SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
1
UNIT 3
Fourier Series
3.1: ORTHOGONAL FUNCTIONS
Definition: Functions ),...
(
),
( 2
1 x
y
x
y defined on some interval are called orthogonal on a x  b
with respect to the weight function p(x) > 0 if  
b
a
n
m dx
x
y
x
y
x
p 0
)
(
)
(
)
( for m  n.

b
a
n dx
x
y
x
p )
(
)
( 2
is called the square of the norm of )
(x
yn and written as
2
n
y . If the norm is
unity, we say that the set of functions is an orthonormal set. If the weight function is unity, we
simply say that the set is orthogonal on a x  b.
Examples of sequences of orthogonal functions are: The set of functions 1, cos (nx) , n = 1, 2, 3, … or
1, sin(nx) , n = 1, 2, 3, … or 1, cos(nx), sin(nx), n = 1, 2, 3, , on the interval 
2


 a
x
a with
weight functions p(x) = 1 for any real constant a.
The chief advantage of the knowledge of these orthogonal sets of functions is that they yield series
expansions of a given function in a simple fashion. Let 1 2
, ,
y y be an orthogonal set with respect
to the weight function p(x) on an interval b
x
a 
 . Let f(x) be a given function that can be
represented in terms of )
(x
yn by a convergent series,








0
2
2
1
1
0
0 )
(
)
(
)
(
)
(
)
(
m
m
m x
y
a
x
y
a
x
y
a
x
y
a
x
f 
This is called an orthogonal expansion or the generalized Fourier series. The orthogonality of the
functions helps us to find the unknown coefficients 
2
1
0 ,
, a
a
a in a simple fashion. These are
called Fourier coefficients of f(x) with respect to 
,
,
, 2
1
0 y
y
y . If we multiply both side of the above
expansion by p(x)yn(x) for a fixed n, and then integrate over a  x  b, we obtain, assuming term by
term integration is permissible,
dx
x
y
x
y
a
x
p
dx
x
y
x
f
x
p n
b
a
b
a m
m
m
n )
(
)
(
)
(
)
(
)
(
)
(
0
   








dx
x
y
x
p
a
x
y
x
y
x
p
a
m
b
a
b
a
n
n
n
m
m )
(
)
(
)
(
)
(
)
(
0
2
  




2
)
(x
y
a n
n
 , all other
integrals being zero in the right hand side, because of the orthogonality of the set.
2
Thus 2
)
(
)
(
)
(
)
(
x
y
dx
x
y
x
f
x
p
a
n
b
a
n
n

 .
Definition: A function f is said to be a periodic function with period p if p is the least positive number
such that f(x +p) = f(x) for all x in the domain of f. It follows that f(x+np) = f(x) for all x in the
domain of f and all integers n.
Example : f(x) = sinx and g(x) = cos x are the familiar periodic functions with period p = 2.
The constant function h(x) = c is a periodic function, since h(x +p) =c = h(x) for all p (0, ).
Proposition: If f and g are periodic functions with period p, then H(x) = af(x) + bg(x), for some
constants a & b, is a periodic function with period p.
Proof: H(x+p) = a f(x+p) +bg(x +b) = af(x) + bg(x) = H(x) since f(x+p) = f(x) &g(x+p) = g(x)
Therefore, H(x) is a periodic function with period p.
Definition : A functional series of the form
...
sin
cos
2
sin
2
cos
sin
cos
2
2
2
1
1
0







 nx
b
nx
a
x
b
x
a
x
b
x
a
a
n
n

=  





1
0
sin
cos
2 n
n
n nx
b
nx
a
a
is called a trigonometric series; where n
n b
a
a ,
,
0 (n = 1, 2, 3, 
are real constants,) are called the coefficients of the trigonometric series.
If the series converges, say to a function f(x), i.e, 





1
0
)
(
)
sin
cos
(
2 n
n
n x
f
nx
b
nx
a
a
Then f is a period function with period p = 2 , by the above proposition.
Thus f(x+2) = f(x) for all x in the domain of f, where  






1
0
sin
cos
2
)
(
n
n
n nx
b
nx
a
a
x
f .
3.2 Fourier Series
3.2.1 Fourier Series of function with period
Definition : The Fourier series for the periodic function f(x) in an interval α < x < α + 2 is given by.
 






1
0
sin
cos
2
)
(
n
n
n nx
b
nx
a
a
x
f And the coefficients
,
,
0 n
n b
and
a
a n = 1, 2, 3,  are called the Fourier coefficients.
To evaluate the Fourier Coefficients, the following integrals, involving sine and cosine functions are
useful.
i)
2 2
cos sin 0
nxdx nx
   
 
 
 
  , n = 1, 2, 3, 
3
ii)
2 2
1
cos cos [cos( ) cos( ) ]
2
mx nxdx m n x m n x dx
   
 
 
   
 
2
1 1 1
sin( ) sin( )
2
m n x m n x
m n m n
 


 
   
 
 
 
= 0, m  n.
iii)
2
cos sin 0
mx nxdx
 




iv)
2 2
2 2
cos ( ) sin ( ) , 0
nx dx nx dx n
   
 

 
  
 
2 2
2
2 1 cos(2 ) 1 1
cos ( ) sin 2
2 2 2
nx
nx dx dx x x
n
   
 

 
 

  
  
 
 
    
 


 a
a 2
2
1
In addition to these properties of integrals involving sine and cosine functions, we often need the
following trigonometric functions for particular arguments.
i)
n
n
n )
1
(
cos
2
)
1
2
sin( 


 

and (ii) ,
0
2
)
1
2
cos(
sin 



 n
n n = 1, 2, 
Theorem : (Euler’s Formulae): The Fourier coefficients in
 






1
0
sin
cos
2
)
(
n
n
n nx
b
nx
a
a
x
f are given by
2 2
0
1 1
( ) , ( )cos
n
a f x dx a f x nxdx
   
 
 
 
 
  and
2
1
( )sin
n
b f x nxdx
 



 
Corollary : 1. If  = 0, the interval becomes 0 < x < 2 , and Euler’s formulae are given by:




2
0
0 )
(
1
dx
x
f
a , 



2
0
cos
)
(
1
nxdx
x
f
an
, 



2
0
sin
)
(
1
nxdx
x
f
bn .
2. If  = - , then the interval becomes -< x < , and the Euler’s Formulae and given by:






dx
x
f
a )
(
1
0 , 





nxdx
x
f
a cos
)
(
1
0 , 





nxdx
x
f
bn sin
)
(
1
.
Examples If
2
2
)
( 




 

x
x
f

in the range (0, 2), show that 




1
2
2
cos
12
)
(
n n
nx
x
f

.
Solution: The Fourier serves for f in (0, 2) is  






1
0
sin
cos
2
)
(
n
n
n nx
b
nx
a
a
x
f , where


 







 












2
0
2
2
2
2
2
0
0 )
2
(
4
1
2
1
)
(
1
dx
x
x
dx
x
dx
x
f
a
6
3
1
4
1 2
2
0
3
2
2 













 x
x
x
4


 






 










2
0
2
2
2
0
2
0
)
cos
)
(
4
1
cos
2
1
cos
)
(
1
nxdx
x
nxdx
x
nxdx
x
f
an




2
0
3
2
2
)
sin(
(
2
)
cos(
)
(
2
)
sin(
)
(
4
1





 






 




n
nx
n
nx
x
nx
n
x
= 2
2
2
1
2
2
4
1
n
n
n











dx
nx
x
dx
nx
x
f
bn )
sin(
2
1
)
sin(
)
(
1
2
2
0
2
0

 




 







0
)
cos(
2
)
sin(
)
(
2
)
cos(
)
(
4
1
2
0
3
2
2
2













 







 






nx
n
n
nx
x
n
nx
x
Therefore, 









 

1
2
2
2
)
cos(
12
2
)
(
n n
nx
x
x
f


DIRICHLET’S CONDITIONS:
Suppose that:
a) f(x) is defined and single – valued except possibly at a finite number of points in(α, α + 2).
b) f(x) is periodic outside (α, α + 2) with period 2.
c) f(x) and )
(x
f  are sectionally continuous in (α, α + 2).
Then the series 




