.org/10.1016/j.mineng.2017.01.004. 68) S.W. Kingman, N.A. Rowson, Microwave treatment of minerals-a review, Miner. Eng. 11 (1998) 1081–1087, https://doi.org/10.1016/S0892-6875(98)00094-6. 69) K.E. Haque, Microwave energy for mineral treatment processes—a brief review, Int. J. Miner. Process. 57 (1999) 1–24, https://doi.org/10.1016/S0301-7516(99)00009-5. 70) M. Hayashi, K. Takeda, K. Kashimura, T. Watanabe, K. Nagata, Carbothermic reduction of hematite powders by microwave heating, ISIJ Int. 53 (2013) 1125–1130, https://doi.org/10.2355/isijinternational.53.1125. 71) K. Kashimura, M. Sato, M. Hotta, D. Kumar Agrawal, K. Nagata, M. Hayashi, T. Mitani, N. Shinohara, Iron production from Fe3O4 and graphite by applying 915MHz microwaves, Mater. Sci. Eng. A556 (2012) 977–979, https://doi.org/10.1016/j.msea.2012.07.049. 72) M. Samouhos, M. Taxiarchou, P.E. Tsakiridis, K. Potiriadis, Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process, J. Hazard. Mater. 254–255 (2013) 193–205, https://doi. org/10.1016/j.jhazmat.2013.03.059. 74) F. Wu, Z. Cao, S. Wang, H. Zhong, Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores, J. Clean. Prod. 171 (2018) 831–843, https://doi.org/10.1016/j.jclepro.2017.09.198. 75) V. Rayapudi, N. Dhawan, Up-gradation of banded iron ores for pellet grade concentrate, Mater. Today Proc. 5 (2018) 17035–17040, https://doi.org/10.1016/j.matpr. 2018.04.109. 76) V. Rayapudi, S. Agrawal, N. Dhawan, Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore, Miner. Eng. 138 (2019) 204–214, https://doi.org/10.1016/j.mineng.2019.05.004.
  • 42. 2-5