SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
Time Series Classification
By Data Mutation
안명호
www.deepnumbers.com
Who am i?
• 안명호, MHR Inc
• www.deepnumbers.com
• 어느 날 알게 된 머신러닝에 흠뻑 빠져 그동안
애지중지하던 클라우드를 버리고 머신러닝으로
전향하였다. 이제 더는 다른 기술은 관심을 두지 않고
머신러닝 한길만으로 정했기에 머신러닝을 공부하며
어려운 수식들을 다시 보느라 고생하고 있지만,
하루하루 배워가는 지식에 행복해하며 지내고 있다.
Time Series Data?
• 시계열(時系列, time series)은 일정 시간 간격으로 배치된 데이터들의 수열을
말한다. 시계열 해석(time series analysis)라고 하는 것은 이런 시계열을
해석하고 이해하는 데 쓰이는 여러 가지 방법을 연구하는 분야이다.
• 예컨대, 이런 시계열이 어떤 법칙에서 생성되어서 나오느냐는 기본적인 질문을
이해하는 것이 궁극적인 목표라고 할 수 있다.
• 시계열 예측(time series prediction)이라고 하는 것은 주어진 시계열을 보고
수학적인 모델을 만들어서 미래에 일어날 것들을 예측하는 것을 뜻하는 말이다.
일반적으로 이런 방법들은 공학이나 과학계산, 혹은 금융시장에서의 주가 예측
등에서 많이 쓰인다.
From	WIKI
Time Series Data Example – 주가
Time Series Data Example - ECG
http://grammarviz2.github.io/grammarviz2_site/morea/anomaly/experience-a2.html
TSC(Time Series Classification)?
시계열데이터를 분석해 분류하는 것
http://alumni.cs.ucr.edu/~ychen053/
TSC Example - 주가예측
http://tutorials.topstockresearch.com/ChartPatterns/Triangles/TutorialsOnTriangleChartPattern.html
만약에 이미 알려진 주가의 패턴을 남보다 빨리 알 수 있다면…….
Time Series Classification Examples
• 서버나 데이터센터의 전력사용량 예측
• 전자기파의 에러검출
• 주식시장의 주가예측
• ECG 데이터를 이용한 심장병 발생예측
• 영유아의 패혈증 조기진단
• 네트워크 트래픽 종류 판별
• ….........
현실세계에서 매우 광범위하게 적용가능
Problems in TSC
여러가지 문제가 있지만 가장 골치 아픈 2가지
Scale Noise
Problem #1 : Scale
• 시계열데이터의 불규칙한 시간간격(Time Scale)
• 예를 들어 서버의 에너지 사용량 시계열 데이터의 패턴이 있을때,
해당 패턴들이 모두 동일한 시간간격내에 존재하지 않고 서로 다른
시간간격내에 존재하기 때문에, 패턴을 인식하기 위해서는 동일한
패턴의 데이터들을 적정한 시간간격으로 변화시키거나 혹은 이러한
시간간격을 무시하고 특징(Feature)를 찾아내는 등의 방법이
필요하게 된다.
Scale Problem
Same or not?
A B
Problem #2 : Noise
• 불규칙적인 노이즈
• 측정시점에서의 계측장비나 혹은 상황의 변화로 인해 노이즈가
발생할 수 있고, 측정대상이 어떠한 이유로 인해 엉뚱한 값을
만들어낼 수도 있다. 따라서 이러한 노이즈를 최소화시키고
시계열데이터의 고유한 특징을 가지고 있는 데이터를
추출하거나, 노이즈를 제거하는 방법이 요구된다.
Noise Problem
http://www.spectraworks.com/Help/prediction.html
TSC, Not so easy…
Key Idea for TSC
서로 다른 Scale과 Noise를 데이터에 추가해 학습시킨다면?
TSC by Data Mutation
• 시간간격 문제를 처리하기 위해서는 변종데이터를 생성하는데 필요한 파라메터인
Window의 값을 다양하게 사용해 Time Scale을 변경한다. 아울러 Up-sampling으로
scale을 늘리고, down-sampling을 이용해 time scale을 줄여 CNN이 특정 패턴의
시간간격의 변화에 민감하지 않도록 학습시킨다.
• 노이즈에 강인하도록 만들기 위해서는 원본 데이터로부터 해당 데이터의 특징을 잘
표현할 수 있는 특성치(feature)를 추출해야 하는데, 이를 위해 Upsampling, hamming,
blackman과 같은 filtering을 적용한다
원본데이터의 특성을 유지하면서 Scale과 Noise에 강인하도록 학습
TSC by Data Mutation & CNN
Raw Data
Mutated Data #1
Mutated Data #2
Mutated Data #N
CNN Model #1
CNN Model #2