1
0
)
sin(
)
cos(
(
2 n
n
n nx
b
nx
a
a
with coefficients










2
2
0 )
cos(
)
(
1
,
)
(
1
a
a
a
a
n dx
nx
x
f
a
dx
x
f
a & dx
nx
x
f
b
a
a
n )
sin(
)
(
1
2





converges to
i) f(x) if x is a point of continuity
ii)
2
)
(
)
( lim
lim x
f
x
f
c
x
c
x 




if c is a point of discontinuity .
Moreover, when f(x) has finite number of discontinuities in any one period, for instance if in an
interval (α, α + 2), f(x) is defined by












2
),
(
,
)
(
)
(
a
x
c
for
x
c
x
a
for
x
x
f , i.e., c is a point of
discontinuity, then:
2
0
1
( ) ( )
c a
a c
a x dx x dx

 


 
 
 
 
 
2
0
1
( )cos( ) ( )cos( )
c a
a c
a x nx dx x nx dx

 


 
 
 
 
  and 








  

c
a
a
c
n dx
nx
x
dx
nx
x
b




2
)
sin(
)
(
)
sin(
)
(
1
Example: Find the Fourier series expansion for
5













x
if
x
x
if
x
f
0
,
0
,
)
( and deduce that
8
7
1
5
1
3
1
1
1
)
1
2
(
1 2
2
2
2
2
0
2












n n
.
Solution: Let  
0
1
( ) cos( ) sin( )
2
n n
n
a
f x a nx b nx dx


  

Then 

  



















 0
0
0
0
0
1
1
xdx
dx
xdx
dx
a 





2
1
2
1
2
1
0
2







 x








  

0
0
)
cos(
)
cos(
1




dx
nx
x
dx
nx
an
0 0 0
1 sin( )
cos( ) cos( )
nx
nx dx x nx dx
n

 



   
 
 
 
1
1
1
)
cos(
)
sin(
)
sin(
1
2
0
2
0
0












 
n
n
n
nx
dx
n
nx
n
nx
x






and 







  

0
0
)
sin(
)
sin(
1




dx
nx
x
dx
nx
bn 






  0
0
)
sin(
1
)
sin( dx
nx
x
dx
nx











 

dx
n
nx
n
nx
x
n
nx


  0
0
0
)
cos(
)
cos(
1
)
cos(

















 0
2
)
(
)
1
(
1
)
1
(
1
n
nx
Sin
n
n
n
n
n
n
n
n
n
n 1
1
1
)
1
(
2
1
0
)
1
(
)
1
(
1 











Hence, 










 







1
1
2
)
sin(
)
1
(
2
1
)
cos(
1
)
1
(
2
2
1
)
(
n
n
n
nx
n
nx
n
x
f














 
)
5
(
5
2
)
3
(
3
2
2
4 2
2
x
Cos
x
Cos
Cosx














 
)
5
(
5
3
)
4
(
4
1
)
3
(
)
2
(
2
1
3 x
Sin
x
Sin
x
Sin
x
Sin
Sinx





















 
 )
3
(
)
2
(
2
1
sin
3
5
)
5
(
3
)
3
(
1
2
4 2
2
2
x
Sin
x
Sin
x
x
Cos
x
Cos
Cosx


.
By Dirichlet’s Condition, we have that
 

 



















0
0
5
1
3
1
1
1
2
4
2
)
(
)
(
2
2
2
0
0
lim
lim


x
f
x
f
x
x














 
2
2
2
5
1
3
1
1
1
2
4
2
0



8
2
4
5
1
3
1
1
1
2
4
2
2
2
2































 
8
)
1
2
(
1
;
.
.
5
1
3
1
1
1 2
0
2
2
2
2






 


n n
e
i
 .
6
3.2.2 Fourier Series of Functions with arbitrary period P = 2L
In many engineering problems, the period of the function required to be expanded is not 2 but some
other interval say 2L. In order to apply the foregoing discussion to functions of period 2L, this interval
must be converted to the length 2 . This involves only a proportional change in the scale.
Consider the periodic function f(x) defined on (α, α + 2L). To change the problem to period 2 put
x
L
t

 which implies that t
L
x

 . This gives when )
2
,
( L
a
a
x 
 . Thus the function f(x) of period
2L in (α, α + 2L) is transformed to function 





t
L
f

of period 2 in , 2
L L
 

 

 
 
. Hence 





 t
L
f

can be expressed in Fourier series as:
 













1
0
)
sin(
)
cos(
2
)
(
n
n
n nt
b
nt
a
a
t
L
f
t
g

, where
,
)
cos(
1
,
1
2
2
0 dt
nt
t
L
f
a
dt
t
L
f
a n 






















 



and ,
)
sin(
1
2
dt
nt
t
L
f
bn 










 

where
t
L
x
and
L
a


 
 .
Marking the inverse substitution x
L
t

 and noting that dx
L
dt

 in the above formula, the Fourier
series Expansion of f(x) in the interval (α, α +2L) is given by


























1
0
sin
cos
2
)
(
n
n
n x
L
n
b
x
L
n
a
a
x
f


where
2 2
0
1 1
( ) , ( )cos
L L
n
a f x dx a f x n x dx
L L L
 
 

 
 
   
 
  and
2
1
( )sin
L
n
b f x n x dx
L L




 
  
 

Corollary :
i. Putting α = 0 in these formulae, we get the corresponding Fourier Coefficients for the
interval (0, 2L)
2 2
0
0 0
1 1
( ) , ( )cos
L L
n
a f x dx a f x n x dx
L L L

 
   
 
 
dx
x
L
n
x
f
L
b
L
n  






2
0
sin
)
(
1 
7
ii. Putting a = - L in the above formulae, we get the results:
dx
x
L
n
x
f
L
a
dx
x
f
L
a
L
L
L
L
n
 
 









cos
)
(
1
,
)
(
1
0 and
1
( )sin
L
n
L
b f x n x dx
L L


 
  
 
 are the Fourier coefficients
in the interval (-L, L).
Example : Find the Fourier series of the periodic function f(x) of period 2, where










1
0
,
2
0
1
,
1
)
(
x
for
x
x
for
x
f and show that
4
7
1
5
1
3
1
1
8
7
1
5
1
3
1
1
2
2
2
2











 
 and
Solution: 2L = 2  L = 1, and  






1
0
sin
cos
2
)
(
n
n
n x
n
b
x
n
a
a
x
f 

where
1
1
1 0 1
2
0
1 1 0 0 0
1 1
( ) ( ) 2 1 1 0
1
L
L
a f x dx f x dx dx xdx x x
L

  
          
   
  
 




1
1
0
1
1
0
)
cos(
2
)
cos(
)
cos(
)
(
1
1
dx
x
n
x
dx
x
n
dx
x
n
x
f
an 


 
1
0
2
2
1
0
1
0
)
cos(
2
)
sin(
2
)
sin(
x
n
n
x
n
x
n
n
x
n










   
1
2
2
2
2
2
2
)
1
(
1
2
)
)
1
(
1
(
2
1
)
1
(
2 










 n
n
n
n
n
n 


  
 




1
1
0
1
1
0
)
sin(
2
)
sin(
)
sin(
)
(
1
1
dx
x
n
dx
x
n
dx
x
n
x
f
bn 







 

 

1
0
1
0
0
1
)
cos(
)
cos(
2
)
cos(
dx
x
n
x
n
x
n
n
x
n





 
   
2
0
1 2 sin( )
1 1 1
n n n x
n n n

  
 
     
 
 
 
1
1 ( 1) 2( 1) 1 3( 1) 1 3( 1)
n n n n
n n n
  

       
  
Thus  






1
0
)
sin(
)
cos(
2
)
(
n
n
n x
n
b
x
n
a
a
x
f 

 












 







1
1
2
2
1
)
sin(
)
1
(
3
1
)
cos(
)
1
(
1
2
0
n
n
n
x
n
n
x
n
n




x
x
x
x
x 









3
sin
3
4
3
cos
3
4
2
sin
2
sin
4
cos
4
2
2
2










 )
5
sin(
5
4
)
5
cos(
5
4
4
sin
4
2
2
2
x
x
x 





8










 
2
2
2
2
5
5
cos
3
3
cos
1
cos
4 x
x
x 













 
4
4
sin
3
sin
3
2
2
2
sin
sin
2
2 x
x
x
x





When x = 0, the series converges to
2
1
2
)
(
)
( lim
lim 0
0







x
f
x
f
x
x
Therefore, )
0
0
0
(
2
5
1
3
1
1
1
4
2
1
2
2
2
2

 

















