Most data visualisation solutions today still work on data sources which are stored persistently in a data store, using the so called “data at rest” paradigms. More and more data sources today provide a constant stream of data, from IoT devices to Social Media streams. These data stream publish with high velocity and messages often have to be processed as quick as possible. For the processing and analytics on the data, so called stream processing solutions are available. But these only provide minimal or no visualisation capabilities. One was is to first persist the data into a data store and then use a traditional data visualisation solution to present the data.
If latency is not an issue, such a solution might be good enough. An other question is which data store solution is necessary to keep up with the high load on write and read. If it is not an RDBMS but an NoSQL database, then not all traditional visualisation tools might already integrate with the specific data store. An other option is to use a Streaming Visualisation solution. They are specially built for streaming data and often do not support batch data. A much better solution would be to have one tool capable of handling both, batch and streaming data. This talk presents different architecture blueprints for integrating data visualisation into a fast data solution and highlights some of the products available to implement these blueprints.