CNN Model #N
Ensemble
CNN Model
변종 데이터들은 원본 데이터를 다양한 시간간격을 포함하고, 이상치와 특이치를 제외한
데이터를 가지고 있어 CNN에 다양한 원본 데이터의 변형에 노출시켜 다각도로 특성을 학습
Key Idea – Data Mutation
Smoothing Filtering Sampling
3가지 방법을 이용해 원본데이터의 특성을 유지하면서
Scale과 Noise에 강인한 데이터 생성
Smoothing
to smooth a data set is to create an approximating function that attempts to
capture important patterns in the data, while leaving out noise or other fine-
scale structures/rapid phenomena.
http://fedc.wiwi.hu-berlin.de/xplore/tutorials/xegbohtmlnode44.html
ARIMA Model
Filtering
• a filter is a device or process that
removes some unwanted components
or features from a signal.
• Filtering is a class of signal processing,
the defining feature of filters being the
complete or partial suppression of some
aspect of the signal
• Upsampling, hamming, blackman등의
filter 적용
Sampling
• sampling is the reduction of a continuous
signal to a discrete signal. A common example is
the conversion of a sound wave (a continuous
signal) to a sequence of samples (a discrete-
time signal).
• Up-sampling으로 scale을 늘리고, down-
sampling을 이용해 time scale을 줄여 CNN이 특정
패턴의 시간간격의 변화에 민감하지 않도록 학습
http://fourier.eng.hmc.edu/e161/lectures/filterbank/node1.html
Down & Up Sampling
Learning : CNN
기존의 CNN을 변형해서 여러개의 Weak CNN Model을 만든다면
https://sites.google.com/site/shahriarinia/home/ai/machine-learning/neural-networks/deep-learning/theano-mnist/3-convolutional-neural-network-lenet
CNN for Data Mutation Process
Data Mutation Weak Learners Ensemble Learner
CNN을 활용한 Softmax Ensemble Model
CNN for Data Mutation
Data
Filtered	Data
Filtered	Data
Filtered	Data
filter2
Data
Filtered	Data
Filtered	Data
Filtered	Data
filter1
Filtered	Data
Filtered	Data
Filtered	Data
filter3
filter1
filter1
filter1
mutator2
mutator3
mutator1
General CNN CNN for Data Mutation
CNN : Weak Learner
1-D Convolution
1-D Convolution
1-D Convolution
Max PoolingSame Filter
동일한 Filter를 적용하고, Max Pooling을 이용해 Overfitting 방지
Ensemble by Softmax
다수의 CNN을 사용하기 때문에, 하나의 데이터에 대해 다수의 CNN에서 패턴인식에 대한
결과값을 내놓는다. Softmax는 다수의 CNN에서 계산한 결과값을 통합해 최종적인 결과를
내놓기 위한 것으로 각 CNN별로 적절한 가중치를 계산해 최종 결과값을 계산
To Find Optimal Parameters
• Parameters to be set
• Window Size
• Filter Size
• Pool Size
• Activation Function
• Learning Rate
• Batch Training Count
• And so on…..
∑ 𝑫𝒂𝒕𝒂𝒔𝒆𝒕	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚
∑ 𝐃𝐚𝐭𝐚𝐬𝐞𝐭	𝐒𝐓𝐃
Optimum Parameter
TSC by Data Mutation Result
Comparison by Error Rate
감사합니다.

