SlideShare ist ein Scribd-Unternehmen logo
1 von 32
Downloaden Sie, um offline zu lesen
1
CHAPTER 9:
Moments of Inertia
! Moment of Inertia of Areas
! Second Moment, or Moment of Inertia, of an
Area
! Parallel-Axis Theorem
! Radius of Gyration of an Area
! Determination of the Moment of Inertia of an
Area by Integration
! Moments of Inertia of Composite Areas
! Polar Moment of Inertia
2
9.1 Moment of Inertia: Definition
x
y
y
x
dA=(dx)(dy)
∫=
A
x dAyI 2
)(
O
∫=
A
y dAxI 2
)(
3
x
y
x´= Centroidal axis
y´ = Centroidal axis
CG
dy
y´
dx x´
dA
∫ +=
A
yx dAdyI 2
)'(
∫ ++=
A
yy dAddyy ])())('(2)'[( 22
∫∫∫ ++=
A
y
A
y
A
dAddAdydAy 22
)())('(2)'(
∫∫ ++=
A
y
A
yx dAddAydI
2
'2
0, y´ = 0
AdII yxx
2
0 ++=
AdII xyy
2
0 ++=
9.2 Parallel-Axis Theorem of an Area
2
AdJJ CO +=
O
4
y
x
kx
O
A
A
J
k
A
I
k
A
I
k O
O
y
y
x
x ===
9.3 Radius of Gyration of an Area
2
The radius of gyration of an area
A with respect to the x axis is
defined as the distance kx, where
Ix = kx A. With similar definitions for
the radii of gyration of A with
respect to the y axis and with
respect to O, we have
5
The rectangular moments of inertia Ix
and Iy of an area are defined as
These computations are reduced to single integrations by choosing dA to be a thin
strip parallel to one of the coordinate axes. The result is
x
y
y
dx
x
∫∫ == dAxIdAyI yx
22
dxyxdIdxydI yx
23
3
1
==
9.4 Determination of the Moment of Inertia of an
Area by Integration
6
x´
y´
b/2
h/2
• Moment of Inertia of a Rectangular Area.
x
y
b
h
y
dy
∫=
A
x dAyI 2
∫=
h
bdyy
0
2
)(
h
by
0
3
3
)(
=
y
dy
∫==
A
xx dAyII 2
'
∫=
h
dy
b
y
0
2
)
2
(4
2/
0
3
3
)
2
(4
h
yb
=
3
3
bh
=
12
3
bh
=
dA = bdy
dA = (b/2)dy
7
x´
y´
b/2
h/2
x
y b
h
∫=
A
y dAxI 2
∫=
b
hdxx
0
2
)(
b
hx
0
3
3
)(
=
∫==
A
yy dAxII 2
'
∫=
h
dx
h
x
0
2
)
2
(4
2/
0
3
3
)
2
(4
b
xh
=
3
3
hb
=
12
3
hb
=
x
dx
x
dx
dA = hdx
dA = (h/2)dx
8
x
y
b
h/2
h/2
12
3
bh
Ix =
3
3
bh
Ix =
2
AdII xx +=
2
3
)
2
)((
12
h
bh
bh
+=
412
33
bhbh
+=
3
3
bh
Ix =
9
dIx = y2 dA dA = l dy
Using similar triangles, we have
dy
h
yh
bdA
h
yh
bl
h
yh
b
l −
=
−
=
−
=
Integrating dIx from y = 0 to y = h, we obtain
∫∫
∫
−=
−
=
=
hh
x
dyyhy
h
b
dy
h
yh
by
dAyI
0
32
0
2
2
)(
12
]
43
[
3
0
43
bhyy
h
h
b h
=−=
• Moment of Inertia of a Triangular Area.
2
AdII xx +=
36
)
3
)(
2
(
12
3
2
3
2
bhhbhbh
AdII xx
=−=
−=
y
x
h
b/2
h-y
b/2
dy
yl
10
Example 9.1
Determine the moment of inertia of the shaded area shown with respect to
each of the coordinate axes.
x
y
a
y = kx2
b
11
x
y
a
y = kx2
b
• Moment of Inertia Ix.
dy
