SlideShare a Scribd company logo
1 of 48
Download to read offline
SS2016 Modern Neural
Computation
Lecture 1: Single
Neurons
Hirokazu Tanaka
School of Information Science
Japan Institute of Science and Technology
Neuron as a computational unit of the brain.
In this lecture we will learn:
• Basic anatomy and physiology of neuron
- morphology
- membrane properties
• Phenomenological models with subthreshold dynamics
- Integrate-and-fire model, Quadratic-and-fire model,
Resonate-and-fire model
• Biophysical models with spiking mechanism
- Ion channels, master equations
- Hodgkin-Huxley model
• Phase plots and bifurcation analysis
- Saddle-node bifurcation, Andronov-Hopf bifurcation
- FitzHugh-Nagumo model, Hindmarsh-Rose model
• Modern single-neuron models
- Izhikevich model, Adaptive-exponential model
Neurons composed of dendrites, soma and axon.
Figure 3.1, Fundamental Neuroscience, 3rd Edition
Morphology: Neurons take various shapes.
Figure 2.1, Fundamental of Computational Neuroscience
Cortical neurons receive cortico-cortical and thalamo-
cortical inputs.
Figure 3.2, Fundamental Neuroscience, 3rd Edition
Pyramidal cell in layer II/III
Apical dendrites
Basal dendrites
Lipid-bilayer membrane insulates a neuron
Ruye Wang, http://fourier.eng.hmc.edu/e180/lectures/signal1/node2.html
Physiology: Neurons are electrically excitable.
Figure 2.2, Neuroscience 3rd Edition
Physiology: Neurons take various spiking patterns.
Izhikevich (2004) IEEE Neural Networks
Leaky Integrate-and-fire model (LIF)
( )
( )( ) ( )m L
dv t
v t E RI t
dt
τ =− − +
( ) ( )f
f
j
j j
j t
I t w t tα= −∑∑
( )f
thv t V=
( )f
reset .v t V←
Leaky integration Fire (spike)
If the potential reaches the threshold
voltage,
then, add a spike and reset the potential
to the reset voltage.
Figure 3.1, Fundamental of Computational Neuroscience
Lapicque (1907)
For English translation, see:
Brunel & van Rossum (2007)
Analytical solution of LIF model with constant current.
( )
( )m
dv t
v t RI
dt
τ =− +
( ) ( ) m m
0 1
t t
t
v t v e RI e RIτ τ
− −
→∞
 
= + − → 
 
 
Figure 3.2, Fundamental of Computational Neuroscience
( ) ( )
( ) const.
Lv t v t E
I t I
← −
= =
subtracting the equilibrium potential.
considering a time-invariant current.
f-I curve of LIF model.
Figure 3.3, Fundamental of Computational Neuroscience
( )
L r
ref m
L th
1
ln
f I
RI E V
RI E V
τ τ
=
 + −
+  
+ − 
Quadratic-and-fire model
( )
( )
2dv t
I v t
dt
= +
( ) ( )thresholdif , then resetv t v v t v≥ ←
( ) ( , )
dv t
F v I
dt
=
In general, the dynamics for membrane potential has a general form:
Quadratic-and-fire (QIF) model: F is quadratic in terms of v and linear in
terms of I.
For LIF model, F is linear in terms of both v and I.
( , )F v I v I=− +
Quadratic-and-fire model
Figure 3.35, Dynamical Systems in Neuroscience
Resonate-and-fire model: oscillatory sub-threshold
dynamics.
( )
( )( ) ( )
( ) ( )( )
( )
leak leak
1/2
dv t
C I g v t E w t
dt
v t vdw t
w t
dt k
=− − −
−
= −
For some neurons, the sub-threshold dynamics exhibits an oscillatory
behavior:
Resonate-and-fire model: two-dimensional model of membrane potential
(v) and the recovery variable (w).
Whole-cell recording of an olivary neuron
Hutcheon & Yarom (2000) Trends Neurosci
Resonate-and-fire model.
Izhikevich (2001) Neural Networks
spike
spikeno spike
no spike
Ion channels: Nernst equation.
Figure 6.3, Fundamental of Computational Neuroscience
[ ]
[ ]
out
ion in out
in
ion
ln
ion
RT
E E E
zF
 
≡ − =   
 
EoutEin Nernst equation
[ ]
[ ]
( )
out
out in
in
out
in
ion
ion
zF
E zFRT E E
RT
zF
E
RT
e
e
e
−
− −
−
 