Weitere ähnliche Inhalte

Was ist angesagt?

Ml10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsMl10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsankit_ppt
 
인공신경망
인공신경망인공신경망
인공신경망종열 현
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language ModelsDeep Learning JP
 
인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기Byoung-Hee Kim
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Seiya Tokui
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Daiki Shimada
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...Edge AI and Vision Alliance
 
[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals
[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals
[DL輪読会]ViNG: Learning Open-World Navigation with Visual GoalsDeep Learning JP
 
Reinforcement learning:policy gradient (part 1)
Reinforcement learning:policy gradient (part 1)Reinforcement learning:policy gradient (part 1)
Reinforcement learning:policy gradient (part 1)Bean Yen
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRUananth
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...Deep Learning JP
 
Model-Based Reinforcement Learning @NIPS2017
Model-Based Reinforcement Learning @NIPS2017Model-Based Reinforcement Learning @NIPS2017
Model-Based Reinforcement Learning @NIPS2017mooopan
 
機械学習 入門
機械学習 入門機械学習 入門
機械学習 入門Hayato Maki
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太Preferred Networks
 
機械学習と深層学習入門
機械学習と深層学習入門機械学習と深層学習入門
機械学習と深層学習入門Yuta Takahashi
 
20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについてPreferred Networks
 
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation SystemDeep Learning JP
 
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy GradientDeep Learning JP
 
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会S_aiueo32
 
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...Edureka!
 

Was ist angesagt? (20)

Ml10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topicsMl10 dimensionality reduction-and_advanced_topics
Ml10 dimensionality reduction-and_advanced_topics
 
인공신경망
인공신경망인공신경망
인공신경망
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
 
인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기인공지능 방법론 - 딥러닝 이해하기
인공지능 방법론 - 딥러닝 이해하기
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
 
[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals
[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals
[DL輪読会]ViNG: Learning Open-World Navigation with Visual Goals
 
Reinforcement learning:policy gradient (part 1)
Reinforcement learning:policy gradient (part 1)Reinforcement learning:policy gradient (part 1)
Reinforcement learning:policy gradient (part 1)
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
 
Model-Based Reinforcement Learning @NIPS2017
Model-Based Reinforcement Learning @NIPS2017Model-Based Reinforcement Learning @NIPS2017
Model-Based Reinforcement Learning @NIPS2017
 
機械学習 入門
機械学習 入門機械学習 入門
機械学習 入門
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
 
機械学習と深層学習入門
機械学習と深層学習入門機械学習と深層学習入門
機械学習と深層学習入門
 
20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて
 
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
 
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient
[DL輪読会]SeqGan Sequence Generative Adversarial Nets with Policy Gradient
 
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
 
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...
TensorFlow Object Detection | Realtime Object Detection with TensorFlow | Ten...
 

Andere mochten auch

Tensor board
Tensor boardTensor board
Tensor boardSung Kim
 
Survey on Software Defect Prediction
Survey on Software Defect PredictionSurvey on Software Defect Prediction
Survey on Software Defect PredictionSung Kim
 
Personalized Defect Prediction
Personalized Defect PredictionPersonalized Defect Prediction
Personalized Defect PredictionSung Kim
 
Software Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled DatasetsSoftware Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled DatasetsSung Kim
 
A Survey on Automatic Software Evolution Techniques
A Survey on Automatic Software Evolution TechniquesA Survey on Automatic Software Evolution Techniques
A Survey on Automatic Software Evolution TechniquesSung Kim
 
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Sung Kim
 
How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012Sung Kim
 
The Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksThe Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksSung Kim
 
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...Sung Kim
 
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Sung Kim
 
Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)Sung Kim
 
Source code comprehension on evolving software
Source code comprehension on evolving softwareSource code comprehension on evolving software
Source code comprehension on evolving softwareSung Kim
 
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...Sung Kim
 
Hybrid neural networks for time series learning by Tian Guo, EPFL, Switzerland
Hybrid neural networks for time series learning by Tian Guo,  EPFL, SwitzerlandHybrid neural networks for time series learning by Tian Guo,  EPFL, Switzerland
Hybrid neural networks for time series learning by Tian Guo, EPFL, SwitzerlandEuroIoTa
 
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
A Survey on  Dynamic Symbolic Execution  for Automatic Test GenerationA Survey on  Dynamic Symbolic Execution  for Automatic Test Generation
A Survey on Dynamic Symbolic Execution for Automatic Test GenerationSung Kim
 
CloudSpiral 2013年度 UML講義 1日目
CloudSpiral 2013年度 UML講義 1日目CloudSpiral 2013年度 UML講義 1日目
CloudSpiral 2013年度 UML講義 1日目Shin Matsumoto
 