dA = (a-x)dy
2
kxy =
2
kab =
2
a
b
k =
2/1
2/1
2
2
y
b
a
xorx
a
b
y ==
Substituting x = a and y=b
∫=
A
x dAyI 2
∫ −=
b
dyxay
0
2
)(
∫ −=
b
dyy
b
a
ay
0
2/1
2/1
2
)(
dyy
b
a
dyya
bb
∫∫ −=
0
2/5
2/1
0
2
bb
y
b
aay
0
2/7
2/1
0
3
)
7
2
(
3
−=
)
7
2
(
3
2/7
2/1
3
b
b
aab
−=
7
2
3
33
abab
−=
21
3
ab
=
12
x
y
a
y = kx2
b
• Moment of Inertia Iy.
2
2
x
a
b
y = ∫=
A
y dAxI 2
∫=
a
ydxx
0
2
dx
dA = ydx
∫=
a
dxx
a
b
x
0
2
2
2
)(
∫=
a
dxx
a
b
0
4
2
a
x
a
b
0
5
2
)
5
)((=
)
5
)((
5
2
a
a
b
=
5
3
ba
=
13
Example 9.2
Determine the moment of inertia of the shaded area shown with respect to
each of the coordinate axes.
x
y
y2 = x2
y1 = x
(a,b)
14
x
y
y2 = x2
y1 = x
(a,b)
dy
dA = (x2 - x1)dy
∫=
A
x dAyI 2
∫ −=
b
dyxxy
0
2
)( 12
∫ −=
b
dyyyy
0
2/12
)(
∫∫ −=
bb
dyydyy
0
3
0
2/5
)()(
bb
y
y
0
4
0
2/7
47
2
−=
• Moment of Inertia Ix.
47
2 4
2/7 b
b −=
15
x
y
y2 = x2
y1 = x
(a,b)
• Moment of Inertia Iy.
∫=
A
y dAxI 2
∫ −=
a
dxyyx
0
1
2
)( 2
dx
dA = (y1 - y2)dx
∫ −=
a
dxxxx
0
22
)(
∫∫ −=
aa
dxxdxx
0
4
0
3
)()(
aa
xx
0
5
0
4
54
−=
54
54
aa
−=
16
The parallel-axis theorem is used very effectively to compute the moment of
inertia of a composite area with respect to a given axis.
d
c
o
centroid are related to the distance d between points C and O by the relationship
2
AdJJ CO +=
9.5 Moment of Inertia of Composite Areas
A similar theorem can be used with
the polar moment of inertia. The
polar moment of inertia
JO of an area about O and the polar
moment of inertia JC of the area
about its
17
Example 9.3
Compute the moment of inertia of the composite area shown.
75 mm
75 mm
100 mm
25 mm
x
18
SOLUTION
75 mm
75 mm
100 mm
x
25 mm
= (dy)Cir
Ciryxctx AdI
bh
I )()
3
(
2
Re
3
+−=
Circt ])75)(25()25(
4
1
[])150)(100(
3
1
[ 224
Re
3
×+−= ππ
= 101x106 mm4
19
Example 9.4
Determine the moments of inertia of the beam’s cross-sectional area
shown about the x and y centroidal axes.
400
Dimension in mm
100
400
100
600
100
x
y
C
20
400
Dimension in mm
100
400
100
600
100
x
y
C
SOLUTION
A
dyA
B
dyD
D
CyxByxAyxx AdIAdIAdII )()()(
222
+++++=
])200)(300100()300)(100(
12
1
[
]0)100)(600(
12
1
[])200)(300100()300)(100(
12
1
[
23
323
×++
++×+=
= 2.9x109 mm4
0
21
400
Dimension in mm
100
400
100
600
100
x
y
C
CxyBxyAxyy AdIAdIAdII )()()(
222
+++++=
C
BA
])250)(300100()100)(300(
12
1
[
]0)600)(100(
12
1
[])250)(300100()100)(300(
12
1
[
23
323
×++
++×+=
= 5.6x109 mm4
A
dxA
dxD
D
0
22
Example 9.5 (Problem 9.31,33)
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes.
6 mm
O x
y
24 mm
24 mm
6 mm
12 mm12 mm
24 mm 24 mm