 = =
 
 
 

in[ ] 140mMK+
= out[ ] 3mMK+
=
[ ]
[ ]
out
in
3
ln 61.5ln 102mV
140
K
KRT
E
F K
 
= = = −  
 
Potassium ion
Ion channels: Goldman-Hodgkin-Katz equation.
Figure 6.3, Fundamental of Computational Neuroscience
K Na Clout out in
m out in
K Na Clin in out
K Na Cl
ln
K Na Cl
p p pRT
V V V
F p p p
+ + −
+ + −
      + +      = − =
      + +      
Goldman-Hodgkin-Katz equation
K Na Cl: : 1.00:0.04:0.45p p p =
Permeability
For T=293K (20°C), the equilibrium potential is
m out in 62mVV V V= − =−
Ion-channel kinetics: voltage-dependent ion channels
:activation variablen
( )( ) ( )1n n
dn
V n V n
dt
α β= − −
Inactive Active
( )n Vα
( )n Vβ
( )activeP n=( )inactive 1P n= −
Master equation
( ) ( )n
dn
V n V n
dt
τ ∞= −
( )
( ) ( )
1
m
n n
V
V V
τ
α β
=
+
( )
( )
( ) ( )
n
n n
V
n V
V V
α
α β∞ =
+
time constant
asymptotic value
Gating equation
Hodgkin-Huxley model: potential and gating dynamics.
( ) ( ) ( )4 3
K K Na Na L L
dV
C g n E V g m h E V g E V I
dt
=− − − − − − +
( ) ( )n
dn
V n V n
dt
τ ∞= −
( ) ( )m
dm
V m V m
dt
τ ∞= −
( ) ( )h
dh
V h V h
dt
τ ∞= −
Membrane-potential dynamics
Gating equations
Figure 5.10, Theoretical Neuroscience
Hodgkin-Huxley model: activation and inactivation
variables.
( ) ( ) ( )4 3
K K Na Na L L
dV
C g n E V g m h E V g E V I
dt
=− − − − − − +
( ) ( )n
dn
V n V n
dt
τ ∞= −
( ) ( )m
dm
V m V m
dt
τ ∞= −
( ) ( )h
dh
V h V h
dt
τ ∞= −
Membrane-potential dynamics
Gating equations m: Na+ activation variable
h: Na+ inactivation variable
n: K+ activation variable
Figure 2.8, Dynamical Systems in Neuroscience
m=0
h=1
m=1
h=1
m=1
h=0
Hodgkin-Huxley model reproduces spike waveform.
Figure 5.10, Theoretical Neuroscience Figure 4.3, Neuroscience 3rd Edition
Hodgkin-Huxley model reproduces spike waveform.
Figure 2.15, Dynamical Systems in Neuroscience
Phase-plane plot: one-dimensional case
( ),
dV
F V I
dt
=
*
( , ) 0 fixed pointF V I= →
( )
( )
*
*
, 0 stable (attractive) fixed point
, 0 unstable (repulsive) fixed point
F V I
F V I
′ < →
′ > →
Figure 3.10, Dynamical Systems in Neuroscience
Phase-plane plot: schematic method for capturing qualitative behaviors of
differential equations without solving.
Figure 3.18, Dynamical Systems in Neuroscience
Bifurcation: Saddle-node bifurcation
( )
dV
F V I
dt
= +
Figure 3.25, Dynamical Systems in Neuroscience
Phase-plane plot: two-dimensional case
( )
( )
,
,
V F V w
w G V w
 =

=


Phase-plane plot: vector field (dV/dt, dw/dt) on the two
dimensional plane.
Figure 4.3, Dynamical Systems in Neuroscience
1, 0x y= =  0, 1x y= = 
,x x y y=− =−  ,x y y x=− =− 
Phase-plane plot: Nullclines
( )
( )
,
,
V F V w
w G V w
 =

=


Nullclines: the curves of F(V,w)=0 and G(V,w)=0.
Figure 4.3, Dynamical Systems in Neuroscience
Phase-plane plot: linear stability analysis
( )
( )
,
,
V F V w
w G V w
 =

=


Phase-plane plot: vector field (dV/dt, dw/dt) on the two
dimensional plane.
Dynamical Systems with Applications using MATLAB
Stable node Unstable node Saddle point
Unstable focus Stable focus Center
Phase-plane plot: Separatrix
( )
( )
,
,
V F V w
w G V w
 =

=


Phase-plane plot: vector field (dV/dt, dw/dt) on the two
dimensional plane.
Figure 4.24, Dynamical Systems in Neuroscience
Separatrix: the boundary separating two modes of behaviour in a
differential equation.
Bifurcation: Saddle-node bifurcation
Figure 4.26, 28, 30, Dynamical Systems in Neuroscience
Bifurcation: (supercritical) Andronov-Hopf bifurcation
Figure 4.26, 28, 30, Dynamical Systems in Neuroscience
Class I and II neurons and bifurcation type
Figure 7.3, Dynamical Systems in Neuroscience
Class I: Continuous F-I curve, Saddle-node bifurcation
Class II: Discontinuous F-I curve, Andronov-Hopf bifurcation
Two-dim. model: FitzHugh-Nagumo model
( )
3
3
0.08 0.8 0.7
v
v v w I
w v w
= − − +
= − +


FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro
stable unstable
*
I I< *
I I<
Two-dim. model: FitzHugh-Nagumo model
( )
3
, 0.08 0.8 0.7
3
v
v v w I w v w= − − + = − + 
FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro
All-or-nothing response Post-inhibitory spike
Two-dim. model: Hindmarsh-Rose model
( )
( )
v f v u I
u g v u
= − +
= −


( ) ( )3 2 2
,f v av bv g v c dv=− + =− +
Hindmarsh & Rose (1982) Nature; (1984) Proc R Soc Lond B
Izhikevich model: quadratic and linear nullclines.
thresholdif 1, then and .v v v c u u d≥ = ← ← +
Quadratic v-nullcline and linear u-nullcline can describe both saddle-node
and Andronov-Hopf bifurcations.
Figure 5.23, Dynamical Systems in Neuroscience
( )
2
v v u I
u a bv u
= − +
= −


Izhikevich model reproduces various spiking patterns.
( )
( )
2
0.04 5 140v v v u I t
u a bv u
= + + − +
= −


thresholdif 30, then and .v v v c u u d≥= ← ← +
Izhikevich (2003) IEEE Trans Neural Networks
Izhikevich model reproduces various spiking patterns.
Izhikevich (2003) IEEE Trans Neural Networks
Adaptive-exponential model
( ) ( )
( )
T
T
V V
m L T L T
w L
dV
C g V V g e w I t
dt
dw
a V E w
dt
τ
−
∆
=− − + ∆ − +
= − −
Brette & Gerstner (2005) J Neurophysiol
The adaptive-exponential model are popular to neurophysiologists
because …
- It has a form similar to conventional two-dimensional models
- Its parameters are physiologically interpretable.
What we left out: Neuron morphology (shape) does
influence physiology (function)!
Mainen & Sejnowski (199) Nature
250 μm
100 ms
25 mV
What we left out: Neuron morphology (shape) does
influence physiology (function)!
Branco et al. (2010) Science
Cable equation describes spike propagation.
“Cable Equation” (2015) Encyclopedia of Computational Neuroscience
Rall model reduces to equivalent cylinder model.
“Equivalent Cylinder Model” (2015) Encyclopedia of Computational Neuroscience
With a set of assumptions about the morphological and electrical properties of
dendrites, the complex branching structure of a dendritic tree can be reduced to
a simple conductive cylinder.
2 2
3 3
1 2
2
3
0
GR
d d
d
+
=
If GR=1, then the cylinders 1 and 2
can be reduced to a single cylinder.
Conclusions
- Neurons have a wide range of morphology (shapes) and
physiology (functions).
- Many fundamental properties of subthreshold dynamics
and spiking patterns can be captured by low-dimensional
models.
- Models vary in their complexities: from a simple LIF
model (just integrating and thresholding) to biophysically
detailed Hodgkin-Huxley model.
- Phase-plane and bifurcation analyses are the powerful
tool for understanding qualitative behaviors of a
dynamical system without an explicit solution.
Exercise
1. Read the following paper and derive a low-dimensional
neuron model from a detailed HH-type model by
linearizing around the resting potential.
Richardson et al. (2003) “From subthreshold to firing-rate
resonance,” J Neurophysiol 89, 2538-2554.
2. Examine a qualitative behavior of the Izhikevich model
by plotting a phase portrait:
a=0.02, b=0.2, c=-65, d=6, I=14 (constant).
Then confirm your phase-plane analysis with the
matlab code provided from Izhikevich’s site:
http://www.izhikevich.org/publications/whichmod.htm
#izhikevich
Exercise
1. Simulate an integrate-and-fire model using the Euler
method and evaluate how accurate the solution is. The
Euler method is the simplest numerical integration
method.
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., ...
& Zirpe, M. (2007). Simulation of networks of spiking neurons: a review of
tools and strategies. Journal of computational neuroscience, 23(3), 349-398.
2. Simulate the Izhikevich model using standard
parameters. Then plot the phase portraits in two
dimensions.
( ) ( )
( )( )
m
v t RI
v t v t
t
t
τ
− +
+
∆
=∆+
(0.02, 0.2, -65, 8) (0.02, 0.2, -55, 4) (0.02, 0.2, -50, 2) (0.1, 0.2, -65, 2)
(0.02, 0.25, -65, 0.05) (0.02, 0.2, -65, 0.05) (0.1, 0.26, -65, 8) (0.02, 0.25, -65, 2)
% params for RS neuron:
a = 0.02; b = 0.20; c = -65.; d = 8;
dt = 1/1000; % integration time step (s)
T = 50.; % total simulation time (s)
t0 = 0:dt:T; % time steps
%%
v = zeros(length(t0),1); % voltage variable
u = zeros(length(t0),1); % recovery variable
I = zeros(length(t0),1); % input current
I(t0>1000/1000) = 150;
spikes = zeros(length(t0),1); % spike timings
v(1) = -80; % initial voltage
u(1) = 0; % initial recovery
for n=1:length(t0)-1
v(n+1) = v(n) + dt*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n));
% v(n+1) = v(n) + dt/2*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n));
% v(n+1) = v(n+1) + dt/2*(0.04*v(n+1)^2+5*v(n+1)+140-u(n)+I(n));
u(n+1) = u(n) + dt*a*(b*v(n)-u(n));
if v(n+1)>30
v(n+1) = c;
u(n+1) = u(n+1) + d;
spikes(n+1) = 1;
end
end
figure(1); clf;
subplot(211); plot(t0, v, 'k');
subplot(212); plot(t0, u, 'k');
References
• Squire et al. (2008) “Fundamental Neuroscience,” Academic Press.
• Purves et al. (2004) “Neuroscience,” Sinauer Associates.
• Trappenberg (2010) “Fundamentals of Computational
Neuroscience,” Oxford University Press, Chapters 2 & 3.
• Dayan & Abbott (2000) “Theoretical Neuroscience,” MIT Press,
Chapter 5.
• Izhikevich (2007) “Dynamical Systems in Neuroscience,” MIT Press,
Chapters 3 & 4.