= 








 
2
2
2
2
5
1
3
1
1
1
4
 8
)
1
2
(
1
5
1
3
1
1
1 2
0
2
2
2
2







 


n n
 .
When 1
2
1
,
2
1







 f
x , giving 















 

3
2
3
0
3
2
2
0
2
2
)
0
0
0
(
4
1 2























 

7
1
5
1
3
1
1
4
7
2
5
2
3
2
2
2

 4
1
2
)
1
(
7
1
5
1
3
1
1
0









 


n
n
n

3.2.3 Fourier Series of Odd and Even Functions
Definition: A function f(x) is said to be odd iff f (-x) = -f(x)
A function f(x) is said to be even iff(-x) = f(x)
Example : The functions sin(nx) and tan (nx) are odd functions. Graph of odd function is symmetric
about the origin.
Example : The functions cos(nx), x2
, sec(nx) are even functions. Graphs of even functions are
symmetric about y-axis.
Proposition : If f(x) is a periodic function with period p = 2L, then
 
 





L
L
L
dx
x
f
dx
x
f
odd
is
f
if
0,
even
is
f
if
,
)
(
2
)
(
0
Recall that a periodic function f(x) defined in (- L, L) can be represented by the Fourier series:












1
0
sin
cos
2
)
(
n
n
n
L
x
n
b
L
x
n
a
a
x
f


,
where 0
1 1 1
( ) , ( )cos & ( )sin
L L L
n n
L L L
a f x dx a f x n x dx b f x n x dx
L L L L L
 
  
   
  
   
   
  
When f(x) is an even function x
d
x
f
L
dx
x
f
L
a
L
L
L





0
0 )
(
2
)
(
1
,



















 

x
L
n
x
f
ce
dx
x
L
n
x
f
L
dx
x
L
n
x
f
L
a
L
L
L
n



cos
)
(
sin
,
cos
)
(
2
cos
)
(
1
0
is even, and 












 

x
L
n
x
f
ce
dx
x
L
n
x
f
L
b
L
L
n


sin
)
(
sin
,
0
sin
)
(
1
is odd.
9
Therefore, the Fourier series expansion of a periodic even function f(x) contains only the cosine terms
whose coefficients are 
 







L
L
dx
x
L
n
x
f
L
dx
x
f
L
a
0
n
0 cos
)
(
2
a
and
)
(
2 






















   


x
L
n
dx
x
L
n
x
f
L
dx
x
f
L
x
f
L
n
L


cos
cos
)
(
2
)
(
1
)
(
0 1 0
.
When f(x) is odd function: 0
cos
)
(
1
,
0
)
(
1
0 








 
 

dx
x
L
n
x
f
L
a
dx
x
f
L
a
L
L
L
L
n
 , since 





x
L
n
x
f

cos
)
( is odd,
and dx
x
L
n
x
f
L
b
L
L
n 









sin
)
(
1
dx
x
L
n
x
f
L
L
 






0
sin
)
(
2  , since 





x
L
n
x
f

sin
)
( is even.
Thus, if a period function f(x) is odd, its Fourier series expansion contains only the sine terms, whose
coefficients are
0
2
( )sin
L
n
b f x n x dx
L L

 
  
 
 , so that




















  


x
L
n
dx
x
L
n
x
f
L
x
f
n
ts
Coefficien
L


sin
sin
)
(
2
)
(
1 0



 



 

.
Example: Find a series to represent f(x) = x2
in the interval )
,
( 

 . Deduce the values of i)










2
2
2
1
2
1
3
1
2
1
1
1
)
1
(
n
n
n
=
12
2

and ii)
6
3
1
2
1
1
1
1 2
2
2
2
1
2










n n
Solution: Let f(x) = x2
in the interval )
,
( 

 be represented by Fourier series as
0
1
( ) cos sin
2
n n
n
a n n
f x a x b x
 


 
  
 
 
 . Here )
(
,
.
),
(
)
(
)
( 2
2
x
f
e
i
x
f
x
x
x
f 


 is even in )
,
( 

 .
Therefore,
2
2
0
0 0
2 2 2
( )
3
l l
l
a f x dx x dx
l l
  
 
2
0 0
2 2
( )cos cos
n
n x n
a f x dx x x dx
 
   
 
   
   
 





















 



 0
0
2
sin
2
sin
2
dx
x
n
x
x
n
x
n
























 





0
0
2
2
cos
cos
4
dx
x
n
x
n
x
n



0
)
1
(
4
sin
)
1
(
4
2
2
2
0
2
2



















 n
n
n
b
and
n
x
n
n
n 









Therefore, =
2 2
2
2 2
1
4 ( 1)
( ) cos
3
n
n
n
f x x x
n




  
   
 
 














 





2
2
2
2
2
2
3
3
cos
2
2
cos
1
cos
4
3
x
x
x




,
which is the required Fourier series. i) Putting x = 0, we get 










 


2
2
2
2
2
2
3
1
2
1
1
1
4
3
0
)
0
(

f
i.e,
12
)
1
( 2
1
2
1







n
n
n
10
ii) Putting 

x , we get
2 2 2 2
2
2 2 2 2 2
( )
4 1 1 1 1
2 2 3 1 2 3 4
lim ( )
lim
x x
f x f x

 
 

  
        
 
  



































4
3
2
4
1
3
1
2
1
1
1
4
1
3
1
2
1
1
1
4
3
1
1
2
2
2
2
2
2
2
2
2
2
3
2



 6
1 2
1
2


 


n n
HALF – RANGE EXPANSION
In many problems of physics and engineering there is a practical need to apply a Fourier Series to a
non – periodic function F(x) on the interval 0 < x < T. Because of physical or mathematical
considerations, it may be possible to extend F(x) over the interval –T < x < T, making it periodic of
period P = 2T. The following figures illustrate the odd and even extensions of F(x) which have
Fourier Sine and Fourier Cosine series, respectively.
a) Original function
b) Odd Extension c) Even Extension
Examples : Express f(x) = x as a half – range
a) Sine series in 0 < x < 2.b)Cosine series in 0 < x < 2.
Solutions: The graph of f(x) = x in 0 < x <2 is the line OA. Let us extend the function f(x) in the
interval -2 < x < 0 (shown by the line BO) so that the new function is symmetric about the origin and ,
therefore, represents an odd function in (-2, 2)
y
A
-2
-1
-2 -1 0 1 2
-1
B -2
Hence the Fourier series for f(x) over the full period (-2, 2) will contain only sine series terms given by










1 2
sin
)
(
n
n
x
n
b
x
f
 Where dx
x
n
x
f
bn  






2
0
2
sin
)
(
2
2 
dx
x
n
x
 






2
0
2
sin

X
11
2
0
2
2
2
0
2
4
2
cos
2














 x
n
Sin
n
n
x
n
x





 n
n
n
n 1
)
1
(
4
0
)
1
(
4 














 



2
sin
)
1
(
4
)
(
1
1
x
n
n
x
f
n
n





















 
3
2
3
sin
2
sin
2
sin
4
x
x
x




b) The graph of f(x) = x in (0, 2) is the line OA. Let us extend the function f(x) in the interval (-2, 0)
(shown by the O
B ) so that the new function is symmetric about the
y – axis and, therefore, represents an even function in (-2, 2).
Y
B A
Hence the Fourier series for f(x) = x over the full period (-2, 2) will contain only cosine terms given by











1
0
2
cos
2
)
(
n
n
x
n
a
a
x
f

  


2
0
2
0
0 2
)
(
2
2
xdx
dx
x
f
a and dx
x
n
x
f
an  






2
0
2
cos
)
(
2
2 
dx
x
n
n
x
n
n
x
dx
x
n
x 
 




















2
0
2
0
2
0
2
sin
2
2
sin
2
2
cos





   
2
2
2
2
2
2
0
2
2
1
)
1
(
4
1
)
1
(
4
2
cos
4



 n
n
x
n
n
n













Therefore, the desired result is: 