8 mm
23
6 mm
O
x
y
24 mm
24 mm
6 mm
12 mm12 mm
24 mm 24 mm
8 mm
SOLUTION
A
dyA
B
Ix = 390x103 mm4
mm
A
I
k x
x 9.21
)]648()488()624[(
10390 3
=
×+×+×
×
==
CyxByxAyxx AdIAdIAdII )()()(
222
+++++=
Iy = 64.3x103 mm4
CBA ])48)(6(
12
1
[])8)(48(
12
1
[])24)(6(
12
1
[ 333
++=
0 00
CxyBxyAxyy AdIAdIAdII )()()(
222
+++++=
mm
A
I
k
y
y 87.8
)]648()488()624[(
103.64 3
=
×+×+×
×
==
0
C
B
A
])27)(648()6)(48(
12
1
[
]0)48)(8(
12
1
[
])27)(624()6)(24(
12
1
[
23
3
23
×++
++
×+=
C
dyC
24
Example 9.6 (Problem 9.32,34)
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes.
2 m
O
1 m
1 m
1 m
1 m
0.5 m0.5 m
2 m 2 m
0.5 m0.5 m
x
y
25
2 m
O
1 m
1 m
1 m
1 m
0.5 m0.5 m 2 m 2 m
0.5 m0.5 m
x
y
A
B
dyB
C
dyC
Ix = 46 m4
m
A
I
k x
x 599.1
)]14()24()65[(
46
=
×−×−×
==
14
2
24
2
65
2
)()()( ××× +−+−+= CyxByxAyxx AdIAdIAdII
0
C
BA
])5.1)(14()1)(4(
12
1
[
])2)(42()2)(4(
12
1
[]0)6)(5(
12
1
[
23
233
×+−
×+−+=
Iy = 46.5 m4
CBA ])4)(1(
12
1
[])4)(2(
12
1
[])5)(6(
12
1
[ 333
−−=
0 00
CxyBxyAxyy AdIAdIAdII )()()(
222
+−+−+=
m
A
I
k
y
y 607.1
)]14()24()65[(
5.46
=
×−×−×
==
26
Example 9.7
Determine the moments of inertia and the radius of gyration of the
shaded area with respect to the x and y axes and at the centroidal axes.
1 cm 1 cm
5 cm
1 cm
5 cm
x
y
27
1 cm 1 cm
5 cm
1 cm
5 cm
x
y
CG
Y
∑∑ = AyAY
cm
Y
5.2
)15(3
)51)(5.0()]15)(5.3[(2
=
×
×+×
=
4
2
2
25.51
)5.2)(15(145
cm
AdII yxx
=
−=
−=
• Moments of inertia about centroid
4
23
23
25.51
])2)(15()1)(5(
12
1
[(
])1)(15()5)(1(
12
1
[(2
cm
I
OR
x
=
×++
×+=
cm
A
I
kk x
yx 848.1
15
25.51
====
4
323
145
)1)(5(
3
1
])5.3)(15()5)(1(
12
1
[(2
cm
Ix
=
+×+=
• Moments of inertia about x axis
4
323
25.51
)5)(1(
12
1
])2)(15()1)(5(
12
1
[(2
cm
II yy
=
+×+==
0.5
3.5
2
28
Example 9.8
The strength of a W360 x 57 rolled-steel beam is increased by attaching a
229 mm x 19 mm plate to its upper flange as shown. Determine the
moment of inertia and the radius of gyration of the composite section with
respect to an axis which is parallel to the plate and passes through the
centroid C of the section.
C
229 mm
19 mm
358 mm
172 mm
29
229 mm
172 mm
SOLUTION
19 mm
358 mm x
O
C x´
Y
188.5 mm
The wide-flange shape of W360 x 57
found by referring to Fig. 9.13
A = 7230 mm2 4
2.160 mmIx =
AyAY Σ=Σ
Aplate = (229)(19) = 4351 mm2
)7230)(0()4351)(5.188()72304351( +=+Y
mmY 8.70=
• Centroid
• Moment of Inertia
flangewidexplatexx III −+= )()( '''
flangewidexplatex YAIAdI −+++= )()( 2
'
2
'
[ ]
46
26
23
108.256
)8.70)(7230(102.160
)8.705.188)(4351()19)(229(
12
1
mm×=
+×+




