SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Downloaden Sie, um offline zu lesen
The genomic landscape of
selection in domestic cat breeds
Hasan Alhaddad
PAG 2019
Study Objectives
• Identify signatures of selection for individual cat
breeds using multiple methods.
• Compare the candidate regions under selection
between breeds.
• Provide an overall view of the genomic
landscape of the domestic cat.
Domestication
Domestication and breed formation
Personal Synthesis
A. Ecological domestication
B. Selection from standing variation in RB
C. Selection from standing variation in breed
D. Breeds from de novo mutation
E. Hybridizing two (more) breeds
F. Interspecies hybridization
Cat breeds
Selected traits
Face & Ears
Hair-length & Texture
Legs & Tail
Color & Pattern
Data
Samples
2162 cat samples
41 cat breeds
Wild cats
Pedigree cats
Markers
~63K SNPs
Autosomal SNPs
X-Chr SNPs
UN-Chr SNPs
Applications and efficiencies of the
first cat 63K DNA array
BarbaraGandolfi1
, HasanAlhaddad2
, MonaAbdi2
, Leslie H. Bach3,4
, Erica K.Creighton1
,
BrianW. Davis 5
,Jared E. Decker 6
, Nicholas H. Dodman7
,JenniferC.Grahn3,8
, RobertA.
Grahn3,8
, Bianca Haase9
,Jens Haggstrom10
, MichaelJ. Hamilton3,11
,Christopher R. Helps12
,
Jennifer D. Kurushima3,13
, Hannes Lohi14
, Maria Longeri15
, Richard Malik16
, Kathryn M. Meurs17
,
MichaelJ. Montague 18
,JamesC. Mullikin 19
,WilliamJ. Murphy5
,Sara M. Nilson6
,
NielsC. Pedersen20
,Carlyn B. Peterson3
,Clare Rusbridge21
, RashidSaif22
,G. DianeShelton23
,
WesleyC.Warren24
, MuhammadWasim25
& LeslieA. Lyons1
The development of high throughput SNP genotyping technologies has improved the genetic dissection
of simple and complex traits in many species including cats.The properties of feline 62,897 SNPs
Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most
extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species.
Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses
were evaluated.Average marker distance across the array was 37,741 Kb, and across the dataset, only
1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors.
Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all
markers across domestic cats was 0.21. Population structure analysis confirmed aWestern to Eastern
structural continuum of cat breeds.Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for
domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris).Array use in trait association
mapping was investigated under different modes of inheritance, selection and population sizes.The
efficient array design and cat genotype dataset continues to advance the understanding of cat breeds
and will support monogenic health studies across feline breeds and populations.
1
Department ofVeterinary Medicine andSurgery,College ofVeterinary Medicine,University of Missouri -Columbia,
Columbia, MO, USA. 2
Department of Biological Sciences, Kuwait University, Safat, Kuwait. 3
Department of
Population Health and Reproduction,School ofVeterinary Medicine,University ofCalifornia – Davis, Davis,CA,USA.
4
University ofSan Francisco,San Francisco,CA,USA. 5
Department ofVeterinary Integrative Biosciences,TexasA&M
University,CollegeStation,TX,USA. 6
Division ofAnimalSciences,University of Missouri -Columbia,Columbia, MO,
USA. 7
Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA. 8
Veterinary Genetics
Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA. 9
Sydney School of
VeterinaryScience,University ofSydney,Sydney,Australia. 10
Department ofClinicalSciences,SwedishUniversity of
AgriculturalSciences,Uppsala,Sweden. 11
Department of Biochemistry,University ofCalifornia – Riverside, Riverside,
CA, USA. 12
LangfordVets, University of Bristol, Bristol, United Kingdom. 13
FoothillCollege, LosAltos Hills,CA, USA.
14
Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki,
andThe Folkhälsan Institute of Genetics, Helsinki, Finland. 15
Department ofVeterinary Medicine, Università degli
Studi di Milano, Milan, Italy. 16
Centre forVeterinary Education, University of Sydney, New South Wales, Australia.
17
Department ofClinicalSciences,College ofVeterinary Medicine, NorthCarolinaStateUniversity, Raleigh, NC,USA.
18
Department of Neuroscience, Parelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
19
NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health,
Bethesda, MD,USA. 20
Center forCompanionAnimal Health,School ofVeterinary Medicine,University ofCalifornia -
Davis, Davis,CA,USA. 21
School ofVeterinary Medicine, Faculty of Health and MedicalSciences,University ofSurrey,
Guildford,Surrey,United Kingdom. 22
Institute of Biotechnology,Gulab Devi EducationalComplex, Lahore, Pakistan.
23
Department of Pathology, University of California, San Diego, La Jolla, CA, USA. 24
McDonnell Genome Institute,
Washington University School of Medicine, St Louis, MO, USA. 25
Institute of Biochemistry and Biotechnology,
University ofVeterinary and Animal Sciences, Lahore, Pakistan. Barbara Gandolfi and Hasan Alhaddad contributed
Received: 17 October 2017
Accepted: 16 April 2018
Published: xx xx xxxx
OPEN
Correction: Author Correction
Original Dataset
Final Dataset
Samples
90% genotyping rate
Recognized breeds
Sample size ≥ 5
Unrelated samples
Markers
90% genotyping rate
Autosomal SNPs
MAF ≥ 0.05
789 cat samples
34 breeds
Sample size (5-25)
51813 autosomal
SNPs
Sample size
Mean (di) per 500Kb
Frequency
-40 -20 0 20 40 60 80
02006001000
Bengal1
Bengal2
-40 -20 0 20 40 60 80
-40-20020406080
Mean (di) Bengal (1)
Mean(di)Bengal(2)
-40 -20 0 20 40 60 80
-40-20020406080
Mean (di) Bengal
Mean(di)non-Bengal
Mean (Fst) per 500Kb
Frequency
0.0 0.1 0.2 0.3 0.4 0.5
02006001000
Bengal1
Bengal2
0.0 0.1 0.2 0.3 0.4 0.5
0.00.10.20.30.40.5
Mean (Fst) Bengal (1)
Mean(Fst)Bengal(2)
0.0 0.1 0.2 0.3 0.4 0.5
0.00.10.20.30.40.5
Mean (Fst) Bengal
Mean(Fst)non-Bengal
