SlideShare a Scribd company logo
1 of 8
Download to read offline
ppr maths nbk


                    CHAPTER 4: MATHEMATICAL REASONING

EXERCISE 1

 1(a) State whether the following statement is true or false.

             - 3 > - 4 or 23 = 6

  (b) Write down two implications based on the following sentence.

            ‘ x is a multiple of 3 if and only if it is divisible by 3’

  (c) Complete the premise in the following argument.

       Premise 1 : All integers less than zero are negative integers.

      Premise 2 : ________________________________________

      Conclusion : y is a negative number.                                 [ 5 marks]


  2. (a) Is the following sentence a statement or a non-statement?

                  ‘ 1 is a prime number.’

      (b) write down the conclusion in the following argument .

        Premise 1 : If the side of the cube is 4 cm, then its volume is 64cm3

        Premise 2 : The volume of cube p is not 64cm3

        Conclusion : __________________________________________________


      (c)          10 2 x 10 3 = 10 2+3
                   104 x 10 5 = 10 4+5
                   106 x 10 7 = 10 6+7

         Based on the above information, make a general conclusion by induction of
               10 m x 10 n

            General conclusion: ________________________________________

                                                                          [ 5 marks]




                                                                                          30
ppr maths nbk



    3    (a) Form a true compound statement by combining the two statements
             given below.

             (i)     52 = 10
                     1
             (ii)       = 0.25
                     4


         (b) Complete the premise in the following argument.

             Premise 1 : If x is an angle in a semicircle, then x = 90°

             Premise 2 : _________________________________________________

             Conclusion : x = 90°

         (c) Complete the following sentence using a suitable quantifier to make it a true
             statement.

            ‘_______________ prime numbers are odd numbers.’
                                                                        [ 5 marks]

4       (a) Based on the object and its given property, construct a true statement using an
            appropriate quantifier.

            Object : Even numbers.

            Property: Divisible by 4.

         (b) State whether the following statements is true or false.

              (i)     3m + m = 4m and x + y = xy
              (ii)    250 = 2.5 x 102 or 0.0340 has 4 significant figures.

    (c) Write down the conclusion in the following argument.

            Premise 1 : If m < 0, then 3m< 2m

            Premise 2 : 3m > 2m

            Conclusion:_____________________________________

                                                                           [ 5 marks]




                                                                                             31
ppr maths nbk



5. (a) Determine the following mathematical statement is a statement or a non-
       statement. Give reason for your answer.

           ‘ 2 – 3 = 3 – 2’

   (b) Complete the following statement using ‘and’ or ‘or’ to make it a true
       statement. ‘2 is multiple of 4…...... x + 2x = 3x’

   (c) Complete the following arguments.
         Premise 1:_______________________________________
         Premise 2: A rhombus is a quadrilateral.
         Conclusion: A rhombus has 4 sides.
                                                  [5 marks]




                                                                                 32
ppr maths nbk


                       CHAPTER 4: MATHEMATICAL REASONING
EXERCISE 2

1 (a) Write two implications from the following compound statement.
      “ x – g > y – g if and only if x > y.”
      Implication 1:………………………………………………………….
      Implication 2:………………………………………………………….

   (b) Construct a true statement for the following sentences using the
       appropriate quantifier.
        i).......................multiple of 3 are divisible by 4.
        ii)......................triangles identical in forms and sizes considered congruent.

                                                                                                   [ 5 marks]
2. (a) Complete the following arguments.
       i) Premise 1: If k > 3, then 2 × k > 6.
          Premise 2: 2 × k < 6.
          Conclusion:…………………………………………………………………………


        ii) Premise 1: If a number is a factor of 4, then the number is also a factor of
                       16.
           Premise 2:…………………………………………………………………..
           Conclusion: 2 is a factor of 16.

   (b) Complete the following statement by using ‘and’ or ‘or’ to form a true
       statement.
        “All prime numbers has only 2 factors .......................all prime numbers are
         odd.
                                                                              [ 5 marks]

3. (a) Make a general conclusion by induction based on the numerical sequence
       below 0, 3, 8, 15 ...
                                                0 = 12 − 1
                                                3 = 22 − 1
                                                8 = 32 − 1
                                                15 = 42 − 1

       Conclusion :.....................................................................................