−+=
• Radius of Gyration
)72304351(
108.256 6
'2
'
+
×
==
A
I
k x
x
mmkx 149' =
46
' 10257 mmIx ×=
d
30
The polar moment of inertia of
an area A with respect to the pole
O is defined as
The distance from O to the element of area dA is r. Observing that r 2 =x 2 + y 2 , we
established the relation
y
xx
y
r
A
dA
O ∫= dArJO
2
yxO IIJ +=
9.6 Polar Moment of Inertia
31
Example 9.9
(a) Determine the centroidal polar moment of inertia of a circular area by
direct integration. (b) Using the result of part a, determine the moment of
inertia of a circular area with respect to a diameter.
y
x
r
O
32
u
du
O
y
x
r
SOLUTION
a. Polar Moment of Inertia.
duudAdAudJO π22
==
∫∫ ∫ ===
rr
OO duuduuudJJ
0
3
0
2
2)2( ππ
4
2
rJO
π
=
b. Moment of Inertia with Respect to a Diameter.
xyxO IIIJ 2=+=
xIr 2
2
4
=
π
4
4
rII xdiameter
π
==

Weitere ähnliche Inhalte

Was ist angesagt?

Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagramsumitt6_25730773
 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materialsSelf-employed
 
Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)Er.Navazhushen Patel
 
Chapter 6-influence lines for statically determinate structures
Chapter 6-influence lines for statically  determinate structuresChapter 6-influence lines for statically  determinate structures
Chapter 6-influence lines for statically determinate structuresISET NABEUL
 
Case study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityCase study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityAbhishek Mangukiya
 
Tension coefficient method
Tension coefficient methodTension coefficient method
Tension coefficient methodDivya Vishnoi
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Muhammad Irfan
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramAmos David
 
Multiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) SystemsMultiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) SystemsMohammad Tawfik
 
Simple stresses and strains
Simple stresses and strains Simple stresses and strains
Simple stresses and strains JISHNU V
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 

Was ist angesagt? (20)

Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materials
 
Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)
 
Buoyancy and floatation
Buoyancy and floatationBuoyancy and floatation
Buoyancy and floatation
 
Inertia formulas
Inertia formulasInertia formulas
Inertia formulas
 
L25 ppt conjugate
L25 ppt conjugateL25 ppt conjugate
L25 ppt conjugate
 
Moment of inertia
Moment of inertia Moment of inertia
Moment of inertia
 
Chapter 6-influence lines for statically determinate structures
Chapter 6-influence lines for statically  determinate structuresChapter 6-influence lines for statically  determinate structures
Chapter 6-influence lines for statically determinate structures
 
09 review
09 review09 review
09 review
 
Case study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityCase study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacity
 
Complex stresses
Complex stressesComplex stresses
Complex stresses
 
Tension coefficient method
Tension coefficient methodTension coefficient method
Tension coefficient method
 
Shear Stress; Id no.: 10.01.03.033
Shear Stress; Id no.: 10.01.03.033Shear Stress; Id no.: 10.01.03.033
Shear Stress; Id no.: 10.01.03.033
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
 
Multiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) SystemsMultiple Degree of Freedom (MDOF) Systems
Multiple Degree of Freedom (MDOF) Systems
 