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.15-0.10-0.050.000.05
PC1 (28.9%)
PC2(9.5%)
a.
-0.045 -0.035 -0.025 -0.015
-0.04-0.03-0.02-0.010.000.01
BSH
MCOON
MANX
NFC
PER
SFOLD
SREX
WIR
CHR
LYK
b.
-0.02 -0.01 0.00 0.01 0.02
-0.04-0.020.000.020.04
ABY
BEN
DREX
EGY
JBOB
PERM
OCI
RAG
RBLUE
SPH
Van
ACURL
CREX
SOM
c.
0.03 0.04 0.05 0.06 0.07 0.08
-0.15-0.10-0.050.000.05
BIR
BUR
MANEE
KOR
ORI
PBALD
SIA
d.
Group 1
Western Breeds
Group 2
Middle Breeds
Group 3
Eastern Breeds
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.15-0.10-0.050.000.05
PC1
PC2
Birman
a.
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08-0.15-0.10-0.050.000.05
PC1
PC3
Bengal
b.
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.10-0.050.000.05
PC1
PC4
c.
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.15-0.10-0.050.000.05
PC2
PC3
Bengal
d.
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.06-0.04-0.020.000.020.04
PC2
PC4
Bengal
Birman
e.
-0.15 -0.10 -0.05 0.00 0.05
-0.06-0.04-0.020.000.020.04
PC3
PC4
Bengal
f.
Group 1
Western Breeds
Group 2
Middle Breeds
Group 3
Eastern Breeds
Methods
• Frequency (Fst, di).
• Haplotype (iHS- integrated haplotype homozygosity
score).
• Window: a window of 500Kb size with at least 5 SNPs.
• Threshold: significance (0.01) of the empirical
distribution of the three statistics.
• Candidate Regions :Consecutive significant windows
(two or more).
1 4 9 14 19 24 29 33 37 41 45 49 53 57 63
2Mb
020406080
1 3 5 7 9 12 15 18 21 24 27 30 33 39
1Mb
050150
1 3 5 7 9 11 13 15 17 19 22 31 41
0.5 Mb
0200500
1 2 3 4 5 6 7 8 9 10 12 14 18 23
0.25 Mb
05001500
0.00.10.20.30.40.50.6
Non-overlap
Fst
0.00.10.20.30.40.50.6
Partial overlap
Fst
0.00.20.40.6
Total overlap
Fst
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Breed specific analysis
To the Root of the Curl: A Signature of a Recent Selective
Sweep Identifies a Mutation That Defines the Cornish
Rex Cat Breed
Barbara Gandolfi1
*, Hasan Alhaddad1
, Verena K. Affolter2
, Jeffrey Brockman3
, Jens Haggstrom4
,
Shannon E. K. Joslin1
, Amanda L. Koehne2
, James C. Mullikin5
, Catherine A. Outerbridge6
,
Wesley C. Warren7
, Leslie A. Lyons1
1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America,
2 Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America, 3 Hill’s
Pet Nutrition Center, Topeka, Kansas, United States of America, 4 Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University
of Agricultural Sciences, Uppsala, Sweden, 5 Comparative Genomics Unit, Genome Technology Branch, National Human Genome Research Institute, National Institutes of
Health, Bethesda, Maryland, United States of America, 6 Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California - Davis,
Davis, California, United States of America, 7 The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
Abstract
The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its
over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial
selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat
texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat
colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture,
especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide
analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11
phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that
aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep
was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans
approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid
receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor,
was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is
also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the
structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans.
Citation: Gandolfi B, Alhaddad H, Affolter VK, Brockman J, Haggstrom J, et al. (2013) To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a
Mutation That Defines the Cornish Rex Cat Breed. PLoS ONE 8(6): e67105. doi:10.1371/journal.pone.0067105
Editor: Arnar Palsson, University of Iceland, Iceland
Received March 26, 2013; Accepted May 14, 2013; Published June 27, 2013
Copyright: ß 2013 Gandolfi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This project was supported by the National Center for Research Resources and the Office of Research Infrastructure Programs of the National Institute
of Health through Grant Number R24 RR016094, the Winn Feline Foundation (W10-14, W11-041), the Center for Companion Animal Health at University of
California Davis (2010-09-F) (http://www.vetmed.ucdavis.edu/ccah/index.cfm), and the George and Phyllis Miller Feline Health Fund of the San Francisco
Foundation (2008-36-F). Support for the development of the Illumina Infinium Feline 63K iSelect DNA array was provided by the Morris Animal Foundation (http://
www.morrisanimalfoundation.org) via a donation from Hill’s Pet Food, Inc. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
Competing Interests: JB works for a private company (Hill’s Pet Food, Inc) that partially sponsored the development of the 63k feline SNP array. The funder had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
* E-mail: bgandolfi@ucdavis.edu
Introduction
Phenotypic traits under strong artificial selection within cat
breeds vary from body types, muzzle shape, tail length to
aesthetically pleasant traits, such as hair color, length and texture.
Hair represents one of the defining characteristic of mammals.
Hair provides body temperature regulation, protection from
environmental elements, and adaptive advantages of camouflage,
as well as often having aesthetic value to humans. The hair follicle
has a highly complex structure with eight distinct cell layers, in
which hundreds of gene products play a key role in the hair cycle
maintenance [1,2]. In the past decade, numerous genes expressed
in the hair follicle have been identified and mutations in some of