More Related Content

What's hot

Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2butest
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回Hikaru GOTO
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural NetworkPrakash K
 
今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシンShinya Shimizu
 
Convolutional neural networks deepa
Convolutional neural networks deepaConvolutional neural networks deepa
Convolutional neural networks deepadeepa4466
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法Ken'ichi Matsui
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデルMatsuiRyo
 
Fundamental, An Introduction to Neural Networks
Fundamental, An Introduction to Neural NetworksFundamental, An Introduction to Neural Networks
Fundamental, An Introduction to Neural NetworksNelson Piedra
 
Mc Culloch Pitts Neuron
Mc Culloch Pitts NeuronMc Culloch Pitts Neuron
Mc Culloch Pitts NeuronShajun Nisha
 
猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度YukinoriKambe
 
인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개Young-Min kang
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1sleepy_yoshi
 
統計的学習の基礎 第2章後半
統計的学習の基礎 第2章後半統計的学習の基礎 第2章後半
統計的学習の基礎 第2章後半Prunus 1350
 
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜Kenyu Uehara
 
第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)Yoshitake Takebayashi
 
量的データの分析・報告で気をつけたいこと
量的データの分析・報告で気をつけたいこと量的データの分析・報告で気をつけたいこと
量的データの分析・報告で気をつけたいことMizumoto Atsushi
 

What's hot (20)

Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural Network
 
今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン
 
Convolutional neural networks deepa
Convolutional neural networks deepaConvolutional neural networks deepa
Convolutional neural networks deepa
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
 
Neural networks introduction
Neural networks introductionNeural networks introduction
Neural networks introduction
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデル
 
Fundamental, An Introduction to Neural Networks
Fundamental, An Introduction to Neural NetworksFundamental, An Introduction to Neural Networks
Fundamental, An Introduction to Neural Networks
 
Mc Culloch Pitts Neuron
Mc Culloch Pitts NeuronMc Culloch Pitts Neuron
Mc Culloch Pitts Neuron
 
猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度
 
인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개인공지능과 딥러닝에 대한 소개
인공지능과 딥러닝에 대한 소개
 
digital filters
digital filtersdigital filters
digital filters
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
 
Lecture 9 Perceptron
Lecture 9 PerceptronLecture 9 Perceptron
Lecture 9 Perceptron
 
Poisson lecture
Poisson lecturePoisson lecture
Poisson lecture
 
統計的学習の基礎 第2章後半
統計的学習の基礎 第2章後半統計的学習の基礎 第2章後半
統計的学習の基礎 第2章後半
 
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
 
第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)
 
量的データの分析・報告で気をつけたいこと
量的データの分析・報告で気をつけたいこと量的データの分析・報告で気をつけたいこと
量的データの分析・報告で気をつけたいこと
 

Viewers also liked

Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Boris Fackovec
 
Chaos Theory: An Introduction
Chaos Theory: An IntroductionChaos Theory: An Introduction
Chaos Theory: An IntroductionAntha Ceorote
 
A Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with StrokeA Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with StrokeHariohm Pandian
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneMPI Dresden / HU Berlin
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. MPI Dresden / HU Berlin
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)hirokazutanaka
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...hirokazutanaka
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineMPI Dresden / HU Berlin
 
V4 cccn stable chaos
V4 cccn stable chaosV4 cccn stable chaos
V4 cccn stable chaosXiong Wang
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesSuhel Mulla
 
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)hirokazutanaka
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) hirokazutanaka
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...hirokazutanaka
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement dataDeb Aks
 
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...hirokazutanaka
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning ruleshirokazutanaka
 

Viewers also liked (20)

Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
 
Chaos Theory: An Introduction
Chaos Theory: An IntroductionChaos Theory: An Introduction
Chaos Theory: An Introduction
 
A Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with StrokeA Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with Stroke
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to intervene
 