 


x
n
n
x
f
n
n
2
cos
1
)
1
(
4
2
2
)
(
1
2
2














 
2
5
5
2
2
3
3
2
2
1
2
4
1 2
2
2
2




Cos
x
Cos
x
Cos
















 
2
2
2
2
5
2
5
cos
3
2
3
cos
1
2
cos
8
1
x




3.3 FOURIER INTEGRALS:
Consider a function f(x) which satisfies the Dirichlets conditions
in every interval (-L, L) so that, we have 











1
0
sin
cos
2
)
(
n
n
n
L
x
n
b
L
x
n
a
a
x
f


, where
and
,
L
t
n
f(t)cos
L
1
,
)
(
1
L
L
-
0 
 


dt
a
dt
t
f
L
a n
L
L

dt
L
t
n
in
s
t
f
L
b
L
L
n



 )
(
1
. Substituting the values of
n
n
0 b
and
a
a in the Fourier series expansion, we get the form
-2 0 2
X
  


  












1
sin
sin
)
(
cos
cos
)
(
1
)
(
2
1
)
(
n
L
L
L
L
L
L
L
x
n
dt
L
t
n
t
f
L
x
n
dt
L
t
n
t
f
L
dt
t
f
L
x
f




12
dt
x
t
L
n
t
f
L
dt
t
f
L n
L
L
L
L
)
(
cos
)
(
1
)
(
2
1
1


 





 ---------------------------------------------------- (*)
If dx
t
f




)
( converges, i.e.; f(x) is absolutely integrable in (- ,), then the 1st
– term on the right
side of (*) approaches 0 as L, since 





 dt
t
f
L
dt
t
f
L
L
L
)
(
2
1
)
(
2
1
.
The 2nd
– term on the right side of (*) tends to dt
L
x
t
n
t
f
L n
L









1
)
(
cos
)
(
1
lim

 








1
0
)
(
cos
)
(
1
lim n
dt
x
t
n
t
f 



on writing 


L
.Thus as L  , (*) becomes



dtd
x
t
t
f
x
f )
(
cos
)
(
1
)
(
0

  
 


called the Fourier Integral of f(x).
Remark: 1. If function f is continuous at x, then  
 




0
)
(
cos
)
(
1
)
( 


dtd
x
t
t
f
x
f .
If f is not continuous at x, then 


dtd
)
(
cos
)
(
1
2
)
0
(
)
0
(
0
x
t
t
f
x
f
x
f





 
 


where )
(
0)
-
f(x
)
(
)
0
( lim
lim -
x
t
t
f
and
t
f
x
f
x
t 





.
2. Fourier sine and cosine integrals. Expanding cos(t-x) = cos (t - x)
= cost cosx + sin t sin t, the Fourier integral of f(x) may be written as







 












 d
dt
t
t
f
x
d
dt
t
t
f
x
x
f sin
)
(
sin
1
cos
)
(
cos
1
)
(
0
0
.
If f(x) is an odd function, f(t) cos (t) is also an odd function while f(t) sin (t) is even. Then the 1st
term on the right side of the above equation vanishes, and 



d
t)dt
sin(
f(t)
x
sin
2
)
(
0 0
 
 

x
f , which is
known as the Fourier Sine integral.
Similarly, if f(x) is even, the above integral takes the form





0
0
)
cos(
)
(
)
(
cos
2
)
( 



d
dt
t
t
f
x
x
f , known as the Fourier Cosine integral.
Example: Express







for x
0,
x
0
for
,
1
)
(


x
f as a Fourier sine integral and hence
13
evaluate 



d
x )
sin(
)
cos(
1
0



.
Solution: The Fourier sine integral of f(x) is 




0
0
t)dt
f(t)sin(
)
(
sin
2
)
( 



d
x
x
f








 0
0
t)dt
sin(
)
(
sin
2
d
x 








 
d
x
t
d
x )
sin(
)
cos(
1
2
)
cos(
)
sin(
2
0
0
0















Therefore, 




d
x
x
f )
(
sin
)
cos(
1
2
)
(
0















 









for x
0,
x
0
for
,
2
)
(
2
)
sin(
)
cos(
1
0
x
f
d
x
x
At x =, which is a point of discontinuity of f(x), then the value of the above integral is
4
2
1
0
2
2
)
(
)
(
2
lim
lim 

 



















 




x
f
x
f
x
x , i.e,   










x
,
4
x
sin
)
cos(
1
0
at
d

Weitere ähnliche Inhalte

Ähnlich wie Math 1102-ch-3-lecture note Fourier Series.pdf

Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxragavvelmurugan
 
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...BRNSS Publication Hub
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lPepa Vidosa Serradilla
 
Digital text book
Digital text bookDigital text book
Digital text bookshareenapr5
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concretemocr84810
 
ilovepdf_merged.pdf
ilovepdf_merged.pdfilovepdf_merged.pdf
ilovepdf_merged.pdfNaorinHalim
 
Solution set 3
Solution set 3Solution set 3
Solution set 3慧环 赵
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionAlexander Decker
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 

Ähnlich wie Math 1102-ch-3-lecture note Fourier Series.pdf (20)

maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
 
senior seminar
senior seminarsenior seminar
senior seminar
 
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
On Frechet Derivatives with Application to the Inverse Function Theorem of Or...
 
1_AJMS_229_19[Review].pdf
1_AJMS_229_19[Review].pdf1_AJMS_229_19[Review].pdf
1_AJMS_229_19[Review].pdf
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Digital text book
Digital text bookDigital text book
Digital text book
 
Shareena p r
Shareena p r Shareena p r
Shareena p r
 
Shareena p r
Shareena p r Shareena p r
Shareena p r
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
math camp
math campmath camp
math camp
 
ilovepdf_merged.pdf
ilovepdf_merged.pdfilovepdf_merged.pdf
ilovepdf_merged.pdf
 
Solution set 3
Solution set 3Solution set 3
Solution set 3
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 

Mehr von habtamu292245

Inclusiveness all in one.pdf
Inclusiveness all in one.pdfInclusiveness all in one.pdf
Inclusiveness all in one.pdfhabtamu292245
 
English II module.pdf
English II module.pdfEnglish II module.pdf
English II module.pdfhabtamu292245
 
Final submission (2).pdf
Final submission (2).pdfFinal submission (2).pdf
Final submission (2).pdfhabtamu292245
 
file_1622440466657.pdf
file_1622440466657.pdffile_1622440466657.pdf
file_1622440466657.pdfhabtamu292245
 
Module of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfModule of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfhabtamu292245
 
mikiyas research paper .pdf
mikiyas research paper .pdfmikiyas research paper .pdf
mikiyas research paper .pdfhabtamu292245
 
Maths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfMaths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfhabtamu292245
 
Saayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfSaayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfhabtamu292245
 
Maths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfMaths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfhabtamu292245
 
maths derivative.pdf
maths derivative.pdfmaths derivative.pdf
maths derivative.pdfhabtamu292245
 
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfRonald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfhabtamu292245
 
post partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfpost partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfhabtamu292245
 
probability and statistics-4.pdf
probability and statistics-4.pdfprobability and statistics-4.pdf
probability and statistics-4.pdfhabtamu292245
 
post partal sepsis ppt.pdf
post partal sepsis ppt.pdfpost partal sepsis ppt.pdf
post partal sepsis ppt.pdfhabtamu292245
 
Postbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfPostbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfhabtamu292245
 
research thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfresearch thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfhabtamu292245
 

Mehr von habtamu292245 (20)

Inclusiveness all in one.pdf
Inclusiveness all in one.pdfInclusiveness all in one.pdf
Inclusiveness all in one.pdf
 
English II module.pdf
English II module.pdfEnglish II module.pdf
English II module.pdf
 
Final submission (2).pdf
Final submission (2).pdfFinal submission (2).pdf
Final submission (2).pdf
 
file_1622440466657.pdf
file_1622440466657.pdffile_1622440466657.pdf
file_1622440466657.pdf
 