these genes have been shown to underlie hereditary hair diseases
in humans and other mammals [3]. Hereditary hair diseases in
mammals show diverse hair phenotypes, such as sparse or short
hairs (hypotrichosis), excessive or elongated hairs (hypertrichosis),
and hair shaft anomalies, creating rexoid/woolly hairs [3–12].
Causative genes for the diseases encode various proteins with
different functions, such as structural proteins, transcription
factors, and signaling molecules. Mutations within structural
proteins, such as epithelial and hair keratins, are often associated
with hair disease. To date, mutations in several hair keratin genes
underlined two hereditary hair disorders: monilethrix, character-
PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e67105
0.00.10.20.30.40.5
Fst
-20020406080
di
01234
Chromosome
iHS
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Cornish Rex breed
Positive Control
Chr.A1 (LPAR6)
LaPerm breed
Chr.B1
0.00.10.20.30.40.5
Fst
-20020406080
di
01234
Chromosome
iHS
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
0.00.10.20.30.40.5
Fst
-20020406080
di
01234
Chromosome
iHS
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Egyptian Mau breed
Chr.C2
General Summary
NumberofSignificantRegions
020406080100
A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2
Chromosomes
Fst-based Haplotype-based
0510152025
Persian1
Persian2
BritishShorthair
SelkirkRex
ScottishFold1
ScottishFold2
MaineCoon
NorwegianForestCat
AmericanWirehair
Manx
Siberian1
Siberian2
Chartreux
Lykoi
Munchkins
Abyssinian
Somali
Sphynx
EgyptianMau
DevonRex
AmericanCurl
TurkishVan
Bengal1
Bengal2
Ragdoll1
Ragdoll2
CornishRex
RussianBlue
JapaneseBobtail
LaPerm
Ocicat
Peterbald
Bombay
Birman1
Birman2
KhaoManee
Oriental
Burmese1
Burmese2
Korat
Siamese
NumberofSignificantRegions
Fst-based Haplotype-based
0 20 40 60 80
Persian1
Persian2
BritishShorthair
SelkirkRex
ScottishFold1
ScottishFold2
MaineCoon
NorwegianForestCat
AmericanWirehair
Manx
Siberian1
Siberian2
Chartreux
Lykoi
Munchkins
Abyssinian
Somali
Sphynx
EgyptianMau
DevonRex
AmericanCurl
TurkishVan
Bengal1
Bengal2
Ragdoll1
Ragdoll2
CornishRex
RussianBlue
JapaneseBobtail
LaPerm
Ocicat
Peterbald
Bombay
Birman1
Birman2
KhaoManee
Oriental
Burmese1
Burmese2
Korat
Siamese
Size of Significant Regions (Mb)
Fst-based Haplotype-based ROH
Breed comparison
(selected regions)
0 153
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. B2 (Mb)
Fst-based Haplotype-based ROH
(1, 2, 5, 10, 20Mb)
0 153
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
Chr. B2 (Mb)
Persian Family Breeds
Size: 15.9 Mb
120 genes
SLC35B3, LY86, F13A1,
NRN1, RPP40, ECI2,
FAM217A, PRPF4B,
FAM50B, SLC22A23,
PSMG4, TUBB2A, BPHL,
RIPK1…. etc
0 99
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. D2 (Mb)
Fst-based Haplotype-based ROH
(1, 2, 5, 10, 20Mb)
0 99
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. D2 (Mb)
Fst-based Haplotype-based ROH
(1, 2, 5, 10, 20Mb)
Non-Persian Family Western Breeds
One gene
ZWINT, codes for ZW10 (Interacting kinetochore protein)
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Fst-based Haplotype-based ROH
(1, 2, 5, 10, 20Mb)
0 150
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. B3 (Mb)
Fst-based Haplotype-based ROH
(1, 2, 5, 10, 20Mb)
Eastern Breeds without Birman
Size: 2.9 Mb
5 genes
NDN, SNRPN, UBE3A, ATP10A, GABRB3
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.15-0.10-0.050.000.05
PC1
PC2
Birman
a.
-0.15-0.10-0.050.000.05
PC3
b.
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-0.15-0.10-0.050.000.05
PC2
PC3
Bengal
d.
-0.06-0.04-0.020.000.020.04
PC4
e.
0 143
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. B4 (Mb)
Fst-based Haplotype-based ROH
KRT71 ALX1
(1, 2, 5, 10, 20Mb)
0 143
Siamese
Korat
Burmese2
Burmese1
Oriental
KhaoManee
Birman2
Birman1
Bombay
Peterbald
Ocicat
LaPerm
JapaneseBobtail
RussianBlue
CornishRex
Ragdoll2
Ragdoll1
Bengal2
Bengal1
TurkishVan
AmericanCurl
DevonRex
EgyptianMau
Sphynx
Somali
Abyssinian
Munchkins
Lykoi
Chartreux
Siberian2
Siberian1
Manx
AmericanWirehair
NorwegianForestCat
MaineCoon
ScottishFold2
ScottishFold1
SelkirkRex
BritishShorthair
Persian2
Persian1
Chr. B4 (Mb)
Fst-based Haplotype-based ROH
KRT71 ALX1
(1, 2, 5, 10, 20Mb)
Bengal Breed
Size: 6.3 Mb
80 genes
OR10P1, ITGA7, BLOC1S1, RDH5, CD63, GDF11,
ORMDL2, MMP19, PYM1, DGKA, PMEL, CDK2,
RAB5B, SUOX, IKZF4, RPS26, ERBB3, ZC3H10,
ESYT1, MYL6B, SMARCC2, RNF41, NABP2, SLC39A5
…etc
General view of selection
0 241Chromosome Length (Mb)
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Fst-based
0 241Chromosome Length (Mb)
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Haplotype-based
0 241Chromosome Length (Mb)
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Fst-based Haplotype-based
273 candidate
regions
317 candidate
regions
590 candidate
regions
Genomic landscape of selection
41/789
273
10/275
155
33/744
695
5/169
583
Breeds/Samples
Fst-based Sweeps
0 241Chromosome Length (Mb)
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Fst-based
0 241Chromosome Length (Mb)
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
Haplotype-based
0
A1
A2
A3
B1
B2
B3
B4
C1
C2
D1
D2
D3
D4
E1
E2
E3
F1
F2
41/789
273
10/275
155
Breeds/Samples
Fst-based Sweeps
What is next?
Leslie A. Lyons, PhD
Department of Veterinary Medicine and Surgery
Acknowledgment
Mona Abdi, M.Sc.
Department of Biological Sciences
Disclaimer
Figures, photos, and graphs in my presentations are
collected using google searches. I do not claim to have
personally produced all the material (except for some).
I do cite only articles or books used. I thank all owners
of the visual aid that I use and apologize for not citing
each individual item. If anybody finds the inclusion of
their material into my presentations a violation of their
copy rights, please contact me via email.
hhalhaddad@gmail.com