   (b) Complete the following premise.
       Premise 1:……………………………………………………………………….
       Premise 2: Angle P is less than 90º
       Conclusion: Angle P is an acute angle
                                             [ 5 marks]


                                                                                                                     33
ppr maths nbk



4. (a) Write two implications for the following compound statement.
       “tan α = 1 if and only if α = 45°”
       Implication 1:…………………………………………………………………...
       Implication 2:.....................................................................................................

      (b) If a < 0, then –1 x a > 0. Write the converse of the implication.
      (c) State whether the converse is true or false.

                                                                                                  [ 5 marks ]

5. (a) Complete the conclusion based on the two given premises.
       Premise 1: If n is an even integer, then n – 1 is an odd number.
       Premise 2: n – 1 is not an odd number.

          Conclusion:………………………………………………………………………

      (b) Complete the following premise.
          Premise 1:……………………………………………………………………….
          Premise 2: ABC is an isosceles triangle.
          Conclusion: ABC has two sides of equal length.

      (c) Determine whether “ m2 + 2m − 3 = (m + 3)(m − 1) ”is a statement or not.
          Give reason for your answer.
                                                                          [ 5 marks ]




                                                                                                                             34
ppr maths nbk


                    CHAPTER 4: MATHEMATICAL REASONING

DIAGNOSTIC TEST

1.(a) Determine whether each of the following is a statement or a non statement.
      (i) x + 3y
      (ii) 42 = 8

 (b) Fill in the blank with the symbol > or < to form a false statement.

        (i) 23         32

        (ii) - 6       -4

                   P
 (c )                       Q


        Based on the above Venn diagram, complete the following statement using an
        appropriate quantifier so that the statement is true.

        ‘ …………. elements of set Q are elements of set P’

 (d)     Write down the conclusion in the following argument.
         Premise 1 : All prime numbers have only two factors.
         Premise 2 : 5 is a prime number.
         Conclusion :…………………………………………………………..
                                                                               [ 5 marks]

2. (a) Determine whether the following statement is true or false.
                    2
       (i) 32 = 6 or = 0.4
                    5

         (ii) -3 x - 4 = 12 and -3 + - 4 = 7

 (b) Write down two implications based on the following sentence.

                                mn = 0 if and only if m = 0 or n = 0

(c ) Complete the following argument.

       Premise 1: If the radius of a circle is 5 cm, then its circumference is 10 п
       Premise 2 : …………………………………………………………………
       Conclusion: the radius of circle P is not 5 cm.

                                                                            [ 5 marks]


                                                                                            35
ppr maths nbk




3. (a) Based on the object and its given property, construct a true statement using an
       appropriate quantifier.

      Object: odd numbers
      Property: prime numbers

 (b) Combine the two statements below to form a true statement.

      Statement 1: 3 + (- 2) = 5
      Statement 2: 16 is a perfect square

 (c ) Complete the following argument.

      Premise 1: …………………………………………………………………
      Premise 2: The sum of interior angles of polygon Q is 540°
      Conclusion: Q is a pentagon.
                                                              [ 5 marks]

 4. (a) Identify the antecedent and consequent in the following implication.
        ‘ If a triangle has two equal sides, then it is an isosceles triangle.’
    (b) State the converse of each of the following implication and determine if the
        converse is true or false.

      (i)    If x < 4 , then x < 6
     (ii)    If A ∩ B = A, then A ⊂ B

    (c ) Make a general conclusion by induction based on the numerical sequence
         below.

             2, 9, 16, 23, ……

         2 = 2 + 7 (0)
         9 = 2 + 7 (1)
        16 = 2 + 7 (2)
        23 = 2 + 7 (3)
        ………….
     The numerical sequence can be represented by ………………………………..

     (d) Complete the following argument

     Premise 1 : ……………………………………………………………………
     Premise 2 : M ∩ N ≠ M
     Conclusion: M is not a subset of N
                                        [5 marks]



                                                                                         36
ppr maths nbk




5. (a) Determine whether each of the following statements is true or false.

       (i)    17 is a prime number or an even number.
       (ii)   5 and 8 are factor of 15

    (b) complete the following statement using an appropriate quantifier so that the
        statement is false.