Module of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfModule of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdf
 
mikiyas research paper .pdf
mikiyas research paper .pdfmikiyas research paper .pdf
mikiyas research paper .pdf
 
Maths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfMaths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdf
 
Saayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfSaayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdf
 
Maths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfMaths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdf
 
maths derivative.pdf
maths derivative.pdfmaths derivative.pdf
maths derivative.pdf
 
my_cv (4).pdf
my_cv (4).pdfmy_cv (4).pdf
my_cv (4).pdf
 
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfRonald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
 
post partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfpost partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdf
 
Mesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdfMesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdf
 
Note.pdf
Note.pdfNote.pdf
Note.pdf
 
probability and statistics-4.pdf
probability and statistics-4.pdfprobability and statistics-4.pdf
probability and statistics-4.pdf
 
post partal sepsis ppt.pdf
post partal sepsis ppt.pdfpost partal sepsis ppt.pdf
post partal sepsis ppt.pdf
 
Postbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfPostbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdf
 
Recommedation.pdf
Recommedation.pdfRecommedation.pdf
Recommedation.pdf
 
research thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfresearch thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdf
 

Kürzlich hochgeladen

Unlock Your Creative Potential: 7 Skills for Content Creator Evolution
Unlock Your Creative Potential: 7 Skills for Content Creator EvolutionUnlock Your Creative Potential: 7 Skills for Content Creator Evolution
Unlock Your Creative Potential: 7 Skills for Content Creator EvolutionRhazes Ghaisan
 
Human Rights are notes and helping material
Human Rights are notes and helping materialHuman Rights are notes and helping material
Human Rights are notes and helping materialnadeemcollege26
 
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...nitagrag2
 
AI ppt introduction , advandtage pros and cons.pptx
AI ppt introduction , advandtage pros and cons.pptxAI ppt introduction , advandtage pros and cons.pptx
AI ppt introduction , advandtage pros and cons.pptxdeepakkrlkr2002
 
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607dollysharma2066
 
Jumark Morit Diezmo- Career portfolio- BPED 3A
Jumark Morit Diezmo- Career portfolio- BPED 3AJumark Morit Diezmo- Career portfolio- BPED 3A
Jumark Morit Diezmo- Career portfolio- BPED 3Ajumarkdiezmo1
 
办理哈珀亚当斯大学学院毕业证书文凭学位证书
办理哈珀亚当斯大学学院毕业证书文凭学位证书办理哈珀亚当斯大学学院毕业证书文凭学位证书
办理哈珀亚当斯大学学院毕业证书文凭学位证书saphesg8
 
AICTE PPT slide of Engineering college kr pete
AICTE PPT slide of Engineering college kr peteAICTE PPT slide of Engineering college kr pete
AICTE PPT slide of Engineering college kr peteshivubhavv
 
Ch. 9- __Skin, hair and nail Assessment (1).pdf
Ch. 9- __Skin, hair and nail Assessment (1).pdfCh. 9- __Skin, hair and nail Assessment (1).pdf
Ch. 9- __Skin, hair and nail Assessment (1).pdfJamalYaseenJameelOde
 
Introduction to Political Parties (1).ppt
Introduction to Political Parties (1).pptIntroduction to Political Parties (1).ppt
Introduction to Political Parties (1).pptSohamChavan9
 
Escort Service Andheri WhatsApp:+91-9833363713
Escort Service Andheri WhatsApp:+91-9833363713Escort Service Andheri WhatsApp:+91-9833363713
Escort Service Andheri WhatsApp:+91-9833363713Riya Pathan
 
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一A SSS
 
LinkedIn for Your Job Search in April 2024
LinkedIn for Your Job Search in April 2024LinkedIn for Your Job Search in April 2024
LinkedIn for Your Job Search in April 2024Bruce Bennett
 
Storytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyStorytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyOrtega Alikwe
 
Digital Marketing Training Institute in Mohali, India
Digital Marketing Training Institute in Mohali, IndiaDigital Marketing Training Institute in Mohali, India
Digital Marketing Training Institute in Mohali, IndiaDigital Discovery Institute
 
Ioannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfIoannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfjtzach
 
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一lvtagr7
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfaae4149584
 

Kürzlich hochgeladen (20)

Unlock Your Creative Potential: 7 Skills for Content Creator Evolution
Unlock Your Creative Potential: 7 Skills for Content Creator EvolutionUnlock Your Creative Potential: 7 Skills for Content Creator Evolution
Unlock Your Creative Potential: 7 Skills for Content Creator Evolution
 
Human Rights are notes and helping material
Human Rights are notes and helping materialHuman Rights are notes and helping material
Human Rights are notes and helping material
 
Young Call~Girl in Pragati Maidan New Delhi 8448380779 Full Enjoy Escort Service
Young Call~Girl in Pragati Maidan New Delhi 8448380779 Full Enjoy Escort ServiceYoung Call~Girl in Pragati Maidan New Delhi 8448380779 Full Enjoy Escort Service
Young Call~Girl in Pragati Maidan New Delhi 8448380779 Full Enjoy Escort Service
 
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...
Escorts Service Near Surya International Hotel, New Delhi |9873777170| Find H...
 
AI ppt introduction , advandtage pros and cons.pptx
AI ppt introduction , advandtage pros and cons.pptxAI ppt introduction , advandtage pros and cons.pptx
AI ppt introduction , advandtage pros and cons.pptx
 
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607
Gurgaon Call Girls: Free Delivery 24x7 at Your Doorstep G.G.N = 8377087607
 
Jumark Morit Diezmo- Career portfolio- BPED 3A
Jumark Morit Diezmo- Career portfolio- BPED 3AJumark Morit Diezmo- Career portfolio- BPED 3A
Jumark Morit Diezmo- Career portfolio- BPED 3A
 
办理哈珀亚当斯大学学院毕业证书文凭学位证书
办理哈珀亚当斯大学学院毕业证书文凭学位证书办理哈珀亚当斯大学学院毕业证书文凭学位证书
办理哈珀亚当斯大学学院毕业证书文凭学位证书
 
Students with Oppositional Defiant Disorder
Students with Oppositional Defiant DisorderStudents with Oppositional Defiant Disorder
Students with Oppositional Defiant Disorder
 
AICTE PPT slide of Engineering college kr pete
AICTE PPT slide of Engineering college kr peteAICTE PPT slide of Engineering college kr pete
AICTE PPT slide of Engineering college kr pete
 
Ch. 9- __Skin, hair and nail Assessment (1).pdf
Ch. 9- __Skin, hair and nail Assessment (1).pdfCh. 9- __Skin, hair and nail Assessment (1).pdf
Ch. 9- __Skin, hair and nail Assessment (1).pdf
 
Introduction to Political Parties (1).ppt
Introduction to Political Parties (1).pptIntroduction to Political Parties (1).ppt
Introduction to Political Parties (1).ppt
 
Escort Service Andheri WhatsApp:+91-9833363713
Escort Service Andheri WhatsApp:+91-9833363713Escort Service Andheri WhatsApp:+91-9833363713
Escort Service Andheri WhatsApp:+91-9833363713
 
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一
办理学位证(UoM证书)北安普顿大学毕业证成绩单原版一比一
 
LinkedIn for Your Job Search in April 2024
LinkedIn for Your Job Search in April 2024LinkedIn for Your Job Search in April 2024
LinkedIn for Your Job Search in April 2024
 
Storytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyStorytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary Photography
 
Digital Marketing Training Institute in Mohali, India
Digital Marketing Training Institute in Mohali, IndiaDigital Marketing Training Institute in Mohali, India
Digital Marketing Training Institute in Mohali, India
 
Ioannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfIoannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdf
 
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一
定制(UQ毕业证书)澳洲昆士兰大学毕业证成绩单原版一比一
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdf
 