Migraine: A dynamics disease
Migraine: A dynamics diseaseMigraine: A dynamics disease
Migraine: A dynamics disease
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework.
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraine
 
patel
patelpatel
patel
 
V4 cccn stable chaos
V4 cccn stable chaosV4 cccn stable chaos
V4 cccn stable chaos
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time Series
 
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
 
Migraine: A dynamical disease
Migraine: A dynamical diseaseMigraine: A dynamical disease
Migraine: A dynamical disease
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
 
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 

Similar to JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

Quantum brain a recurrent quantum neural network model to describe eye trac...
Quantum brain   a recurrent quantum neural network model to describe eye trac...Quantum brain   a recurrent quantum neural network model to describe eye trac...
Quantum brain a recurrent quantum neural network model to describe eye trac...Elsa von Licy
 
Hodgkin-Huxley & the nonlinear dynamics of neuronal excitability
Hodgkin-Huxley & the nonlinear  dynamics of neuronal excitabilityHodgkin-Huxley & the nonlinear  dynamics of neuronal excitability
Hodgkin-Huxley & the nonlinear dynamics of neuronal excitabilitySSA KPI
 
Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)Osame Kinouchi
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294SajidulIslamAkash
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksKyunghoon Jung
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
Two Types of Novel Discrete Time Chaotic Systems
Two Types of Novel Discrete Time Chaotic SystemsTwo Types of Novel Discrete Time Chaotic Systems
Two Types of Novel Discrete Time Chaotic Systemsijtsrd
 
Robust model predictive control for discrete-time fractional-order systems
Robust model predictive control for discrete-time fractional-order systemsRobust model predictive control for discrete-time fractional-order systems
Robust model predictive control for discrete-time fractional-order systemsPantelis Sopasakis
 
Restricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theoryRestricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theorySeongwon Hwang
 
NeurSciACone
NeurSciAConeNeurSciACone
NeurSciAConeAdam Cone
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelijrap
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelijrap
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsUniversity of Glasgow
 
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdf
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdfStatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdf
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdfAnna Carbone
 

Similar to JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models (20)

Quantum brain a recurrent quantum neural network model to describe eye trac...
Quantum brain   a recurrent quantum neural network model to describe eye trac...Quantum brain   a recurrent quantum neural network model to describe eye trac...
Quantum brain a recurrent quantum neural network model to describe eye trac...
 
Hodgkin-Huxley & the nonlinear dynamics of neuronal excitability
Hodgkin-Huxley & the nonlinear  dynamics of neuronal excitabilityHodgkin-Huxley & the nonlinear  dynamics of neuronal excitability
Hodgkin-Huxley & the nonlinear dynamics of neuronal excitability
 
Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural Networks
 
bmi SP.ppt
bmi SP.pptbmi SP.ppt
bmi SP.ppt
 
Numerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley EquationNumerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley Equation
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
A03401001005
A03401001005A03401001005
A03401001005
 
Two Types of Novel Discrete Time Chaotic Systems
Two Types of Novel Discrete Time Chaotic SystemsTwo Types of Novel Discrete Time Chaotic Systems
Two Types of Novel Discrete Time Chaotic Systems
 
Robust model predictive control for discrete-time fractional-order systems
Robust model predictive control for discrete-time fractional-order systemsRobust model predictive control for discrete-time fractional-order systems
Robust model predictive control for discrete-time fractional-order systems
 
Restricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theoryRestricted Boltzman Machine (RBM) presentation of fundamental theory
Restricted Boltzman Machine (RBM) presentation of fundamental theory
 
NeurSciACone
NeurSciAConeNeurSciACone
NeurSciACone
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse model
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse model
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
dalrymple_slides.ppt
dalrymple_slides.pptdalrymple_slides.ppt
dalrymple_slides.ppt
 
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdf
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdfStatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdf
StatPhysPerspectives_AMALEA_Cetraro_AnnaCarbone.pdf
 
Fir 05 dynamics
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamics
 
Pria 2007
Pria 2007Pria 2007
Pria 2007
 

More from hirokazutanaka

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1hirokazutanaka
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2hirokazutanaka
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1hirokazutanaka
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2hirokazutanaka
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1hirokazutanaka
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2hirokazutanaka
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1hirokazutanaka
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2hirokazutanaka
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamicshirokazutanaka
 

More from hirokazutanaka (11)

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
 

Recently uploaded

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 

Recently uploaded (20)