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)Sung Kim
 
Automatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesAutomatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesSung Kim
 
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)Sung Kim
 
A Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionA Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionSung Kim
 

Andere mochten auch (20)

Tensor board
Tensor boardTensor board
Tensor board
 
Survey on Software Defect Prediction
Survey on Software Defect PredictionSurvey on Software Defect Prediction
Survey on Software Defect Prediction
 
Personalized Defect Prediction
Personalized Defect PredictionPersonalized Defect Prediction
Personalized Defect Prediction
 
Software Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled DatasetsSoftware Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled Datasets
 
A Survey on Automatic Software Evolution Techniques
A Survey on Automatic Software Evolution TechniquesA Survey on Automatic Software Evolution Techniques
A Survey on Automatic Software Evolution Techniques
 
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
 
How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012
 
The Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksThe Anatomy of Developer Social Networks
The Anatomy of Developer Social Networks
 
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
 
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
 
Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)
 
Source code comprehension on evolving software
Source code comprehension on evolving softwareSource code comprehension on evolving software
Source code comprehension on evolving software
 
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
 
Hybrid neural networks for time series learning by Tian Guo, EPFL, Switzerland
Hybrid neural networks for time series learning by Tian Guo,  EPFL, SwitzerlandHybrid neural networks for time series learning by Tian Guo,  EPFL, Switzerland
Hybrid neural networks for time series learning by Tian Guo, EPFL, Switzerland
 
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
A Survey on  Dynamic Symbolic Execution  for Automatic Test GenerationA Survey on  Dynamic Symbolic Execution  for Automatic Test Generation
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
 
CloudSpiral 2013年度 UML講義 1日目
CloudSpiral 2013年度 UML講義 1日目CloudSpiral 2013年度 UML講義 1日目
CloudSpiral 2013年度 UML講義 1日目
 
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
 
Automatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesAutomatic patch generation learned from human written patches
Automatic patch generation learned from human written patches
 
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
 
A Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionA Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash Reproduction
 

Ähnlich wie Time series classification

Chapter 11 Practical Methodology
Chapter 11 Practical MethodologyChapter 11 Practical Methodology
Chapter 11 Practical MethodologyKyeongUkJang
 
1조_SLRA_최종발표.pptx
1조_SLRA_최종발표.pptx1조_SLRA_최종발표.pptx
1조_SLRA_최종발표.pptxssuserb4f344
 
한눈에 보는 머신러닝
한눈에 보는 머신러닝한눈에 보는 머신러닝
한눈에 보는 머신러닝주경 이
 
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝Haesun Park
 
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentationtaeseon ryu
 
Transfer learning usage
Transfer learning usageTransfer learning usage
Transfer learning usageTae Young Lee
 
Denoising auto encoders(d a)
Denoising auto encoders(d a)Denoising auto encoders(d a)
Denoising auto encoders(d a)Tae Young Lee
 
[논문리뷰] Data Augmentation for 1D 시계열 데이터
[논문리뷰] Data Augmentation for 1D 시계열 데이터[논문리뷰] Data Augmentation for 1D 시계열 데이터
[논문리뷰] Data Augmentation for 1D 시계열 데이터Donghyeon Kim
 
분석과 설계
분석과 설계분석과 설계
분석과 설계Haeil Yi
 
파이썬으로 익히는 딥러닝 기본 (18년)
파이썬으로 익히는 딥러닝 기본 (18년)파이썬으로 익히는 딥러닝 기본 (18년)
파이썬으로 익히는 딥러닝 기본 (18년)SK(주) C&C - 강병호
 
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tae Young Lee
 
Deep neural networks cnn rnn_ae_some practical techniques
Deep neural networks cnn rnn_ae_some practical techniquesDeep neural networks cnn rnn_ae_some practical techniques
Deep neural networks cnn rnn_ae_some practical techniquesKang Pilsung
 
Things Data Scientists Should Keep in Mind
Things Data Scientists Should Keep in MindThings Data Scientists Should Keep in Mind
Things Data Scientists Should Keep in MindDataya Nolja
 
Facebook prophet
Facebook prophetFacebook prophet
Facebook prophetMinho Lee
 
How to Create Value from Data, and Its Difficulty
How to Create Value from Data, and Its DifficultyHow to Create Value from Data, and Its Difficulty
How to Create Value from Data, and Its DifficultyDataya Nolja
 