Math 1102-ch-3-lecture note Fourier Series.pdf

  • 1. 1 UNIT 3 Fourier Series 3.1: ORTHOGONAL FUNCTIONS Definition: Functions ),... ( ), ( 2 1 x y x y defined on some interval are called orthogonal on a x  b with respect to the weight function p(x) > 0 if   b a n m dx x y x y x p 0 ) ( ) ( ) ( for m  n.  b a n dx x y x p ) ( ) ( 2 is called the square of the norm of ) (x yn and written as 2 n y . If the norm is unity, we say that the set of functions is an orthonormal set. If the weight function is unity, we simply say that the set is orthogonal on a x  b. Examples of sequences of orthogonal functions are: The set of functions 1, cos (nx) , n = 1, 2, 3, … or 1, sin(nx) , n = 1, 2, 3, … or 1, cos(nx), sin(nx), n = 1, 2, 3, , on the interval  2    a x a with weight functions p(x) = 1 for any real constant a. The chief advantage of the knowledge of these orthogonal sets of functions is that they yield series expansions of a given function in a simple fashion. Let 1 2 , , y y be an orthogonal set with respect to the weight function p(x) on an interval b x a   . Let f(x) be a given function that can be represented in terms of ) (x yn by a convergent series,         0 2 2 1 1 0 0 ) ( ) ( ) ( ) ( ) ( m m m x y a x y a x y a x y a x f  This is called an orthogonal expansion or the generalized Fourier series. The orthogonality of the functions helps us to find the unknown coefficients  2 1 0 , , a a a in a simple fashion. These are called Fourier coefficients of f(x) with respect to  , , , 2 1 0 y y y . If we multiply both side of the above expansion by p(x)yn(x) for a fixed n, and then integrate over a  x  b, we obtain, assuming term by term integration is permissible, dx x y x y a x p dx x y x f x p n b a b a m m m n ) ( ) ( ) ( ) ( ) ( ) ( 0             dx x y x p a x y x y x p a m b a b a n n n m m ) ( ) ( ) ( ) ( ) ( 0 2        2 ) (x y a n n  , all other integrals being zero in the right hand side, because of the orthogonality of the set.
  • 2. 2 Thus 2 ) ( ) ( ) ( ) ( x y dx x y x f x p a n b a n n   . Definition: A function f is said to be a periodic function with period p if p is the least positive number such that f(x +p) = f(x) for all x in the domain of f. It follows that f(x+np) = f(x) for all x in the domain of f and all integers n. Example : f(x) = sinx and g(x) = cos x are the familiar periodic functions with period p = 2. The constant function h(x) = c is a periodic function, since h(x +p) =c = h(x) for all p (0, ). Proposition: If f and g are periodic functions with period p, then H(x) = af(x) + bg(x), for some constants a & b, is a periodic function with period p. Proof: H(x+p) = a f(x+p) +bg(x +b) = af(x) + bg(x) = H(x) since f(x+p) = f(x) &g(x+p) = g(x) Therefore, H(x) is a periodic function with period p. Definition : A functional series of the form ... sin cos 2 sin 2 cos sin cos 2 2 2 1 1 0         nx b nx a x b x a x b x a a n n  =        1 0 sin cos 2 n n n nx b nx a a is called a trigonometric series; where n n b a a , , 0 (n = 1, 2, 3,  are real constants,) are called the coefficients of the trigonometric series. If the series converges, say to a function f(x), i.e,       1 0 ) ( ) sin cos ( 2 n n n x f nx b nx a a Then f is a period function with period p = 2 , by the above proposition. Thus f(x+2) = f(x) for all x in the domain of f, where         1 0 sin cos 2 ) ( n n n nx b nx a a x f . 3.2 Fourier Series 3.2.1 Fourier Series of function with period Definition : The Fourier series for the periodic function f(x) in an interval α < x < α + 2 is given by.         1 0 sin cos 2 ) ( n n n nx b nx a a x f And the coefficients , , 0 n n b and a a n = 1, 2, 3,  are called the Fourier coefficients. To evaluate the Fourier Coefficients, the following integrals, involving sine and cosine functions are useful. i) 2 2 cos sin 0 nxdx nx             , n = 1, 2, 3, 
  • 3. 3 ii) 2 2 1 cos cos [cos( ) cos( ) ] 2 mx nxdx m n x m n x dx               2 1 1 1 sin( ) sin( ) 2 m n x m n x m n m n                 = 0, m  n. iii) 2 cos sin 0 mx nxdx       iv) 2 2 2 2 cos ( ) sin ( ) , 0 nx dx nx dx n               2 2 2 2 1 cos(2 ) 1 1 cos ( ) sin 2 2 2 2 nx nx dx dx x x n                                 a a 2 2 1 In addition to these properties of integrals involving sine and cosine functions, we often need the following trigonometric functions for particular arguments. i) n n n ) 1 ( cos 2 ) 1 2 sin(       and (ii) , 0 2 ) 1 2 cos( sin      n n n = 1, 2,  Theorem : (Euler’s Formulae): The Fourier coefficients in         1 0 sin cos 2 ) ( n n n nx b nx a a x f are given by 2 2 0 1 1 ( ) , ( )cos n a f x dx a f x nxdx               and 2 1 ( )sin n b f x nxdx        Corollary : 1. If  = 0, the interval becomes 0 < x < 2 , and Euler’s formulae are given by:     2 0 0 ) ( 1 dx x f a ,     2 0 cos ) ( 1 nxdx x f an ,     2 0 sin ) ( 1 nxdx x f bn . 2. If  = - , then the interval becomes -< x < , and the Euler’s Formulae and given by:       dx x f a ) ( 1 0 ,       nxdx x f a cos ) ( 1 0 ,       nxdx x f bn sin ) ( 1 . Examples If 2 2 ) (         x x f  in the range (0, 2), show that      1 2 2 cos 12 ) ( n n nx x f  . Solution: The Fourier serves for f in (0, 2) is         1 0 sin cos 2 ) ( n n n nx b nx a a x f , where                          2 0 2 2 2 2 2 0 0 ) 2 ( 4 1 2 1 ) ( 1 dx x x dx x dx x f a 6 3 1 4 1 2 2 0 3 2 2                x x x
  • 4. 4                       2 0 2 2 2 0 2 0 ) cos ) ( 4 1 cos 2 1 cos ) ( 1 nxdx x nxdx x nxdx x f an     2 0 3 2 2 ) sin( ( 2 ) cos( ) ( 2 ) sin( ) ( 4 1                    n nx n nx x nx n x = 2 2 2 1 2 2 4 1 n n n            dx nx x dx nx x f bn ) sin( 2 1 ) sin( ) ( 1 2 2 0 2 0                 0 ) cos( 2 ) sin( ) ( 2 ) cos( ) ( 4 1 2 0 3 2 2 2                               nx n n nx x n nx x Therefore,              1 2 2 2 ) cos( 12 2 ) ( n n nx x x f   DIRICHLET’S CONDITIONS: Suppose that: a) f(x) is defined and single – valued except possibly at a finite number of points in(α, α + 2). b) f(x) is periodic outside (α, α + 2) with period 2. c) f(x) and ) (x f  are sectionally continuous in (α, α + 2). Then the series      1 0 ) sin( ) cos( ( 2 n n n nx b nx a a with coefficients           2 2 0 ) cos( ) ( 1 , ) ( 1 a a a a n dx nx x f a dx x f a & dx nx x f b a a n ) sin( ) ( 1 2      converges to i) f(x) if x is a point of continuity ii) 2 ) ( ) ( lim lim x f x f c x c x      if c is a point of discontinuity . Moreover, when f(x) has finite number of discontinuities in any one period, for instance if in an interval (α, α + 2), f(x) is defined by             2 ), ( , ) ( ) ( a x c for x c x a for x x f , i.e., c is a point of discontinuity, then: 2 0 1 ( ) ( ) c a a c a x dx x dx                2 0 1 ( )cos( ) ( )cos( ) c a a c a x nx dx x nx dx                and              c a a c n dx nx x dx nx x b     2 ) sin( ) ( ) sin( ) ( 1 Example: Find the Fourier series expansion for