Weitere ähnliche Inhalte

Was ist angesagt?

UC Davis EVE161 Lecture 18 by @phylogenomics
 UC Davis EVE161 Lecture 18 by @phylogenomics UC Davis EVE161 Lecture 18 by @phylogenomics
UC Davis EVE161 Lecture 18 by @phylogenomicsJonathan Eisen
 
2015. Patrik Schnable. Trait associated SNPs provide insights into heterosis...
2015. Patrik Schnable. Trait associated SNPs provide insights  into heterosis...2015. Patrik Schnable. Trait associated SNPs provide insights  into heterosis...
2015. Patrik Schnable. Trait associated SNPs provide insights into heterosis...FOODCROPS
 
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...2015. SarahHearne. From genebank to field- leveraging genomics to identify an...
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...FOODCROPS
 
EVE 161 Winter 2018 Class 13
EVE 161 Winter 2018 Class 13EVE 161 Winter 2018 Class 13
EVE 161 Winter 2018 Class 13Jonathan Eisen
 
2015. Petr Smykal. Study domestication and to broaden genetic diversity of w...
2015. Petr Smykal.  Study domestication and to broaden genetic diversity of w...2015. Petr Smykal.  Study domestication and to broaden genetic diversity of w...
2015. Petr Smykal. Study domestication and to broaden genetic diversity of w...FOODCROPS
 
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...Premier Publishers
 
Masinde et al first publication
Masinde et al first publicationMasinde et al first publication
Masinde et al first publicationWatson Ngenya
 
Campbell_Resume_011515
Campbell_Resume_011515Campbell_Resume_011515
Campbell_Resume_011515James Campbell
 
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...ICRISAT
 
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...Mitch Fernandez
 
Assesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivarsAssesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivarsNaveen Jakhar
 
Heimler Syndrome Paper
Heimler Syndrome PaperHeimler Syndrome Paper
Heimler Syndrome PaperNada Alsheqaih
 
Development of a high-throughput high-density SNP genotyping array for bovine
Development of a high-throughput high-density SNP genotyping array for bovineDevelopment of a high-throughput high-density SNP genotyping array for bovine
Development of a high-throughput high-density SNP genotyping array for bovineAffymetrix
 

Was ist angesagt? (18)

2013 Cornell's Plant Breeding and Genetic Seminar Series
2013 Cornell's Plant Breeding and Genetic Seminar Series2013 Cornell's Plant Breeding and Genetic Seminar Series
2013 Cornell's Plant Breeding and Genetic Seminar Series
 
UC Davis EVE161 Lecture 18 by @phylogenomics
 UC Davis EVE161 Lecture 18 by @phylogenomics UC Davis EVE161 Lecture 18 by @phylogenomics
UC Davis EVE161 Lecture 18 by @phylogenomics
 
2015. Patrik Schnable. Trait associated SNPs provide insights into heterosis...
2015. Patrik Schnable. Trait associated SNPs provide insights  into heterosis...2015. Patrik Schnable. Trait associated SNPs provide insights  into heterosis...
2015. Patrik Schnable. Trait associated SNPs provide insights into heterosis...
 
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...2015. SarahHearne. From genebank to field- leveraging genomics to identify an...
2015. SarahHearne. From genebank to field- leveraging genomics to identify an...
 
EVE 161 Winter 2018 Class 13
EVE 161 Winter 2018 Class 13EVE 161 Winter 2018 Class 13
EVE 161 Winter 2018 Class 13
 
Genotyping an invasive vine
Genotyping an invasive vineGenotyping an invasive vine
Genotyping an invasive vine
 
2015. Petr Smykal. Study domestication and to broaden genetic diversity of w...
2015. Petr Smykal.  Study domestication and to broaden genetic diversity of w...2015. Petr Smykal.  Study domestication and to broaden genetic diversity of w...
2015. Petr Smykal. Study domestication and to broaden genetic diversity of w...
 
Chiranjeev patel thesis viva voce
Chiranjeev patel thesis viva voceChiranjeev patel thesis viva voce
Chiranjeev patel thesis viva voce
 
paper
paperpaper
paper
 
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...
Seroprevalence of Peste des Petits Ruminants in Traditional Goats Reared in N...
 
Masinde et al first publication
Masinde et al first publicationMasinde et al first publication
Masinde et al first publication
 
Campbell_Resume_011515
Campbell_Resume_011515Campbell_Resume_011515
Campbell_Resume_011515
 
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...
Research Program Genetic Gains (RPGG) Review Meeting 2021: From Discovery to ...
 
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...
04.19.2013.an.analytical.workflow.for.metagenomic.data.and.its.application.to...
 
Nikhil ahlawat
Nikhil ahlawatNikhil ahlawat
Nikhil ahlawat
 
Assesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivarsAssesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivars
 
Heimler Syndrome Paper
Heimler Syndrome PaperHeimler Syndrome Paper
Heimler Syndrome Paper
 
Development of a high-throughput high-density SNP genotyping array for bovine
Development of a high-throughput high-density SNP genotyping array for bovineDevelopment of a high-throughput high-density SNP genotyping array for bovine
Development of a high-throughput high-density SNP genotyping array for bovine
 

Ähnlich wie Cat signatures of selection

Population Structure & Genetic Improvement in Livestock
Population Structure & Genetic Improvement in LivestockPopulation Structure & Genetic Improvement in Livestock
Population Structure & Genetic Improvement in LivestockGolden Helix Inc
 
Feline Array PAG 2016
Feline Array PAG 2016Feline Array PAG 2016
Feline Array PAG 2016hhalhaddad
 
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...Waltham Centre for Pet Nutrition
 
Multiple paternity in loggerhead turtle ( caretta caretta
Multiple paternity in loggerhead turtle ( caretta carettaMultiple paternity in loggerhead turtle ( caretta caretta
Multiple paternity in loggerhead turtle ( caretta carettaUniversity Of Wuerzburg,Germany
 
Investigation of phylogenic relationships of shrew populations using genetic...
Investigation of phylogenic relationships  of shrew populations using genetic...Investigation of phylogenic relationships  of shrew populations using genetic...
Investigation of phylogenic relationships of shrew populations using genetic...Juan Barrera
 
genetics lab poster SRC
genetics lab poster SRCgenetics lab poster SRC
genetics lab poster SRCJuan Barrera
 
presentation on E.coli
presentation on E.colipresentation on E.coli
presentation on E.coliVandana singh
 
RICHELLE SOPKO_resume_042215
RICHELLE SOPKO_resume_042215RICHELLE SOPKO_resume_042215
RICHELLE SOPKO_resume_042215Richelle Sopko
 
Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium
Canine malignant hemangiosarcoma as a model of primitive angiogenic endotheliumCanine malignant hemangiosarcoma as a model of primitive angiogenic endothelium
Canine malignant hemangiosarcoma as a model of primitive angiogenic endotheliumRodrigo Shamed Cedillo Flores
 