인공지능, 기계학습 그리고 딥러닝
인공지능, 기계학습 그리고 딥러닝인공지능, 기계학습 그리고 딥러닝
인공지능, 기계학습 그리고 딥러닝Jinwon Lee
 
Comparing static Gantt and mosaic charts for visualization of task schedules
Comparing static Gantt and mosaic charts for visualization of task schedulesComparing static Gantt and mosaic charts for visualization of task schedules
Comparing static Gantt and mosaic charts for visualization of task schedulesyoonjungwon
 

Ähnlich wie Time series classification (20)

SLRA
SLRASLRA
SLRA
 
Chapter 11 Practical Methodology
Chapter 11 Practical MethodologyChapter 11 Practical Methodology
Chapter 11 Practical Methodology
 
1조_SLRA_최종발표.pptx
1조_SLRA_최종발표.pptx1조_SLRA_최종발표.pptx
1조_SLRA_최종발표.pptx
 
한눈에 보는 머신러닝
한눈에 보는 머신러닝한눈에 보는 머신러닝
한눈에 보는 머신러닝
 
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝
[홍대 머신러닝 스터디 - 핸즈온 머신러닝] 1장. 한눈에 보는 머신러닝
 
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation
[2023] Cut and Learn for Unsupervised Object Detection and Instance Segmentation
 
Transfer learning usage
Transfer learning usageTransfer learning usage
Transfer learning usage
 
Denoising auto encoders(d a)
Denoising auto encoders(d a)Denoising auto encoders(d a)
Denoising auto encoders(d a)
 
[논문리뷰] Data Augmentation for 1D 시계열 데이터
[논문리뷰] Data Augmentation for 1D 시계열 데이터[논문리뷰] Data Augmentation for 1D 시계열 데이터
[논문리뷰] Data Augmentation for 1D 시계열 데이터
 
분석과 설계
분석과 설계분석과 설계
분석과 설계
 
Keras
KerasKeras
Keras
 
파이썬으로 익히는 딥러닝 기본 (18년)
파이썬으로 익히는 딥러닝 기본 (18년)파이썬으로 익히는 딥러닝 기본 (18년)
파이썬으로 익히는 딥러닝 기본 (18년)
 
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)
 
Deep neural networks cnn rnn_ae_some practical techniques
Deep neural networks cnn rnn_ae_some practical techniquesDeep neural networks cnn rnn_ae_some practical techniques
Deep neural networks cnn rnn_ae_some practical techniques
 
Things Data Scientists Should Keep in Mind
Things Data Scientists Should Keep in MindThings Data Scientists Should Keep in Mind
Things Data Scientists Should Keep in Mind
 
Mahout
MahoutMahout
Mahout
 
Facebook prophet
Facebook prophetFacebook prophet
Facebook prophet
 
How to Create Value from Data, and Its Difficulty
How to Create Value from Data, and Its DifficultyHow to Create Value from Data, and Its Difficulty
How to Create Value from Data, and Its Difficulty
 
인공지능, 기계학습 그리고 딥러닝
인공지능, 기계학습 그리고 딥러닝인공지능, 기계학습 그리고 딥러닝
인공지능, 기계학습 그리고 딥러닝
 
Comparing static Gantt and mosaic charts for visualization of task schedules
Comparing static Gantt and mosaic charts for visualization of task schedulesComparing static Gantt and mosaic charts for visualization of task schedules
Comparing static Gantt and mosaic charts for visualization of task schedules
 

Mehr von Sung Kim

DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence LearningDeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence LearningSung Kim
 
Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Sung Kim
 
MSR2014 opening
MSR2014 openingMSR2014 opening
MSR2014 openingSung Kim
 
STAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash ReproductionSTAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash ReproductionSung Kim
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learningSung Kim
 
Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Sung Kim
 
Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Sung Kim
 
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Sung Kim
 
Software Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSoftware Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSung Kim
 
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)Sung Kim
 
Self-defending software: Automatically patching errors in deployed software ...
Self-defending software: Automatically patching  errors in deployed software ...Self-defending software: Automatically patching  errors in deployed software ...
Self-defending software: Automatically patching errors in deployed software ...Sung Kim
 
