Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Presentation for Advanced Detection and Remote Sensing: Radar Systems

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Ls2520342037
Ls2520342037
Wird geladen in …3
×

Hier ansehen

1 von 34 Anzeige
Anzeige

Weitere Verwandte Inhalte

Andere mochten auch (20)

Anzeige

Ähnlich wie Presentation for Advanced Detection and Remote Sensing: Radar Systems (20)

Presentation for Advanced Detection and Remote Sensing: Radar Systems

  1. 1. Radar Simulation Techniques A Revision of an Integral Backscatter Calculation Method Greg Togtema H. El-Ocla, S. Pichardo, C. Christoffersen 1
  2. 2. Radar: The Basics 2 Image: sciencephoto.com
  3. 3. Radar: The Basics PHASE FREQ. MEASUREMENT DELAY REFLECTION INTENSITY [1] [1] Richards 2005 3
  4. 4. Areas of Focus RE- ASU T ME EN M HER W EAT NSE D EFE ati o ns Ap plic Img src: Raytheon 4 newspaper.li, Peteryu.com
  5. 5. For this Presentation: 1. WHY SIMULATE? 2. HOW TO SIMULATE Outline 3. A NEW WAY TO SIMULATE 4. PROVING THE METHOD 5
  6. 6. 1. WHY SIMULATE? 1.1 System Complexity 1.2 Target Complexity 2. HOW TO SIMULATE 2.1 The Scattering Process 2.2 Current Density 2.3 Physical Optics 2.4 Finite Differences 2.5 Integral Equations / M.O.M. 2.6 Linear Solutions 3. A NEW WAY TO SIMULATE 3.1 The Current Generator Method 3.2 Spherical Harmonics 3.3 Formulation 3.4 Random Media 4. PROVING THE METHOD 4.1 Thesis Roadmap 6
  7. 7. Part 1: Motivation of Simulation Project 7
  8. 8. 1.1 Advanced Measurement System SYSTEM BEAM FORMING COMPLEXITY CLUTTER 8
  9. 9. 1.2 Target Complexity MULTIPLE SCATTERING RESONANCE PHENOMENA SPECULAR oreex M pl REFLECTION Com 1 Williams et. al. (Ansys) 9 Microwave Journal, 2012
  10. 10. Part 2: Existing Simulation Techniques 10
  11. 11. 2.1 The Scattering Process WAVE INCIDENCE CURRENT DENSITY RE-RADIATION Image Source: 11 Smart Fish™ Promotional Material
  12. 12. 2.2 Finding The Current PHYSICAL INTEGRAL FINITE OPTICS EQUATIONS DIFF. 12
  13. 13. 2.3 Physical Optics J=nxH J = zero See Ishimaru 1991 13
  14. 14. 2.3 Physical Optics KIRCHOFF APPROXIMATION [Asvestas ’79] [Ufimtsev ’78 / PHYS. THEORY OF DIFF. Michaeli 95] Phys. Optics TIME DOMAIN PO [Sun ’94] ANTENNA PATTERNS [Ishimaru 1991] µ-WAVE INTERCONNECTS [Obelleirobasteiro ’95] 14
  15. 15. 2.4 Finite Difference Time Domain COMPLEX SHAPES IMPERFECT CONDUCTORS FINITE DIFF. RESISTIVE MATERIALS [Ge ’08] ROUGH SURFACES [Zeng 2010] 15
  16. 16. 2.4 Insufficient Methods Poor Performance ACCURACY SPEED (PO) (FD) 16
  17. 17. 2.5 Integral Equations Integral Equation Types Electric COMBINED Magnetic (E.F.I.E.) (C.F.I.E.) (M.F.I.E.) Source: 17 Gibson Text, 2008
  18. 18. 2.5 Method of Moments (MOM) ZIJ MATRIX ZIJ (Za = b) Z: Transfer Fcn Matrix ZIJ a: Current Density b: Incident Field i,j: Matrix Indices 18
  19. 19. 2.5 Method of Moments: Applications SEMINAL PAPER [GLISSON 1982] WIRES & SURFACES [Gibson 2008] ACCURACY [Wernick ‘00] LITER- ATURE STEALTH AIRCRAFTS [Liu 2010] PRINTED ANTENNAS [Alatan 1999] G.P.R. [Chen 2007] 19
  20. 20. 2.6 Solving System ( Z a = b ) BiCG GAUSS [3] ELIM. AIM Conj. [6] Gradient [1] [2] CGS [4] SOLUTION FMM [7] MLFMA LU [8] DECOMP. FFT [5] N 3 N 2 N logN N - # patches 20
  21. 21. 2.6 Solving System ( Z a = b ) BiCG GAUSS [3] [1] Stratton ’81 ELIM. AIM Conj. Gradient [2] Sarkar [6] ’86 [1] [2] CGS [3] Lanczos ’52 [4] SOLUTION [4] Sonneveld ‘89 FMM [5] Sarkar [7] ’86 MLFMA LU [6] Bleszynski ‘96 [8] DECOMP. FFT Coifman ’93 [7] N 3 N 2 [5] N [8] Song ‘97 logN N - # patches 21
  22. 22. Part 3: A New Way to Simulate: The Current Generator Method 22
  23. 23. 3.1 The Current Generator Method Wave R Equation θ 23
  24. 24. 3.1 The Current Generator Method R θ Wave Equation φ 24
  25. 25. 3.2 Spherical Harmonic Decomposition See Q. Wang, 2008 for 25 rigorous decomposition
  26. 26. 3.3 Current Generator Operator Orthogonal Huygen’s Divergence Harmonic Harmonics [1] Theorem Coefficients BOUNDARY INCIDENT CONDITIONS FIELD [1] Ishimaru, 1991 26 Image: Wikipedia (ripple tank)
  27. 27. 3.3 Final Result REVISED CURRENT GENERATOR METHOD G. Togtema, H. El-Ocla, “Fast Calculation of 3D Conductive Target Backscatter…” submitted to IEEE Antennas and Prop. 27
  28. 28. 3.3 Others who have used Spherical Harmonics FMM + SPHER. HARM. [Eibert 2005] LITERATURE PATTERN EQ’N METHOD [Kyurkchan 00] APPLICATIONS OF MIE THEORY 28
  29. 29. 3.4 CGM and Random Media K ENCE ACTER B T INCID SCA ( To Coherent Detector ) See: Wolf 2002 29 (J. Opt. Soc. Am)
  30. 30. 3.4 The Effects of Random Media Gain due to R.M. SHAPE A Function POLAR- of… IZATION CREEP. R.M. WAVES Figure: Scattering normalized w.r.t. no random media as a function of wave number, Image: (k) 30 El-Ocla, 2007
  31. 31. Part 4: Proving the Current Generator Method 31
  32. 32. 4.1 CGM Roadmap CGM Formulation Functional Computation Accuracy Demonstration Time Image: A. Sourin. 32 SV Journal (2010)
  33. 33. 4.2 Potential Application & Future Work Tetrahedral Mesh Image: Li 2003, 33 Comp. Env. Urb. Sys.
  34. 34. Thank you! 34

×