        ‘ ………………… empty set do not have any elements’
    (c) Complete the following argument.

        Premise 1 : ……………………………………………………………
        Premise 2 : x is a natural number.
        Conclusion: x is greater than zero.

    (d) Construct an implication in the form of ‘if and only if’ from the following
        pairs of implications.
        Implication 1 : If n2 is an odd number, then n is an odd number.
        Implication 2 : If n is an odd number, then n2 is an odd number.

                                                                  [5 marks ]




                                                                                      37

More Related Content

What's hot

Chapter 8 Measure of Dispersion of Data
Chapter 8 Measure of Dispersion of DataChapter 8 Measure of Dispersion of Data
Chapter 8 Measure of Dispersion of DataMISS ESTHER
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functionsUmair Pearl
 
Form 3 Science Chapter 4 Reactivity of Metals
Form 3 Science Chapter 4 Reactivity of MetalsForm 3 Science Chapter 4 Reactivity of Metals
Form 3 Science Chapter 4 Reactivity of MetalsBrilliantAStudyClub
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of trianglesatiqah ayie
 
Isipadu 3D Solid Geometri math modern
Isipadu 3D Solid Geometri math modern Isipadu 3D Solid Geometri math modern
Isipadu 3D Solid Geometri math modern Hanini Hamsan
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Modulebspm
 
Module 7 The Straight Lines
Module 7 The Straight LinesModule 7 The Straight Lines
Module 7 The Straight Linesguestcc333c
 
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)Wan Aznie Fatihah
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesBright Minds
 
Kebarangkalian mudah
Kebarangkalian mudahKebarangkalian mudah
Kebarangkalian mudahzabidah awang
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4Zhang Ewe
 
Modul X A-Plus Kimia SBP 2015
Modul X A-Plus Kimia SBP 2015Modul X A-Plus Kimia SBP 2015
Modul X A-Plus Kimia SBP 2015Cikgu Ummi
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4guest76f49d
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithmsatiqah ayie
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index numberatiqah ayie
 
Integration
IntegrationIntegration
Integrationsuefee
 
F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experimentsmarjerin
 

What's hot (20)

Chapter 8 Measure of Dispersion of Data
Chapter 8 Measure of Dispersion of DataChapter 8 Measure of Dispersion of Data
Chapter 8 Measure of Dispersion of Data
 
MATEMATIK SEM 3 TRIGONOMETRI
MATEMATIK SEM 3 TRIGONOMETRIMATEMATIK SEM 3 TRIGONOMETRI
MATEMATIK SEM 3 TRIGONOMETRI
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
Form 3 Science Chapter 4 Reactivity of Metals
Form 3 Science Chapter 4 Reactivity of MetalsForm 3 Science Chapter 4 Reactivity of Metals
Form 3 Science Chapter 4 Reactivity of Metals
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of triangles
 
Isipadu 3D Solid Geometri math modern
Isipadu 3D Solid Geometri math modern Isipadu 3D Solid Geometri math modern
Isipadu 3D Solid Geometri math modern
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Module
 
Module 7 The Straight Lines
Module 7 The Straight LinesModule 7 The Straight Lines
Module 7 The Straight Lines
 
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
LATIHAN MATEMATIK TAMBAHAN TINGKATAN 4 BAB 9 (TAJUK:PEMBEZAAN)
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
Kebarangkalian mudah
Kebarangkalian mudahKebarangkalian mudah
Kebarangkalian mudah
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4
 
Modul X A-Plus Kimia SBP 2015
Modul X A-Plus Kimia SBP 2015Modul X A-Plus Kimia SBP 2015
Modul X A-Plus Kimia SBP 2015
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithms
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index number
 
Integration
IntegrationIntegration
Integration
 
Modul 2 : Persamaan linear
Modul 2 : Persamaan linearModul 2 : Persamaan linear
Modul 2 : Persamaan linear
 
Hukum linear
Hukum linearHukum linear
Hukum linear
 
F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experiments
 

Similar to F4 04 Mathematical Reasoning

Module 6 Matehematical Reasoing
Module 6  Matehematical ReasoingModule 6  Matehematical Reasoing
Module 6 Matehematical Reasoingnorainisaser
 