Aaron_Bender_resume1
Aaron_Bender_resume1Aaron_Bender_resume1
Aaron_Bender_resume1Aaron Bender
 
Molecular applications in characterization and differentiation of sri lankan ...
Molecular applications in characterization and differentiation of sri lankan ...Molecular applications in characterization and differentiation of sri lankan ...
Molecular applications in characterization and differentiation of sri lankan ...ExternalEvents
 
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...John Blue
 
Research Presentation
Research PresentationResearch Presentation
Research PresentationJordan Wolfe
 
Cats -feline_behavior_guidelines
Cats  -feline_behavior_guidelinesCats  -feline_behavior_guidelines
Cats -feline_behavior_guidelinesSheng Wang
 
cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected WilheminaRossi174
 
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...Advances in Genomics Research and Molecular Breeding in Dryland Crops through...
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...apaari
 
What can your dog teach you about Genetics?
What can your dog teach you about Genetics?What can your dog teach you about Genetics?
What can your dog teach you about Genetics?rlanchantin
 

Ähnlich wie Cat signatures of selection (20)

Population Structure & Genetic Improvement in Livestock
Population Structure & Genetic Improvement in LivestockPopulation Structure & Genetic Improvement in Livestock
Population Structure & Genetic Improvement in Livestock
 
Feline Array PAG 2016
Feline Array PAG 2016Feline Array PAG 2016
Feline Array PAG 2016
 
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...
The Canine & Feline Oral Microbiota: Insights into the uniqueness of dental p...
 
Multiple paternity in loggerhead turtle ( caretta caretta
Multiple paternity in loggerhead turtle ( caretta carettaMultiple paternity in loggerhead turtle ( caretta caretta
Multiple paternity in loggerhead turtle ( caretta caretta
 
Investigation of phylogenic relationships of shrew populations using genetic...
Investigation of phylogenic relationships  of shrew populations using genetic...Investigation of phylogenic relationships  of shrew populations using genetic...
Investigation of phylogenic relationships of shrew populations using genetic...
 
genetics lab poster SRC
genetics lab poster SRCgenetics lab poster SRC
genetics lab poster SRC
 
presentation on E.coli
presentation on E.colipresentation on E.coli
presentation on E.coli
 
RICHELLE SOPKO_resume_042215
RICHELLE SOPKO_resume_042215RICHELLE SOPKO_resume_042215
RICHELLE SOPKO_resume_042215
 
EID_lec3_Bishai.pdf
EID_lec3_Bishai.pdfEID_lec3_Bishai.pdf
EID_lec3_Bishai.pdf
 
Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium
Canine malignant hemangiosarcoma as a model of primitive angiogenic endotheliumCanine malignant hemangiosarcoma as a model of primitive angiogenic endothelium
Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium
 
Aaron_Bender_resume1
Aaron_Bender_resume1Aaron_Bender_resume1
Aaron_Bender_resume1
 
Molecular applications in characterization and differentiation of sri lankan ...
Molecular applications in characterization and differentiation of sri lankan ...Molecular applications in characterization and differentiation of sri lankan ...
Molecular applications in characterization and differentiation of sri lankan ...
 
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...
Dr. Jack Dekkers - Using genetic selection and genomics to combat infectious ...
 
Session 7: Identification of Xanthomonas species causing bacterial leaf spot ...
Session 7: Identification of Xanthomonas species causing bacterial leaf spot ...Session 7: Identification of Xanthomonas species causing bacterial leaf spot ...
Session 7: Identification of Xanthomonas species causing bacterial leaf spot ...
 
Research Presentation
Research PresentationResearch Presentation
Research Presentation
 
CBGW Bob Church
CBGW Bob ChurchCBGW Bob Church
CBGW Bob Church
 
Cats -feline_behavior_guidelines
Cats  -feline_behavior_guidelinesCats  -feline_behavior_guidelines
Cats -feline_behavior_guidelines
 
cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected
 
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...Advances in Genomics Research and Molecular Breeding in Dryland Crops through...
Advances in Genomics Research and Molecular Breeding in Dryland Crops through...
 
What can your dog teach you about Genetics?
What can your dog teach you about Genetics?What can your dog teach you about Genetics?
What can your dog teach you about Genetics?
 

Mehr von hhalhaddad

Oman camel conference
Oman camel conferenceOman camel conference
Oman camel conferencehhalhaddad
 
A look at camels - نظرة إلى الإبل
A look at camels - نظرة إلى الإبلA look at camels - نظرة إلى الإبل
A look at camels - نظرة إلى الإبلhhalhaddad
 
Journey around the camel
Journey around the camelJourney around the camel
Journey around the camelhhalhaddad
 
Kuwait University R workshop 2016
Kuwait University R workshop 2016Kuwait University R workshop 2016
Kuwait University R workshop 2016hhalhaddad
 
Bengalness UM 2016
Bengalness UM 2016Bengalness UM 2016
Bengalness UM 2016hhalhaddad
 
485 lec6 sequencing
485 lec6 sequencing485 lec6 sequencing
485 lec6 sequencinghhalhaddad
 
485 lec5 exploring_the_genome
485 lec5 exploring_the_genome485 lec5 exploring_the_genome
485 lec5 exploring_the_genomehhalhaddad
 
485 lec4 the_genome
485 lec4 the_genome485 lec4 the_genome
485 lec4 the_genomehhalhaddad
 
485 lec3 history_review_ii
485 lec3 history_review_ii485 lec3 history_review_ii
485 lec3 history_review_iihhalhaddad
 
485 lec2 history and review (i)
485 lec2 history and review (i)485 lec2 history and review (i)
485 lec2 history and review (i)hhalhaddad
 
485 lec1 general_introduction
485 lec1 general_introduction485 lec1 general_introduction
485 lec1 general_introductionhhalhaddad
 
281 lec16 amino_acidsproteins
281 lec16 amino_acidsproteins281 lec16 amino_acidsproteins
281 lec16 amino_acidsproteinshhalhaddad
 
281 lec15 the_geneticcode
281 lec15 the_geneticcode281 lec15 the_geneticcode
281 lec15 the_geneticcodehhalhaddad
 
281 lec31 mol_tech3
281 lec31 mol_tech3281 lec31 mol_tech3
281 lec31 mol_tech3hhalhaddad
 
281 lec30 mol_tech2
281 lec30 mol_tech2281 lec30 mol_tech2
281 lec30 mol_tech2hhalhaddad
 