Simple stresses and strains
Simple stresses and strains Simple stresses and strains
Simple stresses and strains
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 

Andere mochten auch

Andere mochten auch (20)

Moment of Inertia
Moment of InertiaMoment of Inertia
Moment of Inertia
 
MOMENT OF INERTIA
MOMENT OF INERTIAMOMENT OF INERTIA
MOMENT OF INERTIA
 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
 
Lect9 Moment of Inertia
Lect9 Moment of InertiaLect9 Moment of Inertia
Lect9 Moment of Inertia
 
Mi2
Mi2Mi2
Mi2
 
Moment of Inertia - 10.01.03.061
Moment of Inertia - 10.01.03.061Moment of Inertia - 10.01.03.061
Moment of Inertia - 10.01.03.061
 
Diploma i em u iv centre of gravity & moment of inertia
Diploma i em u   iv centre of gravity & moment of inertiaDiploma i em u   iv centre of gravity & moment of inertia
Diploma i em u iv centre of gravity & moment of inertia
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
Strength of materials by s k mondal
Strength of materials by s k mondalStrength of materials by s k mondal
Strength of materials by s k mondal
 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertia
 
Angular kinematics of human movement
Angular kinematics of human movementAngular kinematics of human movement
Angular kinematics of human movement
 
centroid
centroidcentroid
centroid
 
Unit 3 Compound stresses
Unit 3  Compound stressesUnit 3  Compound stresses
Unit 3 Compound stresses
 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
 
Unit 2 stresses in composite sections
Unit 2  stresses in composite sectionsUnit 2  stresses in composite sections
Unit 2 stresses in composite sections
 
Simpale stress and simple strain
Simpale stress and simple strainSimpale stress and simple strain
Simpale stress and simple strain
 
Law of inertia
Law of inertiaLaw of inertia
Law of inertia
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertia
 
Shear stresses (2nd year)
Shear stresses (2nd year)Shear stresses (2nd year)
Shear stresses (2nd year)
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 

Ähnlich wie MOMENT OF INERIA

Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)Angel Baez
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuityHareem Aslam
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdfnabal_iitb
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structuresAhmed zubydan
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfMahamad Jawhar
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentVictor Omotoriogun
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxericbrooks84875
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08joseotaviosurdi
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1APEX INSTITUTE
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesKaustav Mondal
 

Ähnlich wie MOMENT OF INERIA (20)

Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 
2 compression
2  compression2  compression
2 compression
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdf
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
KUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdfKUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdf
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
 

Kürzlich hochgeladen

Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxachiever3003
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectErbil Polytechnic University
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptAutonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptbibisarnayak0
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 

Kürzlich hochgeladen (20)

Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Risk Management in Engineering Construction Project
Risk Management in Engineering Construction ProjectRisk Management in Engineering Construction Project
Risk Management in Engineering Construction Project
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptAutonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.ppt
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 