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 

JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models

  • 1. SS2016 Modern Neural Computation Lecture 1: Single Neurons Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology
  • 2. Neuron as a computational unit of the brain. In this lecture we will learn: • Basic anatomy and physiology of neuron - morphology - membrane properties • Phenomenological models with subthreshold dynamics - Integrate-and-fire model, Quadratic-and-fire model, Resonate-and-fire model • Biophysical models with spiking mechanism - Ion channels, master equations - Hodgkin-Huxley model • Phase plots and bifurcation analysis - Saddle-node bifurcation, Andronov-Hopf bifurcation - FitzHugh-Nagumo model, Hindmarsh-Rose model • Modern single-neuron models - Izhikevich model, Adaptive-exponential model
  • 3. Neurons composed of dendrites, soma and axon. Figure 3.1, Fundamental Neuroscience, 3rd Edition
  • 4. Morphology: Neurons take various shapes. Figure 2.1, Fundamental of Computational Neuroscience
  • 5. Cortical neurons receive cortico-cortical and thalamo- cortical inputs. Figure 3.2, Fundamental Neuroscience, 3rd Edition Pyramidal cell in layer II/III Apical dendrites Basal dendrites
  • 6. Lipid-bilayer membrane insulates a neuron Ruye Wang, http://fourier.eng.hmc.edu/e180/lectures/signal1/node2.html
  • 7. Physiology: Neurons are electrically excitable. Figure 2.2, Neuroscience 3rd Edition
  • 8. Physiology: Neurons take various spiking patterns. Izhikevich (2004) IEEE Neural Networks
  • 9. Leaky Integrate-and-fire model (LIF) ( ) ( )( ) ( )m L dv t v t E RI t dt τ =− − + ( ) ( )f f j j j j t I t w t tα= −∑∑ ( )f thv t V= ( )f reset .v t V← Leaky integration Fire (spike) If the potential reaches the threshold voltage, then, add a spike and reset the potential to the reset voltage. Figure 3.1, Fundamental of Computational Neuroscience Lapicque (1907) For English translation, see: Brunel & van Rossum (2007)
  • 10. Analytical solution of LIF model with constant current. ( ) ( )m dv t v t RI dt τ =− + ( ) ( ) m m 0 1 t t t v t v e RI e RIτ τ − − →∞   = + − →      Figure 3.2, Fundamental of Computational Neuroscience ( ) ( ) ( ) const. Lv t v t E I t I ← − = = subtracting the equilibrium potential. considering a time-invariant current.
  • 11. f-I curve of LIF model. Figure 3.3, Fundamental of Computational Neuroscience ( ) L r ref m L th 1 ln f I RI E V RI E V τ τ =  + − +   + − 
  • 12. Quadratic-and-fire model ( ) ( ) 2dv t I v t dt = + ( ) ( )thresholdif , then resetv t v v t v≥ ← ( ) ( , ) dv t F v I dt = In general, the dynamics for membrane potential has a general form: Quadratic-and-fire (QIF) model: F is quadratic in terms of v and linear in terms of I. For LIF model, F is linear in terms of both v and I. ( , )F v I v I=− +
  • 13. Quadratic-and-fire model Figure 3.35, Dynamical Systems in Neuroscience
  • 14. Resonate-and-fire model: oscillatory sub-threshold dynamics. ( ) ( )( ) ( ) ( ) ( )( ) ( ) leak leak 1/2 dv t C I g v t E w t dt v t vdw t w t dt k =− − − − = − For some neurons, the sub-threshold dynamics exhibits an oscillatory behavior: Resonate-and-fire model: two-dimensional model of membrane potential (v) and the recovery variable (w). Whole-cell recording of an olivary neuron Hutcheon & Yarom (2000) Trends Neurosci
  • 15. Resonate-and-fire model. Izhikevich (2001) Neural Networks spike spikeno spike no spike
  • 16. Ion channels: Nernst equation. Figure 6.3, Fundamental of Computational Neuroscience [ ] [ ] out ion in out in ion ln ion RT E E E zF   ≡ − =      EoutEin Nernst equation [ ] [ ] ( ) out out in in out in ion ion zF E zFRT E E RT zF E RT e e e − − − −    = =        in[ ] 140mMK+ = out[ ] 3mMK+ = [ ] [ ] out in 3 ln 61.5ln 102mV 140 K KRT E F K   = = = −     Potassium ion
  • 17. Ion channels: Goldman-Hodgkin-Katz equation. Figure 6.3, Fundamental of Computational Neuroscience K Na Clout out in m out in K Na Clin in out K Na Cl ln K Na Cl p p pRT V V V F p p p + + − + + −       + +      = − =       + +       Goldman-Hodgkin-Katz equation K Na Cl: : 1.00:0.04:0.45p p p = Permeability For T=293K (20°C), the equilibrium potential is m out in 62mVV V V= − =−