281 lec29 mol_tech1
281 lec29 mol_tech1281 lec29 mol_tech1
281 lec29 mol_tech1hhalhaddad
 
281 lec28 chromosomal_mutations
281 lec28 chromosomal_mutations281 lec28 chromosomal_mutations
281 lec28 chromosomal_mutationshhalhaddad
 
281 lec27 point_mutations
281 lec27 point_mutations281 lec27 point_mutations
281 lec27 point_mutationshhalhaddad
 
281 lec26 mutation
281 lec26 mutation281 lec26 mutation
281 lec26 mutationhhalhaddad
 

Mehr von hhalhaddad (20)

Oman camel conference
Oman camel conferenceOman camel conference
Oman camel conference
 
Oman workshop
Oman workshopOman workshop
Oman workshop
 
A look at camels - نظرة إلى الإبل
A look at camels - نظرة إلى الإبلA look at camels - نظرة إلى الإبل
A look at camels - نظرة إلى الإبل
 
Journey around the camel
Journey around the camelJourney around the camel
Journey around the camel
 
Kuwait University R workshop 2016
Kuwait University R workshop 2016Kuwait University R workshop 2016
Kuwait University R workshop 2016
 
Bengalness UM 2016
Bengalness UM 2016Bengalness UM 2016
Bengalness UM 2016
 
485 lec6 sequencing
485 lec6 sequencing485 lec6 sequencing
485 lec6 sequencing
 
485 lec5 exploring_the_genome
485 lec5 exploring_the_genome485 lec5 exploring_the_genome
485 lec5 exploring_the_genome
 
485 lec4 the_genome
485 lec4 the_genome485 lec4 the_genome
485 lec4 the_genome
 
485 lec3 history_review_ii
485 lec3 history_review_ii485 lec3 history_review_ii
485 lec3 history_review_ii
 
485 lec2 history and review (i)
485 lec2 history and review (i)485 lec2 history and review (i)
485 lec2 history and review (i)
 
485 lec1 general_introduction
485 lec1 general_introduction485 lec1 general_introduction
485 lec1 general_introduction
 
281 lec16 amino_acidsproteins
281 lec16 amino_acidsproteins281 lec16 amino_acidsproteins
281 lec16 amino_acidsproteins
 
281 lec15 the_geneticcode
281 lec15 the_geneticcode281 lec15 the_geneticcode
281 lec15 the_geneticcode
 
281 lec31 mol_tech3
281 lec31 mol_tech3281 lec31 mol_tech3
281 lec31 mol_tech3
 
281 lec30 mol_tech2
281 lec30 mol_tech2281 lec30 mol_tech2
281 lec30 mol_tech2
 
281 lec29 mol_tech1
281 lec29 mol_tech1281 lec29 mol_tech1
281 lec29 mol_tech1
 
281 lec28 chromosomal_mutations
281 lec28 chromosomal_mutations281 lec28 chromosomal_mutations
281 lec28 chromosomal_mutations
 
281 lec27 point_mutations
281 lec27 point_mutations281 lec27 point_mutations
281 lec27 point_mutations
 
281 lec26 mutation
281 lec26 mutation281 lec26 mutation
281 lec26 mutation
 

Kürzlich hochgeladen

Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsCharlene Llagas
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxpriyankatabhane
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...HafsaHussainp
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 

Kürzlich hochgeladen (20)

Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and Functions
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...
DOG BITE management in pediatrics # for Pediatric pgs# topic presentation # f...
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 