MOMENT OF INERIA

  • 1. 1 CHAPTER 9: Moments of Inertia ! Moment of Inertia of Areas ! Second Moment, or Moment of Inertia, of an Area ! Parallel-Axis Theorem ! Radius of Gyration of an Area ! Determination of the Moment of Inertia of an Area by Integration ! Moments of Inertia of Composite Areas ! Polar Moment of Inertia
  • 2. 2 9.1 Moment of Inertia: Definition x y y x dA=(dx)(dy) ∫= A x dAyI 2 )( O ∫= A y dAxI 2 )(
  • 3. 3 x y x´= Centroidal axis y´ = Centroidal axis CG dy y´ dx x´ dA ∫ += A yx dAdyI 2 )'( ∫ ++= A yy dAddyy ])())('(2)'[( 22 ∫∫∫ ++= A y A y A dAddAdydAy 22 )())('(2)'( ∫∫ ++= A y A yx dAddAydI 2 '2 0, y´ = 0 AdII yxx 2 0 ++= AdII xyy 2 0 ++= 9.2 Parallel-Axis Theorem of an Area 2 AdJJ CO += O
  • 4. 4 y x kx O A A J k A I k A I k O O y y x x === 9.3 Radius of Gyration of an Area 2 The radius of gyration of an area A with respect to the x axis is defined as the distance kx, where Ix = kx A. With similar definitions for the radii of gyration of A with respect to the y axis and with respect to O, we have
  • 5. 5 The rectangular moments of inertia Ix and Iy of an area are defined as These computations are reduced to single integrations by choosing dA to be a thin strip parallel to one of the coordinate axes. The result is x y y dx x ∫∫ == dAxIdAyI yx 22 dxyxdIdxydI yx 23 3 1 == 9.4 Determination of the Moment of Inertia of an Area by Integration
  • 6. 6 x´ y´ b/2 h/2 • Moment of Inertia of a Rectangular Area. x y b h y dy ∫= A x dAyI 2 ∫= h bdyy 0 2 )( h by 0 3 3 )( = y dy ∫== A xx dAyII 2 ' ∫= h dy b y 0 2 ) 2 (4 2/ 0 3 3 ) 2 (4 h yb = 3 3 bh = 12 3 bh = dA = bdy dA = (b/2)dy
  • 7. 7 x´ y´ b/2 h/2 x y b h ∫= A y dAxI 2 ∫= b hdxx 0 2 )( b hx 0 3 3 )( = ∫== A yy dAxII 2 ' ∫= h dx h x 0 2 ) 2 (4 2/ 0 3 3 ) 2 (4 b xh = 3 3 hb = 12 3 hb = x dx x dx dA = hdx dA = (h/2)dx
  • 8. 8 x y b h/2 h/2 12 3 bh Ix = 3 3 bh Ix = 2 AdII xx += 2 3 ) 2 )(( 12 h bh bh += 412 33 bhbh += 3 3 bh Ix =
  • 9. 9 dIx = y2 dA dA = l dy Using similar triangles, we have dy h yh bdA h yh bl h yh b l − = − = − = Integrating dIx from y = 0 to y = h, we obtain ∫∫ ∫ −= − = = hh x dyyhy h b dy h yh by dAyI 0 32 0 2 2 )( 12 ] 43 [ 3 0 43 bhyy h h b h =−= • Moment of Inertia of a Triangular Area. 2 AdII xx += 36 ) 3 )( 2 ( 12 3 2 3 2 bhhbhbh AdII xx =−= −= y x h b/2 h-y b/2 dy yl
  • 10. 10 Example 9.1 Determine the moment of inertia of the shaded area shown with respect to each of the coordinate axes. x y a y = kx2 b
  • 11. 11 x y a y = kx2 b • Moment of Inertia Ix. dy dA = (a-x)dy 2 kxy = 2 kab = 2 a b k = 2/1 2/1 2 2 y b a xorx a b y == Substituting x = a and y=b ∫= A x dAyI 2 ∫ −= b dyxay 0 2 )( ∫ −= b dyy b a ay 0 2/1 2/1 2 )( dyy b a dyya bb ∫∫ −= 0 2/5 2/1 0 2 bb y b aay 0 2/7 2/1 0 3 ) 7 2 ( 3 −= ) 7 2 ( 3 2/7 2/1 3 b b aab −= 7 2 3 33 abab −= 21 3 ab =