  • 18. Ion-channel kinetics: voltage-dependent ion channels :activation variablen ( )( ) ( )1n n dn V n V n dt α β= − − Inactive Active ( )n Vα ( )n Vβ ( )activeP n=( )inactive 1P n= − Master equation ( ) ( )n dn V n V n dt τ ∞= − ( ) ( ) ( ) 1 m n n V V V τ α β = + ( ) ( ) ( ) ( ) n n n V n V V V α α β∞ = + time constant asymptotic value Gating equation
  • 19. Hodgkin-Huxley model: potential and gating dynamics. ( ) ( ) ( )4 3 K K Na Na L L dV C g n E V g m h E V g E V I dt =− − − − − − + ( ) ( )n dn V n V n dt τ ∞= − ( ) ( )m dm V m V m dt τ ∞= − ( ) ( )h dh V h V h dt τ ∞= − Membrane-potential dynamics Gating equations Figure 5.10, Theoretical Neuroscience
  • 20. Hodgkin-Huxley model: activation and inactivation variables. ( ) ( ) ( )4 3 K K Na Na L L dV C g n E V g m h E V g E V I dt =− − − − − − + ( ) ( )n dn V n V n dt τ ∞= − ( ) ( )m dm V m V m dt τ ∞= − ( ) ( )h dh V h V h dt τ ∞= − Membrane-potential dynamics Gating equations m: Na+ activation variable h: Na+ inactivation variable n: K+ activation variable Figure 2.8, Dynamical Systems in Neuroscience m=0 h=1 m=1 h=1 m=1 h=0
  • 21. Hodgkin-Huxley model reproduces spike waveform. Figure 5.10, Theoretical Neuroscience Figure 4.3, Neuroscience 3rd Edition
  • 22. Hodgkin-Huxley model reproduces spike waveform. Figure 2.15, Dynamical Systems in Neuroscience
  • 23. Phase-plane plot: one-dimensional case ( ), dV F V I dt = * ( , ) 0 fixed pointF V I= → ( ) ( ) * * , 0 stable (attractive) fixed point , 0 unstable (repulsive) fixed point F V I F V I ′ < → ′ > → Figure 3.10, Dynamical Systems in Neuroscience Phase-plane plot: schematic method for capturing qualitative behaviors of differential equations without solving. Figure 3.18, Dynamical Systems in Neuroscience
  • 24. Bifurcation: Saddle-node bifurcation ( ) dV F V I dt = + Figure 3.25, Dynamical Systems in Neuroscience
  • 25. Phase-plane plot: two-dimensional case ( ) ( ) , , V F V w w G V w  =  =   Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane. Figure 4.3, Dynamical Systems in Neuroscience 1, 0x y= =  0, 1x y= =  ,x x y y=− =−  ,x y y x=− =− 
  • 26. Phase-plane plot: Nullclines ( ) ( ) , , V F V w w G V w  =  =   Nullclines: the curves of F(V,w)=0 and G(V,w)=0. Figure 4.3, Dynamical Systems in Neuroscience
  • 27. Phase-plane plot: linear stability analysis ( ) ( ) , , V F V w w G V w  =  =   Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane. Dynamical Systems with Applications using MATLAB Stable node Unstable node Saddle point Unstable focus Stable focus Center
  • 28. Phase-plane plot: Separatrix ( ) ( ) , , V F V w w G V w  =  =   Phase-plane plot: vector field (dV/dt, dw/dt) on the two dimensional plane. Figure 4.24, Dynamical Systems in Neuroscience Separatrix: the boundary separating two modes of behaviour in a differential equation.
  • 29. Bifurcation: Saddle-node bifurcation Figure 4.26, 28, 30, Dynamical Systems in Neuroscience
  • 30. Bifurcation: (supercritical) Andronov-Hopf bifurcation Figure 4.26, 28, 30, Dynamical Systems in Neuroscience
  • 31. Class I and II neurons and bifurcation type Figure 7.3, Dynamical Systems in Neuroscience Class I: Continuous F-I curve, Saddle-node bifurcation Class II: Discontinuous F-I curve, Andronov-Hopf bifurcation
  • 32. Two-dim. model: FitzHugh-Nagumo model ( ) 3 3 0.08 0.8 0.7 v v v w I w v w = − − + = − +   FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro stable unstable * I I< * I I<
  • 33. Two-dim. model: FitzHugh-Nagumo model ( ) 3 , 0.08 0.8 0.7 3 v v v w I w v w= − − + = − +  FitzHugh (1961) Biophysical J; “FitzHugh-Nagumo Model” (2015) Encyclopedia of Comp Neuro All-or-nothing response Post-inhibitory spike
  • 34. Two-dim. model: Hindmarsh-Rose model ( ) ( ) v f v u I u g v u = − + = −   ( ) ( )3 2 2 ,f v av bv g v c dv=− + =− + Hindmarsh & Rose (1982) Nature; (1984) Proc R Soc Lond B
  • 35. Izhikevich model: quadratic and linear nullclines. thresholdif 1, then and .v v v c u u d≥ = ← ← + Quadratic v-nullcline and linear u-nullcline can describe both saddle-node and Andronov-Hopf bifurcations. Figure 5.23, Dynamical Systems in Neuroscience ( ) 2 v v u I u a bv u = − + = −  
  • 36. Izhikevich model reproduces various spiking patterns. ( ) ( ) 2 0.04 5 140v v v u I t u a bv u = + + − + = −   thresholdif 30, then and .v v v c u u d≥= ← ← + Izhikevich (2003) IEEE Trans Neural Networks