Cat signatures of selection

  • 1. The genomic landscape of selection in domestic cat breeds Hasan Alhaddad PAG 2019
  • 2. Study Objectives • Identify signatures of selection for individual cat breeds using multiple methods. • Compare the candidate regions under selection between breeds. • Provide an overall view of the genomic landscape of the domestic cat.
  • 4. Domestication and breed formation Personal Synthesis A. Ecological domestication B. Selection from standing variation in RB C. Selection from standing variation in breed D. Breeds from de novo mutation E. Hybridizing two (more) breeds F. Interspecies hybridization
  • 6.
  • 8. Face & Ears Hair-length & Texture Legs & Tail Color & Pattern
  • 10. Samples 2162 cat samples 41 cat breeds Wild cats Pedigree cats Markers ~63K SNPs Autosomal SNPs X-Chr SNPs UN-Chr SNPs Applications and efficiencies of the first cat 63K DNA array BarbaraGandolfi1 , HasanAlhaddad2 , MonaAbdi2 , Leslie H. Bach3,4 , Erica K.Creighton1 , BrianW. Davis 5 ,Jared E. Decker 6 , Nicholas H. Dodman7 ,JenniferC.Grahn3,8 , RobertA. Grahn3,8 , Bianca Haase9 ,Jens Haggstrom10 , MichaelJ. Hamilton3,11 ,Christopher R. Helps12 , Jennifer D. Kurushima3,13 , Hannes Lohi14 , Maria Longeri15 , Richard Malik16 , Kathryn M. Meurs17 , MichaelJ. Montague 18 ,JamesC. Mullikin 19 ,WilliamJ. Murphy5 ,Sara M. Nilson6 , NielsC. Pedersen20 ,Carlyn B. Peterson3 ,Clare Rusbridge21 , RashidSaif22 ,G. DianeShelton23 , WesleyC.Warren24 , MuhammadWasim25 & LeslieA. Lyons1 The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats.The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated.Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed aWestern to Eastern structural continuum of cat breeds.Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris).Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes.The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations. 1 Department ofVeterinary Medicine andSurgery,College ofVeterinary Medicine,University of Missouri -Columbia, Columbia, MO, USA. 2 Department of Biological Sciences, Kuwait University, Safat, Kuwait. 3 Department of Population Health and Reproduction,School ofVeterinary Medicine,University ofCalifornia – Davis, Davis,CA,USA. 4 University ofSan Francisco,San Francisco,CA,USA. 5 Department ofVeterinary Integrative Biosciences,TexasA&M University,CollegeStation,TX,USA. 6 Division ofAnimalSciences,University of Missouri -Columbia,Columbia, MO, USA. 7 Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA. 8 Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA. 9 Sydney School of VeterinaryScience,University ofSydney,Sydney,Australia. 10 Department ofClinicalSciences,SwedishUniversity of AgriculturalSciences,Uppsala,Sweden. 11 Department of Biochemistry,University ofCalifornia – Riverside, Riverside, CA, USA. 12 LangfordVets, University of Bristol, Bristol, United Kingdom. 13 FoothillCollege, LosAltos Hills,CA, USA. 14 Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki, andThe Folkhälsan Institute of Genetics, Helsinki, Finland. 15 Department ofVeterinary Medicine, Università degli Studi di Milano, Milan, Italy. 16 Centre forVeterinary Education, University of Sydney, New South Wales, Australia. 17 Department ofClinicalSciences,College ofVeterinary Medicine, NorthCarolinaStateUniversity, Raleigh, NC,USA. 18 Department of Neuroscience, Parelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 19 NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,USA. 20 Center forCompanionAnimal Health,School ofVeterinary Medicine,University ofCalifornia - Davis, Davis,CA,USA. 21 School ofVeterinary Medicine, Faculty of Health and MedicalSciences,University ofSurrey, Guildford,Surrey,United Kingdom. 22 Institute of Biotechnology,Gulab Devi EducationalComplex, Lahore, Pakistan. 23 Department of Pathology, University of California, San Diego, La Jolla, CA, USA. 24 McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA. 25 Institute of Biochemistry and Biotechnology, University ofVeterinary and Animal Sciences, Lahore, Pakistan. Barbara Gandolfi and Hasan Alhaddad contributed Received: 17 October 2017 Accepted: 16 April 2018 Published: xx xx xxxx OPEN Correction: Author Correction Original Dataset
  • 11. Final Dataset Samples 90% genotyping rate Recognized breeds Sample size ≥ 5 Unrelated samples Markers 90% genotyping rate Autosomal SNPs MAF ≥ 0.05 789 cat samples 34 breeds Sample size (5-25) 51813 autosomal SNPs
  • 12. Sample size Mean (di) per 500Kb Frequency -40 -20 0 20 40 60 80 02006001000 Bengal1 Bengal2 -40 -20 0 20 40 60 80 -40-20020406080 Mean (di) Bengal (1) Mean(di)Bengal(2) -40 -20 0 20 40 60 80 -40-20020406080 Mean (di) Bengal Mean(di)non-Bengal Mean (Fst) per 500Kb Frequency 0.0 0.1 0.2 0.3 0.4 0.5 02006001000 Bengal1 Bengal2 0.0 0.1 0.2 0.3 0.4 0.5 0.00.10.20.30.40.5 Mean (Fst) Bengal (1) Mean(Fst)Bengal(2) 0.0 0.1 0.2 0.3 0.4 0.5 0.00.10.20.30.40.5 Mean (Fst) Bengal Mean(Fst)non-Bengal
  • 13. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.15-0.10-0.050.000.05 PC1 (28.9%) PC2(9.5%) a. -0.045 -0.035 -0.025 -0.015 -0.04-0.03-0.02-0.010.000.01 BSH MCOON MANX NFC PER SFOLD SREX WIR CHR LYK b. -0.02 -0.01 0.00 0.01 0.02 -0.04-0.020.000.020.04 ABY BEN DREX EGY JBOB PERM OCI RAG RBLUE SPH Van ACURL CREX SOM c. 0.03 0.04 0.05 0.06 0.07 0.08 -0.15-0.10-0.050.000.05 BIR BUR MANEE KOR ORI PBALD SIA d. Group 1 Western Breeds Group 2 Middle Breeds Group 3 Eastern Breeds
  • 14. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.15-0.10-0.050.000.05 PC1 PC2 Birman a. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08-0.15-0.10-0.050.000.05 PC1 PC3 Bengal b. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.10-0.050.000.05 PC1 PC4 c. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.15-0.10-0.050.000.05 PC2 PC3 Bengal d. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.06-0.04-0.020.000.020.04 PC2 PC4 Bengal Birman e. -0.15 -0.10 -0.05 0.00 0.05 -0.06-0.04-0.020.000.020.04 PC3 PC4 Bengal f. Group 1 Western Breeds Group 2 Middle Breeds Group 3 Eastern Breeds
  • 16. • Frequency (Fst, di). • Haplotype (iHS- integrated haplotype homozygosity score). • Window: a window of 500Kb size with at least 5 SNPs. • Threshold: significance (0.01) of the empirical distribution of the three statistics. • Candidate Regions :Consecutive significant windows (two or more).
  • 17. 1 4 9 14 19 24 29 33 37 41 45 49 53 57 63 2Mb 020406080 1 3 5 7 9 12 15 18 21 24 27 30 33 39 1Mb 050150 1 3 5 7 9 11 13 15 17 19 22 31 41 0.5 Mb 0200500 1 2 3 4 5 6 7 8 9 10 12 14 18 23 0.25 Mb 05001500 0.00.10.20.30.40.50.6 Non-overlap Fst 0.00.10.20.30.40.50.6 Partial overlap Fst 0.00.20.40.6 Total overlap Fst A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2