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)Sung Kim
 

Mehr von Sung Kim (12)

DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence LearningDeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
 
Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)
 
MSR2014 opening
MSR2014 openingMSR2014 opening
MSR2014 opening
 
STAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash ReproductionSTAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash Reproduction
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learning
 
Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote
 
Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)
 
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
 
Software Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSoftware Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of Crowds
 
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
 
Self-defending software: Automatically patching errors in deployed software ...
Self-defending software: Automatically patching  errors in deployed software ...Self-defending software: Automatically patching  errors in deployed software ...
Self-defending software: Automatically patching errors in deployed software ...
 
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
 

Time series classification

  • 1. Time Series Classification By Data Mutation 안명호 www.deepnumbers.com
  • 2. Who am i? • 안명호, MHR Inc • www.deepnumbers.com • 어느 날 알게 된 머신러닝에 흠뻑 빠져 그동안 애지중지하던 클라우드를 버리고 머신러닝으로 전향하였다. 이제 더는 다른 기술은 관심을 두지 않고 머신러닝 한길만으로 정했기에 머신러닝을 공부하며 어려운 수식들을 다시 보느라 고생하고 있지만, 하루하루 배워가는 지식에 행복해하며 지내고 있다.
  • 3. Time Series Data? • 시계열(時系列, time series)은 일정 시간 간격으로 배치된 데이터들의 수열을 말한다. 시계열 해석(time series analysis)라고 하는 것은 이런 시계열을 해석하고 이해하는 데 쓰이는 여러 가지 방법을 연구하는 분야이다. • 예컨대, 이런 시계열이 어떤 법칙에서 생성되어서 나오느냐는 기본적인 질문을 이해하는 것이 궁극적인 목표라고 할 수 있다. • 시계열 예측(time series prediction)이라고 하는 것은 주어진 시계열을 보고 수학적인 모델을 만들어서 미래에 일어날 것들을 예측하는 것을 뜻하는 말이다. 일반적으로 이런 방법들은 공학이나 과학계산, 혹은 금융시장에서의 주가 예측 등에서 많이 쓰인다. From WIKI
  • 4. Time Series Data Example – 주가
  • 5. Time Series Data Example - ECG http://grammarviz2.github.io/grammarviz2_site/morea/anomaly/experience-a2.html
  • 6. TSC(Time Series Classification)? 시계열데이터를 분석해 분류하는 것 http://alumni.cs.ucr.edu/~ychen053/
  • 7. TSC Example - 주가예측 http://tutorials.topstockresearch.com/ChartPatterns/Triangles/TutorialsOnTriangleChartPattern.html 만약에 이미 알려진 주가의 패턴을 남보다 빨리 알 수 있다면…….
  • 8. Time Series Classification Examples • 서버나 데이터센터의 전력사용량 예측 • 전자기파의 에러검출 • 주식시장의 주가예측 • ECG 데이터를 이용한 심장병 발생예측 • 영유아의 패혈증 조기진단 • 네트워크 트래픽 종류 판별 • …......... 현실세계에서 매우 광범위하게 적용가능
  • 9. Problems in TSC 여러가지 문제가 있지만 가장 골치 아픈 2가지 Scale Noise
  • 10. Problem #1 : Scale • 시계열데이터의 불규칙한 시간간격(Time Scale) • 예를 들어 서버의 에너지 사용량 시계열 데이터의 패턴이 있을때, 해당 패턴들이 모두 동일한 시간간격내에 존재하지 않고 서로 다른 시간간격내에 존재하기 때문에, 패턴을 인식하기 위해서는 동일한 패턴의 데이터들을 적정한 시간간격으로 변화시키거나 혹은 이러한 시간간격을 무시하고 특징(Feature)를 찾아내는 등의 방법이 필요하게 된다.