  • 12. 12 x y a y = kx2 b • Moment of Inertia Iy. 2 2 x a b y = ∫= A y dAxI 2 ∫= a ydxx 0 2 dx dA = ydx ∫= a dxx a b x 0 2 2 2 )( ∫= a dxx a b 0 4 2 a x a b 0 5 2 ) 5 )((= ) 5 )(( 5 2 a a b = 5 3 ba =
  • 13. 13 Example 9.2 Determine the moment of inertia of the shaded area shown with respect to each of the coordinate axes. x y y2 = x2 y1 = x (a,b)
  • 14. 14 x y y2 = x2 y1 = x (a,b) dy dA = (x2 - x1)dy ∫= A x dAyI 2 ∫ −= b dyxxy 0 2 )( 12 ∫ −= b dyyyy 0 2/12 )( ∫∫ −= bb dyydyy 0 3 0 2/5 )()( bb y y 0 4 0 2/7 47 2 −= • Moment of Inertia Ix. 47 2 4 2/7 b b −=
  • 15. 15 x y y2 = x2 y1 = x (a,b) • Moment of Inertia Iy. ∫= A y dAxI 2 ∫ −= a dxyyx 0 1 2 )( 2 dx dA = (y1 - y2)dx ∫ −= a dxxxx 0 22 )( ∫∫ −= aa dxxdxx 0 4 0 3 )()( aa xx 0 5 0 4 54 −= 54 54 aa −=
  • 16. 16 The parallel-axis theorem is used very effectively to compute the moment of inertia of a composite area with respect to a given axis. d c o centroid are related to the distance d between points C and O by the relationship 2 AdJJ CO += 9.5 Moment of Inertia of Composite Areas A similar theorem can be used with the polar moment of inertia. The polar moment of inertia JO of an area about O and the polar moment of inertia JC of the area about its
  • 17. 17 Example 9.3 Compute the moment of inertia of the composite area shown. 75 mm 75 mm 100 mm 25 mm x
  • 18. 18 SOLUTION 75 mm 75 mm 100 mm x 25 mm = (dy)Cir Ciryxctx AdI bh I )() 3 ( 2 Re 3 +−= Circt ])75)(25()25( 4 1 [])150)(100( 3 1 [ 224 Re 3 ×+−= ππ = 101x106 mm4
  • 19. 19 Example 9.4 Determine the moments of inertia of the beam’s cross-sectional area shown about the x and y centroidal axes. 400 Dimension in mm 100 400 100 600 100 x y C
  • 20. 20 400 Dimension in mm 100 400 100 600 100 x y C SOLUTION A dyA B dyD D CyxByxAyxx AdIAdIAdII )()()( 222 +++++= ])200)(300100()300)(100( 12 1 [ ]0)100)(600( 12 1 [])200)(300100()300)(100( 12 1 [ 23 323 ×++ ++×+= = 2.9x109 mm4 0
  • 21. 21 400 Dimension in mm 100 400 100 600 100 x y C CxyBxyAxyy AdIAdIAdII )()()( 222 +++++= C BA ])250)(300100()100)(300( 12 1 [ ]0)600)(100( 12 1 [])250)(300100()100)(300( 12 1 [ 23 323 ×++ ++×+= = 5.6x109 mm4 A dxA dxD D 0
  • 22. 22 Example 9.5 (Problem 9.31,33) Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes. 6 mm O x y 24 mm 24 mm 6 mm 12 mm12 mm 24 mm 24 mm 8 mm
  • 23. 23 6 mm O x y 24 mm 24 mm 6 mm 12 mm12 mm 24 mm 24 mm 8 mm SOLUTION A dyA B Ix = 390x103 mm4 mm A I k x x 9.21 )]648()488()624[( 10390 3 = ×+×+× × == CyxByxAyxx AdIAdIAdII )()()( 222 +++++= Iy = 64.3x103 mm4 CBA ])48)(6( 12 1 [])8)(48( 12 1 [])24)(6( 12 1 [ 333 ++= 0 00 CxyBxyAxyy AdIAdIAdII )()()( 222 +++++= mm A I k y y 87.8 )]648()488()624[( 103.64 3 = ×+×+× × == 0 C B A ])27)(648()6)(48( 12 1 [ ]0)48)(8( 12 1 [ ])27)(624()6)(24( 12 1 [ 23 3 23 ×++ ++ ×+= C dyC
  • 24. 24 Example 9.6 (Problem 9.32,34) Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes. 2 m O 1 m 1 m 1 m 1 m 0.5 m0.5 m 2 m 2 m 0.5 m0.5 m x y