Module 6 Matehematical Reasoing
Module 6  Matehematical ReasoingModule 6  Matehematical Reasoing
Module 6 Matehematical Reasoingguestcc333c
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
Tutorial 2: EQUATIONS AND INEQUALITIES
Tutorial 2: EQUATIONS AND INEQUALITIESTutorial 2: EQUATIONS AND INEQUALITIES
Tutorial 2: EQUATIONS AND INEQUALITIESNurul Ainn
 
Examen du seconde semestre g8
Examen du seconde semestre g8Examen du seconde semestre g8
Examen du seconde semestre g8zeinabze
 
Precalculus 1 chapter 2
Precalculus 1 chapter 2Precalculus 1 chapter 2
Precalculus 1 chapter 2oreves
 
Tampines Emath Paper1_printed
Tampines Emath Paper1_printedTampines Emath Paper1_printed
Tampines Emath Paper1_printedFelicia Shirui
 
Chapter4.3
Chapter4.3Chapter4.3
Chapter4.3nglaze10
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printedFelicia Shirui
 
8th Alg - L9.5--April26
8th Alg - L9.5--April268th Alg - L9.5--April26
8th Alg - L9.5--April26jdurst65
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & AnswersSantoshTamadaddi
 
0580 s17 qp_42 exam - copy
0580 s17 qp_42 exam - copy0580 s17 qp_42 exam - copy
0580 s17 qp_42 exam - copymend Oyunchimeg
 

Similar to F4 04 Mathematical Reasoning (20)

Ats maths09
Ats maths09Ats maths09
Ats maths09
 
Module 6 Matehematical Reasoing
Module 6  Matehematical ReasoingModule 6  Matehematical Reasoing
Module 6 Matehematical Reasoing
 
Module 6 Matehematical Reasoing
Module 6  Matehematical ReasoingModule 6  Matehematical Reasoing
Module 6 Matehematical Reasoing
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
Tutorial 2: EQUATIONS AND INEQUALITIES
Tutorial 2: EQUATIONS AND INEQUALITIESTutorial 2: EQUATIONS AND INEQUALITIES
Tutorial 2: EQUATIONS AND INEQUALITIES
 
Modul t4
Modul t4Modul t4
Modul t4
 
Examen du seconde semestre g8
Examen du seconde semestre g8Examen du seconde semestre g8
Examen du seconde semestre g8
 
Precalculus 1 chapter 2
Precalculus 1 chapter 2Precalculus 1 chapter 2
Precalculus 1 chapter 2
 
Unit 2_higher -_march_2012
 Unit 2_higher -_march_2012 Unit 2_higher -_march_2012
Unit 2_higher -_march_2012
 
Tampines Emath Paper1_printed
Tampines Emath Paper1_printedTampines Emath Paper1_printed
Tampines Emath Paper1_printed
 
Chapter4.3
Chapter4.3Chapter4.3
Chapter4.3
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printed
 
Chapter 1 review
Chapter 1 reviewChapter 1 review
Chapter 1 review
 
8th Alg - L9.5--April26
8th Alg - L9.5--April268th Alg - L9.5--April26
8th Alg - L9.5--April26
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & Answers
 
Module 1
Module 1Module 1
Module 1
 
Penaakulan logik
Penaakulan logikPenaakulan logik
Penaakulan logik
 
07b 1 ma0_2h_-_november_2012
07b 1 ma0_2h_-_november_201207b 1 ma0_2h_-_november_2012
07b 1 ma0_2h_-_november_2012
 
0580 s17 qp_42 exam - copy
0580 s17 qp_42 exam - copy0580 s17 qp_42 exam - copy
0580 s17 qp_42 exam - copy
 

More from guestcc333c

F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dimguestcc333c
 
F4 10 Angles Of Elevation Dep
F4 10 Angles Of Elevation   DepF4 10 Angles Of Elevation   Dep
F4 10 Angles Of Elevation Depguestcc333c
 
F4 09 Trigonometry Ii
F4 09 Trigonometry IiF4 09 Trigonometry Ii
F4 09 Trigonometry Iiguestcc333c
 
F4 08 Circles Iii
F4 08 Circles IiiF4 08 Circles Iii
F4 08 Circles Iiiguestcc333c
 