  • 37. Izhikevich model reproduces various spiking patterns. Izhikevich (2003) IEEE Trans Neural Networks
  • 38. Adaptive-exponential model ( ) ( ) ( ) T T V V m L T L T w L dV C g V V g e w I t dt dw a V E w dt τ − ∆ =− − + ∆ − + = − − Brette & Gerstner (2005) J Neurophysiol The adaptive-exponential model are popular to neurophysiologists because … - It has a form similar to conventional two-dimensional models - Its parameters are physiologically interpretable.
  • 39. What we left out: Neuron morphology (shape) does influence physiology (function)! Mainen & Sejnowski (199) Nature 250 μm 100 ms 25 mV
  • 40. What we left out: Neuron morphology (shape) does influence physiology (function)! Branco et al. (2010) Science
  • 41. Cable equation describes spike propagation. “Cable Equation” (2015) Encyclopedia of Computational Neuroscience
  • 42. Rall model reduces to equivalent cylinder model. “Equivalent Cylinder Model” (2015) Encyclopedia of Computational Neuroscience With a set of assumptions about the morphological and electrical properties of dendrites, the complex branching structure of a dendritic tree can be reduced to a simple conductive cylinder. 2 2 3 3 1 2 2 3 0 GR d d d + = If GR=1, then the cylinders 1 and 2 can be reduced to a single cylinder.
  • 43. Conclusions - Neurons have a wide range of morphology (shapes) and physiology (functions). - Many fundamental properties of subthreshold dynamics and spiking patterns can be captured by low-dimensional models. - Models vary in their complexities: from a simple LIF model (just integrating and thresholding) to biophysically detailed Hodgkin-Huxley model. - Phase-plane and bifurcation analyses are the powerful tool for understanding qualitative behaviors of a dynamical system without an explicit solution.
  • 44. Exercise 1. Read the following paper and derive a low-dimensional neuron model from a detailed HH-type model by linearizing around the resting potential. Richardson et al. (2003) “From subthreshold to firing-rate resonance,” J Neurophysiol 89, 2538-2554. 2. Examine a qualitative behavior of the Izhikevich model by plotting a phase portrait: a=0.02, b=0.2, c=-65, d=6, I=14 (constant). Then confirm your phase-plane analysis with the matlab code provided from Izhikevich’s site: http://www.izhikevich.org/publications/whichmod.htm #izhikevich
  • 45. Exercise 1. Simulate an integrate-and-fire model using the Euler method and evaluate how accurate the solution is. The Euler method is the simplest numerical integration method. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., ... & Zirpe, M. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience, 23(3), 349-398. 2. Simulate the Izhikevich model using standard parameters. Then plot the phase portraits in two dimensions. ( ) ( ) ( )( ) m v t RI v t v t t t τ − + + ∆ =∆+
  • 46. (0.02, 0.2, -65, 8) (0.02, 0.2, -55, 4) (0.02, 0.2, -50, 2) (0.1, 0.2, -65, 2) (0.02, 0.25, -65, 0.05) (0.02, 0.2, -65, 0.05) (0.1, 0.26, -65, 8) (0.02, 0.25, -65, 2)
  • 47. % params for RS neuron: a = 0.02; b = 0.20; c = -65.; d = 8; dt = 1/1000; % integration time step (s) T = 50.; % total simulation time (s) t0 = 0:dt:T; % time steps %% v = zeros(length(t0),1); % voltage variable u = zeros(length(t0),1); % recovery variable I = zeros(length(t0),1); % input current I(t0>1000/1000) = 150; spikes = zeros(length(t0),1); % spike timings v(1) = -80; % initial voltage u(1) = 0; % initial recovery for n=1:length(t0)-1 v(n+1) = v(n) + dt*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n)); % v(n+1) = v(n) + dt/2*(0.04*v(n)^2+5*v(n)+140-u(n)+I(n)); % v(n+1) = v(n+1) + dt/2*(0.04*v(n+1)^2+5*v(n+1)+140-u(n)+I(n)); u(n+1) = u(n) + dt*a*(b*v(n)-u(n)); if v(n+1)>30 v(n+1) = c; u(n+1) = u(n+1) + d; spikes(n+1) = 1; end end figure(1); clf; subplot(211); plot(t0, v, 'k'); subplot(212); plot(t0, u, 'k');
  • 48. References • Squire et al. (2008) “Fundamental Neuroscience,” Academic Press. • Purves et al. (2004) “Neuroscience,” Sinauer Associates. • Trappenberg (2010) “Fundamentals of Computational Neuroscience,” Oxford University Press, Chapters 2 & 3. • Dayan & Abbott (2000) “Theoretical Neuroscience,” MIT Press, Chapter 5. • Izhikevich (2007) “Dynamical Systems in Neuroscience,” MIT Press, Chapters 3 & 4.