  • 12. Problem #2 : Noise • 불규칙적인 노이즈 • 측정시점에서의 계측장비나 혹은 상황의 변화로 인해 노이즈가 발생할 수 있고, 측정대상이 어떠한 이유로 인해 엉뚱한 값을 만들어낼 수도 있다. 따라서 이러한 노이즈를 최소화시키고 시계열데이터의 고유한 특징을 가지고 있는 데이터를 추출하거나, 노이즈를 제거하는 방법이 요구된다.
  • 14. TSC, Not so easy…
  • 15. Key Idea for TSC 서로 다른 Scale과 Noise를 데이터에 추가해 학습시킨다면?
  • 16. TSC by Data Mutation • 시간간격 문제를 처리하기 위해서는 변종데이터를 생성하는데 필요한 파라메터인 Window의 값을 다양하게 사용해 Time Scale을 변경한다. 아울러 Up-sampling으로 scale을 늘리고, down-sampling을 이용해 time scale을 줄여 CNN이 특정 패턴의 시간간격의 변화에 민감하지 않도록 학습시킨다. • 노이즈에 강인하도록 만들기 위해서는 원본 데이터로부터 해당 데이터의 특징을 잘 표현할 수 있는 특성치(feature)를 추출해야 하는데, 이를 위해 Upsampling, hamming, blackman과 같은 filtering을 적용한다 원본데이터의 특성을 유지하면서 Scale과 Noise에 강인하도록 학습
  • 17. TSC by Data Mutation & CNN Raw Data Mutated Data #1 Mutated Data #2 Mutated Data #N CNN Model #1 CNN Model #2 CNN Model #N Ensemble CNN Model 변종 데이터들은 원본 데이터를 다양한 시간간격을 포함하고, 이상치와 특이치를 제외한 데이터를 가지고 있어 CNN에 다양한 원본 데이터의 변형에 노출시켜 다각도로 특성을 학습
  • 18. Key Idea – Data Mutation Smoothing Filtering Sampling 3가지 방법을 이용해 원본데이터의 특성을 유지하면서 Scale과 Noise에 강인한 데이터 생성
  • 19. Smoothing to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine- scale structures/rapid phenomena. http://fedc.wiwi.hu-berlin.de/xplore/tutorials/xegbohtmlnode44.html ARIMA Model
  • 20. Filtering • a filter is a device or process that removes some unwanted components or features from a signal. • Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal • Upsampling, hamming, blackman등의 filter 적용
  • 21. Sampling • sampling is the reduction of a continuous signal to a discrete signal. A common example is the conversion of a sound wave (a continuous signal) to a sequence of samples (a discrete- time signal). • Up-sampling으로 scale을 늘리고, down- sampling을 이용해 time scale을 줄여 CNN이 특정 패턴의 시간간격의 변화에 민감하지 않도록 학습 http://fourier.eng.hmc.edu/e161/lectures/filterbank/node1.html Down & Up Sampling
  • 22. Learning : CNN 기존의 CNN을 변형해서 여러개의 Weak CNN Model을 만든다면 https://sites.google.com/site/shahriarinia/home/ai/machine-learning/neural-networks/deep-learning/theano-mnist/3-convolutional-neural-network-lenet
  • 23. CNN for Data Mutation Process Data Mutation Weak Learners Ensemble Learner CNN을 활용한 Softmax Ensemble Model
  • 24. CNN for Data Mutation Data Filtered Data Filtered Data Filtered Data filter2 Data Filtered Data Filtered Data Filtered Data filter1 Filtered Data Filtered Data Filtered Data filter3 filter1 filter1 filter1 mutator2 mutator3 mutator1 General CNN CNN for Data Mutation
  • 25. CNN : Weak Learner 1-D Convolution 1-D Convolution 1-D Convolution Max PoolingSame Filter 동일한 Filter를 적용하고, Max Pooling을 이용해 Overfitting 방지
  • 26. Ensemble by Softmax 다수의 CNN을 사용하기 때문에, 하나의 데이터에 대해 다수의 CNN에서 패턴인식에 대한 결과값을 내놓는다. Softmax는 다수의 CNN에서 계산한 결과값을 통합해 최종적인 결과를 내놓기 위한 것으로 각 CNN별로 적절한 가중치를 계산해 최종 결과값을 계산
  • 27. To Find Optimal Parameters • Parameters to be set • Window Size • Filter Size • Pool Size • Activation Function • Learning Rate • Batch Training Count • And so on….. ∑ 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 ∑ 𝐃𝐚𝐭𝐚𝐬𝐞𝐭 𝐒𝐓𝐃 Optimum Parameter
  • 28. TSC by Data Mutation Result Comparison by Error Rate