F4 07 Probability I
F4 07 Probability IF4 07 Probability I
F4 07 Probability Iguestcc333c
 
F4 06 Statistics Iii
F4 06 Statistics IiiF4 06 Statistics Iii
F4 06 Statistics Iiiguestcc333c
 
F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Lineguestcc333c
 
F4 02 Quadratic Expressions And
F4 02 Quadratic Expressions AndF4 02 Quadratic Expressions And
F4 02 Quadratic Expressions Andguestcc333c
 
F4 01 Standard Form
F4 01 Standard FormF4 01 Standard Form
F4 01 Standard Formguestcc333c
 
Probability Modul
Probability ModulProbability Modul
Probability Modulguestcc333c
 
P2 Matrices Test
P2 Matrices TestP2 Matrices Test
P2 Matrices Testguestcc333c
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modulguestcc333c
 
P2 Earth As A Sphere Test
P2 Earth As A Sphere TestP2 Earth As A Sphere Test
P2 Earth As A Sphere Testguestcc333c
 
P2 Solid Geometry
P2  Solid GeometryP2  Solid Geometry
P2 Solid Geometryguestcc333c
 
P2 Plans & Elevation Test
P2  Plans & Elevation TestP2  Plans & Elevation Test
P2 Plans & Elevation Testguestcc333c
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modulguestcc333c
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Functionguestcc333c
 

More from guestcc333c (20)

F4 Answer
F4 AnswerF4 Answer
F4 Answer
 
F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dim
 
F4 10 Angles Of Elevation Dep
F4 10 Angles Of Elevation   DepF4 10 Angles Of Elevation   Dep
F4 10 Angles Of Elevation Dep
 
F4 09 Trigonometry Ii
F4 09 Trigonometry IiF4 09 Trigonometry Ii
F4 09 Trigonometry Ii
 
F4 08 Circles Iii
F4 08 Circles IiiF4 08 Circles Iii
F4 08 Circles Iii
 
F4 07 Probability I
F4 07 Probability IF4 07 Probability I
F4 07 Probability I
 
F4 06 Statistics Iii
F4 06 Statistics IiiF4 06 Statistics Iii
F4 06 Statistics Iii
 
F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Line
 
F4 03 Sets
F4 03 SetsF4 03 Sets
F4 03 Sets
 
F4 02 Quadratic Expressions And
F4 02 Quadratic Expressions AndF4 02 Quadratic Expressions And
F4 02 Quadratic Expressions And
 
P2 Probability
P2 ProbabilityP2 Probability
P2 Probability
 
F4 01 Standard Form
F4 01 Standard FormF4 01 Standard Form
F4 01 Standard Form
 
Probability Modul
Probability ModulProbability Modul
Probability Modul
 
P2 Matrices Test
P2 Matrices TestP2 Matrices Test
P2 Matrices Test
 
P2 Matrices Modul
P2 Matrices ModulP2 Matrices Modul
P2 Matrices Modul
 
P2 Earth As A Sphere Test
P2 Earth As A Sphere TestP2 Earth As A Sphere Test
P2 Earth As A Sphere Test
 
P2 Solid Geometry
P2  Solid GeometryP2  Solid Geometry
P2 Solid Geometry
 
P2 Plans & Elevation Test
P2  Plans & Elevation TestP2  Plans & Elevation Test
P2 Plans & Elevation Test
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modul
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Function
 

Recently uploaded

Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxFIDO Alliance
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewDianaGray10
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsLeah Henrickson
 
الأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهلهالأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهلهMohamed Sweelam
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
CORS (Kitworks Team Study 양다윗 발표자료 240510)
CORS (Kitworks Team Study 양다윗 발표자료 240510)CORS (Kitworks Team Study 양다윗 발표자료 240510)
CORS (Kitworks Team Study 양다윗 발표자료 240510)Wonjun Hwang
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuidePixlogix Infotech
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxjbellis
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch TuesdayIvanti
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxMarkSteadman7
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxFIDO Alliance
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfAnubhavMangla3
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiRaviKumarDaparthi
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!Memoori
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data SciencePaolo Missier
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptxFIDO Alliance
 

Recently uploaded (20)

Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
الأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهلهالأمن السيبراني - ما لا يسع للمستخدم جهله
الأمن السيبراني - ما لا يسع للمستخدم جهله
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
CORS (Kitworks Team Study 양다윗 발표자료 240510)
CORS (Kitworks Team Study 양다윗 발표자료 240510)CORS (Kitworks Team Study 양다윗 발표자료 240510)
CORS (Kitworks Team Study 양다윗 발표자료 240510)
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch Tuesday
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptx
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi Daparthi
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 

F4 04 Mathematical Reasoning

  • 1. ppr maths nbk CHAPTER 4: MATHEMATICAL REASONING EXERCISE 1 1(a) State whether the following statement is true or false. - 3 > - 4 or 23 = 6 (b) Write down two implications based on the following sentence. ‘ x is a multiple of 3 if and only if it is divisible by 3’ (c) Complete the premise in the following argument. Premise 1 : All integers less than zero are negative integers. Premise 2 : ________________________________________ Conclusion : y is a negative number. [ 5 marks] 2. (a) Is the following sentence a statement or a non-statement? ‘ 1 is a prime number.’ (b) write down the conclusion in the following argument . Premise 1 : If the side of the cube is 4 cm, then its volume is 64cm3 Premise 2 : The volume of cube p is not 64cm3 Conclusion : __________________________________________________ (c) 10 2 x 10 3 = 10 2+3 104 x 10 5 = 10 4+5 106 x 10 7 = 10 6+7 Based on the above information, make a general conclusion by induction of 10 m x 10 n General conclusion: ________________________________________ [ 5 marks] 30
  • 2. ppr maths nbk 3 (a) Form a true compound statement by combining the two statements given below. (i) 52 = 10 1 (ii) = 0.25 4 (b) Complete the premise in the following argument. Premise 1 : If x is an angle in a semicircle, then x = 90° Premise 2 : _________________________________________________ Conclusion : x = 90° (c) Complete the following sentence using a suitable quantifier to make it a true statement. ‘_______________ prime numbers are odd numbers.’ [ 5 marks] 4 (a) Based on the object and its given property, construct a true statement using an appropriate quantifier. Object : Even numbers. Property: Divisible by 4. (b) State whether the following statements is true or false. (i) 3m + m = 4m and x + y = xy (ii) 250 = 2.5 x 102 or 0.0340 has 4 significant figures. (c) Write down the conclusion in the following argument. Premise 1 : If m < 0, then 3m< 2m Premise 2 : 3m > 2m Conclusion:_____________________________________ [ 5 marks] 31
  • 3. ppr maths nbk 5. (a) Determine the following mathematical statement is a statement or a non- statement. Give reason for your answer. ‘ 2 – 3 = 3 – 2’ (b) Complete the following statement using ‘and’ or ‘or’ to make it a true statement. ‘2 is multiple of 4…...... x + 2x = 3x’ (c) Complete the following arguments. Premise 1:_______________________________________ Premise 2: A rhombus is a quadrilateral. Conclusion: A rhombus has 4 sides. [5 marks] 32
  • 4. ppr maths nbk CHAPTER 4: MATHEMATICAL REASONING EXERCISE 2 1 (a) Write two implications from the following compound statement. “ x – g > y – g if and only if x > y.” Implication 1:…………………………………………………………. Implication 2:…………………………………………………………. (b) Construct a true statement for the following sentences using the appropriate quantifier. i).......................multiple of 3 are divisible by 4. ii)......................triangles identical in forms and sizes considered congruent. [ 5 marks] 2. (a) Complete the following arguments. i) Premise 1: If k > 3, then 2 × k > 6. Premise 2: 2 × k < 6. Conclusion:………………………………………………………………………… ii) Premise 1: If a number is a factor of 4, then the number is also a factor of 16. Premise 2:………………………………………………………………….. Conclusion: 2 is a factor of 16. (b) Complete the following statement by using ‘and’ or ‘or’ to form a true statement. “All prime numbers has only 2 factors .......................all prime numbers are odd. [ 5 marks] 3. (a) Make a general conclusion by induction based on the numerical sequence below 0, 3, 8, 15 ... 0 = 12 − 1 3 = 22 − 1 8 = 32 − 1 15 = 42 − 1 Conclusion :..................................................................................... (b) Complete the following premise. Premise 1:………………………………………………………………………. Premise 2: Angle P is less than 90º Conclusion: Angle P is an acute angle [ 5 marks] 33