  • 25. 25 2 m O 1 m 1 m 1 m 1 m 0.5 m0.5 m 2 m 2 m 0.5 m0.5 m x y A B dyB C dyC Ix = 46 m4 m A I k x x 599.1 )]14()24()65[( 46 = ×−×−× == 14 2 24 2 65 2 )()()( ××× +−+−+= CyxByxAyxx AdIAdIAdII 0 C BA ])5.1)(14()1)(4( 12 1 [ ])2)(42()2)(4( 12 1 []0)6)(5( 12 1 [ 23 233 ×+− ×+−+= Iy = 46.5 m4 CBA ])4)(1( 12 1 [])4)(2( 12 1 [])5)(6( 12 1 [ 333 −−= 0 00 CxyBxyAxyy AdIAdIAdII )()()( 222 +−+−+= m A I k y y 607.1 )]14()24()65[( 5.46 = ×−×−× ==
  • 26. 26 Example 9.7 Determine the moments of inertia and the radius of gyration of the shaded area with respect to the x and y axes and at the centroidal axes. 1 cm 1 cm 5 cm 1 cm 5 cm x y
  • 27. 27 1 cm 1 cm 5 cm 1 cm 5 cm x y CG Y ∑∑ = AyAY cm Y 5.2 )15(3 )51)(5.0()]15)(5.3[(2 = × ×+× = 4 2 2 25.51 )5.2)(15(145 cm AdII yxx = −= −= • Moments of inertia about centroid 4 23 23 25.51 ])2)(15()1)(5( 12 1 [( ])1)(15()5)(1( 12 1 [(2 cm I OR x = ×++ ×+= cm A I kk x yx 848.1 15 25.51 ==== 4 323 145 )1)(5( 3 1 ])5.3)(15()5)(1( 12 1 [(2 cm Ix = +×+= • Moments of inertia about x axis 4 323 25.51 )5)(1( 12 1 ])2)(15()1)(5( 12 1 [(2 cm II yy = +×+== 0.5 3.5 2
  • 28. 28 Example 9.8 The strength of a W360 x 57 rolled-steel beam is increased by attaching a 229 mm x 19 mm plate to its upper flange as shown. Determine the moment of inertia and the radius of gyration of the composite section with respect to an axis which is parallel to the plate and passes through the centroid C of the section. C 229 mm 19 mm 358 mm 172 mm
  • 29. 29 229 mm 172 mm SOLUTION 19 mm 358 mm x O C x´ Y 188.5 mm The wide-flange shape of W360 x 57 found by referring to Fig. 9.13 A = 7230 mm2 4 2.160 mmIx = AyAY Σ=Σ Aplate = (229)(19) = 4351 mm2 )7230)(0()4351)(5.188()72304351( +=+Y mmY 8.70= • Centroid • Moment of Inertia flangewidexplatexx III −+= )()( ''' flangewidexplatex YAIAdI −+++= )()( 2 ' 2 ' [ ] 46 26 23 108.256 )8.70)(7230(102.160 )8.705.188)(4351()19)(229( 12 1 mm×= +×+     −+= • Radius of Gyration )72304351( 108.256 6 '2 ' + × == A I k x x mmkx 149' = 46 ' 10257 mmIx ×= d
  • 30. 30 The polar moment of inertia of an area A with respect to the pole O is defined as The distance from O to the element of area dA is r. Observing that r 2 =x 2 + y 2 , we established the relation y xx y r A dA O ∫= dArJO 2 yxO IIJ += 9.6 Polar Moment of Inertia
  • 31. 31 Example 9.9 (a) Determine the centroidal polar moment of inertia of a circular area by direct integration. (b) Using the result of part a, determine the moment of inertia of a circular area with respect to a diameter. y x r O
  • 32. 32 u du O y x r SOLUTION a. Polar Moment of Inertia. duudAdAudJO π22 == ∫∫ ∫ === rr OO duuduuudJJ 0 3 0 2 2)2( ππ 4 2 rJO π = b. Moment of Inertia with Respect to a Diameter. xyxO IIIJ 2=+= xIr 2 2 4 = π 4 4 rII xdiameter π ==