  • 5. 5              x if x x if x f 0 , 0 , ) ( and deduce that 8 7 1 5 1 3 1 1 1 ) 1 2 ( 1 2 2 2 2 2 0 2             n n . Solution: Let   0 1 ( ) cos( ) sin( ) 2 n n n a f x a nx b nx dx       Then                          0 0 0 0 0 1 1 xdx dx xdx dx a       2 1 2 1 2 1 0 2         x             0 0 ) cos( ) cos( 1     dx nx x dx nx an 0 0 0 1 sin( ) cos( ) cos( ) nx nx dx x nx dx n                 1 1 1 ) cos( ) sin( ) sin( 1 2 0 2 0 0               n n n nx dx n nx n nx x       and             0 0 ) sin( ) sin( 1     dx nx x dx nx bn          0 0 ) sin( 1 ) sin( dx nx x dx nx               dx n nx n nx x n nx     0 0 0 ) cos( ) cos( 1 ) cos(                   0 2 ) ( ) 1 ( 1 ) 1 ( 1 n nx Sin n n n n n n n n n n 1 1 1 ) 1 ( 2 1 0 ) 1 ( ) 1 ( 1             Hence,                     1 1 2 ) sin( ) 1 ( 2 1 ) cos( 1 ) 1 ( 2 2 1 ) ( n n n nx n nx n x f                 ) 5 ( 5 2 ) 3 ( 3 2 2 4 2 2 x Cos x Cos Cosx                 ) 5 ( 5 3 ) 4 ( 4 1 ) 3 ( ) 2 ( 2 1 3 x Sin x Sin x Sin x Sin Sinx                         ) 3 ( ) 2 ( 2 1 sin 3 5 ) 5 ( 3 ) 3 ( 1 2 4 2 2 2 x Sin x Sin x x Cos x Cos Cosx   . By Dirichlet’s Condition, we have that                         0 0 5 1 3 1 1 1 2 4 2 ) ( ) ( 2 2 2 0 0 lim lim   x f x f x x                 2 2 2 5 1 3 1 1 1 2 4 2 0    8 2 4 5 1 3 1 1 1 2 4 2 2 2 2                                  8 ) 1 2 ( 1 ; . . 5 1 3 1 1 1 2 0 2 2 2 2           n n e i  .
  • 6. 6 3.2.2 Fourier Series of Functions with arbitrary period P = 2L In many engineering problems, the period of the function required to be expanded is not 2 but some other interval say 2L. In order to apply the foregoing discussion to functions of period 2L, this interval must be converted to the length 2 . This involves only a proportional change in the scale. Consider the periodic function f(x) defined on (α, α + 2L). To change the problem to period 2 put x L t   which implies that t L x   . This gives when ) 2 , ( L a a x   . Thus the function f(x) of period 2L in (α, α + 2L) is transformed to function       t L f  of period 2 in , 2 L L           . Hence        t L f  can be expressed in Fourier series as:                1 0 ) sin( ) cos( 2 ) ( n n n nt b nt a a t L f t g  , where , ) cos( 1 , 1 2 2 0 dt nt t L f a dt t L f a n                             and , ) sin( 1 2 dt nt t L f bn               where t L x and L a      . Marking the inverse substitution x L t   and noting that dx L dt   in the above formula, the Fourier series Expansion of f(x) in the interval (α, α +2L) is given by                           1 0 sin cos 2 ) ( n n n x L n b x L n a a x f   where 2 2 0 1 1 ( ) , ( )cos L L n a f x dx a f x n x dx L L L                  and 2 1 ( )sin L n b f x n x dx L L             Corollary : i. Putting α = 0 in these formulae, we get the corresponding Fourier Coefficients for the interval (0, 2L) 2 2 0 0 0 1 1 ( ) , ( )cos L L n a f x dx a f x n x dx L L L            dx x L n x f L b L n         2 0 sin ) ( 1 
  • 7. 7 ii. Putting a = - L in the above formulae, we get the results: dx x L n x f L a dx x f L a L L L L n              cos ) ( 1 , ) ( 1 0 and 1 ( )sin L n L b f x n x dx L L           are the Fourier coefficients in the interval (-L, L). Example : Find the Fourier series of the periodic function f(x) of period 2, where           1 0 , 2 0 1 , 1 ) ( x for x x for x f and show that 4 7 1 5 1 3 1 1 8 7 1 5 1 3 1 1 2 2 2 2               and Solution: 2L = 2  L = 1, and         1 0 sin cos 2 ) ( n n n x n b x n a a x f   where 1 1 1 0 1 2 0 1 1 0 0 0 1 1 ( ) ( ) 2 1 1 0 1 L L a f x dx f x dx dx xdx x x L                             1 1 0 1 1 0 ) cos( 2 ) cos( ) cos( ) ( 1 1 dx x n x dx x n dx x n x f an      1 0 2 2 1 0 1 0 ) cos( 2 ) sin( 2 ) sin( x n n x n x n n x n               1 2 2 2 2 2 2 ) 1 ( 1 2 ) ) 1 ( 1 ( 2 1 ) 1 ( 2             n n n n n n             1 1 0 1 1 0 ) sin( 2 ) sin( ) sin( ) ( 1 1 dx x n dx x n dx x n x f bn               1 0 1 0 0 1 ) cos( ) cos( 2 ) cos( dx x n x n x n n x n            2 0 1 2 sin( ) 1 1 1 n n n x n n n                   1 1 ( 1) 2( 1) 1 3( 1) 1 3( 1) n n n n n n n                Thus         1 0 ) sin( ) cos( 2 ) ( n n n x n b x n a a x f                          1 1 2 2 1 ) sin( ) 1 ( 3 1 ) cos( ) 1 ( 1 2 0 n n n x n n x n n     x x x x x           3 sin 3 4 3 cos 3 4 2 sin 2 sin 4 cos 4 2 2 2            ) 5 sin( 5 4 ) 5 cos( 5 4 4 sin 4 2 2 2 x x x      
  • 8. 8             2 2 2 2 5 5 cos 3 3 cos 1 cos 4 x x x                 4 4 sin 3 sin 3 2 2 2 sin sin 2 2 x x x x      When x = 0, the series converges to 2 1 2 ) ( ) ( lim lim 0 0        x f x f x x Therefore, ) 0 0 0 ( 2 5 1 3 1 1 1 4 2 1 2 2 2 2                     =            2 2 2 2 5 1 3 1 1 1 4  8 ) 1 2 ( 1 5 1 3 1 1 1 2 0 2 2 2 2            n n  . When 1 2 1 , 2 1         f x , giving                    3 2 3 0 3 2 2 0 2 2 ) 0 0 0 ( 4 1 2                           7 1 5 1 3 1 1 4 7 2 5 2 3 2 2 2   4 1 2 ) 1 ( 7 1 5 1 3 1 1 0              n n n  3.2.3 Fourier Series of Odd and Even Functions Definition: A function f(x) is said to be odd iff f (-x) = -f(x) A function f(x) is said to be even iff(-x) = f(x) Example : The functions sin(nx) and tan (nx) are odd functions. Graph of odd function is symmetric about the origin. Example : The functions cos(nx), x2 , sec(nx) are even functions. Graphs of even functions are symmetric about y-axis. Proposition : If f(x) is a periodic function with period p = 2L, then          L L L dx x f dx x f odd is f if 0, even is f if , ) ( 2 ) ( 0 Recall that a periodic function f(x) defined in (- L, L) can be represented by the Fourier series:             1 0 sin cos 2 ) ( n n n L x n b L x n a a x f   , where 0 1 1 1 ( ) , ( )cos & ( )sin L L L n n L L L a f x dx a f x n x dx b f x n x dx L L L L L                        When f(x) is an even function x d x f L dx x f L a L L L      0 0 ) ( 2 ) ( 1 ,                       x L n x f ce dx x L n x f L dx x L n x f L a L L L n    cos ) ( sin , cos ) ( 2 cos ) ( 1 0 is even, and                 x L n x f ce dx x L n x f L b L L n   sin ) ( sin , 0 sin ) ( 1 is odd.