  • 5. ppr maths nbk 4. (a) Write two implications for the following compound statement. “tan α = 1 if and only if α = 45°” Implication 1:…………………………………………………………………... Implication 2:..................................................................................................... (b) If a < 0, then –1 x a > 0. Write the converse of the implication. (c) State whether the converse is true or false. [ 5 marks ] 5. (a) Complete the conclusion based on the two given premises. Premise 1: If n is an even integer, then n – 1 is an odd number. Premise 2: n – 1 is not an odd number. Conclusion:……………………………………………………………………… (b) Complete the following premise. Premise 1:………………………………………………………………………. Premise 2: ABC is an isosceles triangle. Conclusion: ABC has two sides of equal length. (c) Determine whether “ m2 + 2m − 3 = (m + 3)(m − 1) ”is a statement or not. Give reason for your answer. [ 5 marks ] 34
  • 6. ppr maths nbk CHAPTER 4: MATHEMATICAL REASONING DIAGNOSTIC TEST 1.(a) Determine whether each of the following is a statement or a non statement. (i) x + 3y (ii) 42 = 8 (b) Fill in the blank with the symbol > or < to form a false statement. (i) 23 32 (ii) - 6 -4 P (c ) Q Based on the above Venn diagram, complete the following statement using an appropriate quantifier so that the statement is true. ‘ …………. elements of set Q are elements of set P’ (d) Write down the conclusion in the following argument. Premise 1 : All prime numbers have only two factors. Premise 2 : 5 is a prime number. Conclusion :………………………………………………………….. [ 5 marks] 2. (a) Determine whether the following statement is true or false. 2 (i) 32 = 6 or = 0.4 5 (ii) -3 x - 4 = 12 and -3 + - 4 = 7 (b) Write down two implications based on the following sentence. mn = 0 if and only if m = 0 or n = 0 (c ) Complete the following argument. Premise 1: If the radius of a circle is 5 cm, then its circumference is 10 п Premise 2 : ………………………………………………………………… Conclusion: the radius of circle P is not 5 cm. [ 5 marks] 35
  • 7. ppr maths nbk 3. (a) Based on the object and its given property, construct a true statement using an appropriate quantifier. Object: odd numbers Property: prime numbers (b) Combine the two statements below to form a true statement. Statement 1: 3 + (- 2) = 5 Statement 2: 16 is a perfect square (c ) Complete the following argument. Premise 1: ………………………………………………………………… Premise 2: The sum of interior angles of polygon Q is 540° Conclusion: Q is a pentagon. [ 5 marks] 4. (a) Identify the antecedent and consequent in the following implication. ‘ If a triangle has two equal sides, then it is an isosceles triangle.’ (b) State the converse of each of the following implication and determine if the converse is true or false. (i) If x < 4 , then x < 6 (ii) If A ∩ B = A, then A ⊂ B (c ) Make a general conclusion by induction based on the numerical sequence below. 2, 9, 16, 23, …… 2 = 2 + 7 (0) 9 = 2 + 7 (1) 16 = 2 + 7 (2) 23 = 2 + 7 (3) …………. The numerical sequence can be represented by ……………………………….. (d) Complete the following argument Premise 1 : …………………………………………………………………… Premise 2 : M ∩ N ≠ M Conclusion: M is not a subset of N [5 marks] 36
  • 8. ppr maths nbk 5. (a) Determine whether each of the following statements is true or false. (i) 17 is a prime number or an even number. (ii) 5 and 8 are factor of 15 (b) complete the following statement using an appropriate quantifier so that the statement is false. ‘ ………………… empty set do not have any elements’ (c) Complete the following argument. Premise 1 : …………………………………………………………… Premise 2 : x is a natural number. Conclusion: x is greater than zero. (d) Construct an implication in the form of ‘if and only if’ from the following pairs of implications. Implication 1 : If n2 is an odd number, then n is an odd number. Implication 2 : If n is an odd number, then n2 is an odd number. [5 marks ] 37