  • 19. To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed Barbara Gandolfi1 *, Hasan Alhaddad1 , Verena K. Affolter2 , Jeffrey Brockman3 , Jens Haggstrom4 , Shannon E. K. Joslin1 , Amanda L. Koehne2 , James C. Mullikin5 , Catherine A. Outerbridge6 , Wesley C. Warren7 , Leslie A. Lyons1 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America, 2 Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America, 3 Hill’s Pet Nutrition Center, Topeka, Kansas, United States of America, 4 Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden, 5 Comparative Genomics Unit, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 6 Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, California, United States of America, 7 The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America Abstract The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans. Citation: Gandolfi B, Alhaddad H, Affolter VK, Brockman J, Haggstrom J, et al. (2013) To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed. PLoS ONE 8(6): e67105. doi:10.1371/journal.pone.0067105 Editor: Arnar Palsson, University of Iceland, Iceland Received March 26, 2013; Accepted May 14, 2013; Published June 27, 2013 Copyright: ß 2013 Gandolfi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This project was supported by the National Center for Research Resources and the Office of Research Infrastructure Programs of the National Institute of Health through Grant Number R24 RR016094, the Winn Feline Foundation (W10-14, W11-041), the Center for Companion Animal Health at University of California Davis (2010-09-F) (http://www.vetmed.ucdavis.edu/ccah/index.cfm), and the George and Phyllis Miller Feline Health Fund of the San Francisco Foundation (2008-36-F). Support for the development of the Illumina Infinium Feline 63K iSelect DNA array was provided by the Morris Animal Foundation (http:// www.morrisanimalfoundation.org) via a donation from Hill’s Pet Food, Inc. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: JB works for a private company (Hill’s Pet Food, Inc) that partially sponsored the development of the 63k feline SNP array. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. * E-mail: bgandolfi@ucdavis.edu Introduction Phenotypic traits under strong artificial selection within cat breeds vary from body types, muzzle shape, tail length to aesthetically pleasant traits, such as hair color, length and texture. Hair represents one of the defining characteristic of mammals. Hair provides body temperature regulation, protection from environmental elements, and adaptive advantages of camouflage, as well as often having aesthetic value to humans. The hair follicle has a highly complex structure with eight distinct cell layers, in which hundreds of gene products play a key role in the hair cycle maintenance [1,2]. In the past decade, numerous genes expressed in the hair follicle have been identified and mutations in some of these genes have been shown to underlie hereditary hair diseases in humans and other mammals [3]. Hereditary hair diseases in mammals show diverse hair phenotypes, such as sparse or short hairs (hypotrichosis), excessive or elongated hairs (hypertrichosis), and hair shaft anomalies, creating rexoid/woolly hairs [3–12]. Causative genes for the diseases encode various proteins with different functions, such as structural proteins, transcription factors, and signaling molecules. Mutations within structural proteins, such as epithelial and hair keratins, are often associated with hair disease. To date, mutations in several hair keratin genes underlined two hereditary hair disorders: monilethrix, character- PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e67105 0.00.10.20.30.40.5 Fst -20020406080 di 01234 Chromosome iHS A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Cornish Rex breed Positive Control Chr.A1 (LPAR6)
  • 23. NumberofSignificantRegions 020406080100 A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Chromosomes Fst-based Haplotype-based
  • 25. 0 20 40 60 80 Persian1 Persian2 BritishShorthair SelkirkRex ScottishFold1 ScottishFold2 MaineCoon NorwegianForestCat AmericanWirehair Manx Siberian1 Siberian2 Chartreux Lykoi Munchkins Abyssinian Somali Sphynx EgyptianMau DevonRex AmericanCurl TurkishVan Bengal1 Bengal2 Ragdoll1 Ragdoll2 CornishRex RussianBlue JapaneseBobtail LaPerm Ocicat Peterbald Bombay Birman1 Birman2 KhaoManee Oriental Burmese1 Burmese2 Korat Siamese Size of Significant Regions (Mb) Fst-based Haplotype-based ROH
  • 27. 0 153 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. B2 (Mb) Fst-based Haplotype-based ROH (1, 2, 5, 10, 20Mb) 0 153 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon Chr. B2 (Mb) Persian Family Breeds Size: 15.9 Mb 120 genes SLC35B3, LY86, F13A1, NRN1, RPP40, ECI2, FAM217A, PRPF4B, FAM50B, SLC22A23, PSMG4, TUBB2A, BPHL, RIPK1…. etc
  • 28. 0 99 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. D2 (Mb) Fst-based Haplotype-based ROH (1, 2, 5, 10, 20Mb) 0 99 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. D2 (Mb) Fst-based Haplotype-based ROH (1, 2, 5, 10, 20Mb) Non-Persian Family Western Breeds One gene ZWINT, codes for ZW10 (Interacting kinetochore protein)
  • 29. Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Fst-based Haplotype-based ROH (1, 2, 5, 10, 20Mb) 0 150 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. B3 (Mb) Fst-based Haplotype-based ROH (1, 2, 5, 10, 20Mb) Eastern Breeds without Birman Size: 2.9 Mb 5 genes NDN, SNRPN, UBE3A, ATP10A, GABRB3 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.15-0.10-0.050.000.05 PC1 PC2 Birman a. -0.15-0.10-0.050.000.05 PC3 b. -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.15-0.10-0.050.000.05 PC2 PC3 Bengal d. -0.06-0.04-0.020.000.020.04 PC4 e.
  • 30. 0 143 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. B4 (Mb) Fst-based Haplotype-based ROH KRT71 ALX1 (1, 2, 5, 10, 20Mb) 0 143 Siamese Korat Burmese2 Burmese1 Oriental KhaoManee Birman2 Birman1 Bombay Peterbald Ocicat LaPerm JapaneseBobtail RussianBlue CornishRex Ragdoll2 Ragdoll1 Bengal2 Bengal1 TurkishVan AmericanCurl DevonRex EgyptianMau Sphynx Somali Abyssinian Munchkins Lykoi Chartreux Siberian2 Siberian1 Manx AmericanWirehair NorwegianForestCat MaineCoon ScottishFold2 ScottishFold1 SelkirkRex BritishShorthair Persian2 Persian1 Chr. B4 (Mb) Fst-based Haplotype-based ROH KRT71 ALX1 (1, 2, 5, 10, 20Mb) Bengal Breed Size: 6.3 Mb 80 genes OR10P1, ITGA7, BLOC1S1, RDH5, CD63, GDF11, ORMDL2, MMP19, PYM1, DGKA, PMEL, CDK2, RAB5B, SUOX, IKZF4, RPS26, ERBB3, ZC3H10, ESYT1, MYL6B, SMARCC2, RNF41, NABP2, SLC39A5 …etc
  • 31. General view of selection
  • 32. 0 241Chromosome Length (Mb) A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Fst-based 0 241Chromosome Length (Mb) A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Haplotype-based 0 241Chromosome Length (Mb) A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Fst-based Haplotype-based 273 candidate regions 317 candidate regions 590 candidate regions Genomic landscape of selection
  • 33. 41/789 273 10/275 155 33/744 695 5/169 583 Breeds/Samples Fst-based Sweeps 0 241Chromosome Length (Mb) A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Fst-based 0 241Chromosome Length (Mb) A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 Haplotype-based 0 A1 A2 A3 B1 B2 B3 B4 C1 C2 D1 D2 D3 D4 E1 E2 E3 F1 F2 41/789 273 10/275 155 Breeds/Samples Fst-based Sweeps
  • 35. Leslie A. Lyons, PhD Department of Veterinary Medicine and Surgery Acknowledgment Mona Abdi, M.Sc. Department of Biological Sciences
  • 36. Disclaimer Figures, photos, and graphs in my presentations are collected using google searches. I do not claim to have personally produced all the material (except for some). I do cite only articles or books used. I thank all owners of the visual aid that I use and apologize for not citing each individual item. If anybody finds the inclusion of their material into my presentations a violation of their copy rights, please contact me via email. hhalhaddad@gmail.com