  • 9. 9 Therefore, the Fourier series expansion of a periodic even function f(x) contains only the cosine terms whose coefficients are           L L dx x L n x f L dx x f L a 0 n 0 cos ) ( 2 a and ) ( 2                              x L n dx x L n x f L dx x f L x f L n L   cos cos ) ( 2 ) ( 1 ) ( 0 1 0 . When f(x) is odd function: 0 cos ) ( 1 , 0 ) ( 1 0               dx x L n x f L a dx x f L a L L L L n  , since       x L n x f  cos ) ( is odd, and dx x L n x f L b L L n           sin ) ( 1 dx x L n x f L L         0 sin ) ( 2  , since       x L n x f  sin ) ( is even. Thus, if a period function f(x) is odd, its Fourier series expansion contains only the sine terms, whose coefficients are 0 2 ( )sin L n b f x n x dx L L          , so that                          x L n dx x L n x f L x f n ts Coefficien L   sin sin ) ( 2 ) ( 1 0            . Example: Find a series to represent f(x) = x2 in the interval ) , (    . Deduce the values of i)           2 2 2 1 2 1 3 1 2 1 1 1 ) 1 ( n n n = 12 2  and ii) 6 3 1 2 1 1 1 1 2 2 2 2 1 2           n n Solution: Let f(x) = x2 in the interval ) , (    be represented by Fourier series as 0 1 ( ) cos sin 2 n n n a n n f x a x b x               . Here ) ( , . ), ( ) ( ) ( 2 2 x f e i x f x x x f     is even in ) , (    . Therefore, 2 2 0 0 0 2 2 2 ( ) 3 l l l a f x dx x dx l l      2 0 0 2 2 ( )cos cos n n x n a f x dx x x dx                                              0 0 2 sin 2 sin 2 dx x n x x n x n                                0 0 2 2 cos cos 4 dx x n x n x n    0 ) 1 ( 4 sin ) 1 ( 4 2 2 2 0 2 2                     n n n b and n x n n n           Therefore, = 2 2 2 2 2 1 4 ( 1) ( ) cos 3 n n n f x x x n                                     2 2 2 2 2 2 3 3 cos 2 2 cos 1 cos 4 3 x x x     , which is the required Fourier series. i) Putting x = 0, we get                2 2 2 2 2 2 3 1 2 1 1 1 4 3 0 ) 0 (  f i.e, 12 ) 1 ( 2 1 2 1        n n n
  • 10. 10 ii) Putting   x , we get 2 2 2 2 2 2 2 2 2 2 ( ) 4 1 1 1 1 2 2 3 1 2 3 4 lim ( ) lim x x f x f x                                                           4 3 2 4 1 3 1 2 1 1 1 4 1 3 1 2 1 1 1 4 3 1 1 2 2 2 2 2 2 2 2 2 2 3 2     6 1 2 1 2       n n HALF – RANGE EXPANSION In many problems of physics and engineering there is a practical need to apply a Fourier Series to a non – periodic function F(x) on the interval 0 < x < T. Because of physical or mathematical considerations, it may be possible to extend F(x) over the interval –T < x < T, making it periodic of period P = 2T. The following figures illustrate the odd and even extensions of F(x) which have Fourier Sine and Fourier Cosine series, respectively. a) Original function b) Odd Extension c) Even Extension Examples : Express f(x) = x as a half – range a) Sine series in 0 < x < 2.b)Cosine series in 0 < x < 2. Solutions: The graph of f(x) = x in 0 < x <2 is the line OA. Let us extend the function f(x) in the interval -2 < x < 0 (shown by the line BO) so that the new function is symmetric about the origin and , therefore, represents an odd function in (-2, 2) y A -2 -1 -2 -1 0 1 2 -1 B -2 Hence the Fourier series for f(x) over the full period (-2, 2) will contain only sine series terms given by           1 2 sin ) ( n n x n b x f  Where dx x n x f bn         2 0 2 sin ) ( 2 2  dx x n x         2 0 2 sin  X
  • 11. 11 2 0 2 2 2 0 2 4 2 cos 2                x n Sin n n x n x       n n n n 1 ) 1 ( 4 0 ) 1 ( 4                     2 sin ) 1 ( 4 ) ( 1 1 x n n x f n n                        3 2 3 sin 2 sin 2 sin 4 x x x     b) The graph of f(x) = x in (0, 2) is the line OA. Let us extend the function f(x) in the interval (-2, 0) (shown by the O B ) so that the new function is symmetric about the y – axis and, therefore, represents an even function in (-2, 2). Y B A Hence the Fourier series for f(x) = x over the full period (-2, 2) will contain only cosine terms given by            1 0 2 cos 2 ) ( n n x n a a x f       2 0 2 0 0 2 ) ( 2 2 xdx dx x f a and dx x n x f an         2 0 2 cos ) ( 2 2  dx x n n x n n x dx x n x                        2 0 2 0 2 0 2 sin 2 2 sin 2 2 cos          2 2 2 2 2 2 0 2 2 1 ) 1 ( 4 1 ) 1 ( 4 2 cos 4     n n x n n n              Therefore, the desired result is:              x n n x f n n 2 cos 1 ) 1 ( 4 2 2 ) ( 1 2 2                 2 5 5 2 2 3 3 2 2 1 2 4 1 2 2 2 2     Cos x Cos x Cos                   2 2 2 2 5 2 5 cos 3 2 3 cos 1 2 cos 8 1 x     3.3 FOURIER INTEGRALS: Consider a function f(x) which satisfies the Dirichlets conditions in every interval (-L, L) so that, we have             1 0 sin cos 2 ) ( n n n L x n b L x n a a x f   , where and , L t n f(t)cos L 1 , ) ( 1 L L - 0      dt a dt t f L a n L L  dt L t n in s t f L b L L n     ) ( 1 . Substituting the values of n n 0 b and a a in the Fourier series expansion, we get the form -2 0 2 X                     1 sin sin ) ( cos cos ) ( 1 ) ( 2 1 ) ( n L L L L L L L x n dt L t n t f L x n dt L t n t f L dt t f L x f    
  • 12. 12 dt x t L n t f L dt t f L n L L L L ) ( cos ) ( 1 ) ( 2 1 1           ---------------------------------------------------- (*) If dx t f     ) ( converges, i.e.; f(x) is absolutely integrable in (- ,), then the 1st – term on the right side of (*) approaches 0 as L, since        dt t f L dt t f L L L ) ( 2 1 ) ( 2 1 . The 2nd – term on the right side of (*) tends to dt L x t n t f L n L          1 ) ( cos ) ( 1 lim            1 0 ) ( cos ) ( 1 lim n dt x t n t f     on writing    L .Thus as L  , (*) becomes    dtd x t t f x f ) ( cos ) ( 1 ) ( 0         called the Fourier Integral of f(x). Remark: 1. If function f is continuous at x, then         0 ) ( cos ) ( 1 ) (    dtd x t t f x f . If f is not continuous at x, then    dtd ) ( cos ) ( 1 2 ) 0 ( ) 0 ( 0 x t t f x f x f            where ) ( 0) - f(x ) ( ) 0 ( lim lim - x t t f and t f x f x t       . 2. Fourier sine and cosine integrals. Expanding cos(t-x) = cos (t - x) = cost cosx + sin t sin t, the Fourier integral of f(x) may be written as                       d dt t t f x d dt t t f x x f sin ) ( sin 1 cos ) ( cos 1 ) ( 0 0 . If f(x) is an odd function, f(t) cos (t) is also an odd function while f(t) sin (t) is even. Then the 1st term on the right side of the above equation vanishes, and     d t)dt sin( f(t) x sin 2 ) ( 0 0      x f , which is known as the Fourier Sine integral. Similarly, if f(x) is even, the above integral takes the form      0 0 ) cos( ) ( ) ( cos 2 ) (     d dt t t f x x f , known as the Fourier Cosine integral. Example: Express        for x 0, x 0 for , 1 ) (   x f as a Fourier sine integral and hence
  • 13. 13 evaluate     d x ) sin( ) cos( 1 0    . Solution: The Fourier sine integral of f(x) is      0 0 t)dt f(t)sin( ) ( sin 2 ) (     d x x f          0 0 t)dt sin( ) ( sin 2 d x            d x t d x ) sin( ) cos( 1 2 ) cos( ) sin( 2 0 0 0                Therefore,      d x x f ) ( sin ) cos( 1 2 ) ( 0                           for x 0, x 0 for , 2 ) ( 2 ) sin( ) cos( 1 0 x f d x x At x =, which is a point of discontinuity of f(x), then the value of the above integral is 4 2 1 0 2 2 ) ( ) ( 2 lim lim                              x f x f x x , i.e,              x , 4 x sin ) cos( 1 0 at d