Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Versatile modular electronics for rapid design and development

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
8051 microcontroller
8051 microcontroller
Wird geladen in …3
×

Hier ansehen

1 von 20 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (19)

Andere mochten auch (19)

Anzeige

Ähnlich wie Versatile modular electronics for rapid design and development (20)

Aktuellste (20)

Anzeige

Versatile modular electronics for rapid design and development

  1. 1. Versati l e Modul ar El ectroni cs For Rapi d Desi gn And Devel opment of HUMANOID ROBOTIC SUBSYSTEMS 1 By Gokul G Nair gokul.vtra@gmail.com
  2. 2. 1. INTRODUCTION 2. CURRENT SCENARIO IN HUMANOID DEVELOPMENT 3. REQUIREMENTS FOR COMPACT HUMANOID ELECTRICAL SYSTEM 4. DEVELOPMENT PATH TO MEET THE REQUIREMENTS 5. WHAT IS FPGA……….? 6. WHY FPGA……? 7. SYSTEM OVERVIEW 1) FPGA MODULE 2) CONTROL BOARDS 3) CENTRAL CONTROLLER 4) COMMUNICATION 8. DISCUSSIONS AND EXPERIMENTAL RESULTS 9. CONCLUSION 10. REFERENCES V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 2
  3. 3.  Humanoid robot- Robot with its body shape built to resemble that of a human  Generally humanoids have a torso, a head , 2 arms & 2 legs  Though some may model only part of a body E.g.: From the waist up  Development is a complex procedure • Numerous subsystems needs to be combined for actuation • Subsystems - electric motors, hydraulic valves , sophisticated sensors etc.  AIM Simplification of development and up gradation of these humanoids by the use of Modular Electronic Components (FPGA) V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 3
  4. 4. I N H U M A N O I D D E V E L O P M E N T  Low level controllers distributed across the humanoid system-  Results in reduction of cables & increased compactness How to handle with minimal latency, the vast quantity of information that needs to be communicated to the central processing unit, while also ensuring a fully operational system at the same time? H i g h P r i o r i t y C o m p a c t n e s s  Humanoid system developers placed high priority on compactness  Results in reduction of overall system’s size and weight  Main challenge is to “reduce the amount of electrical cables running from the actuators and sensors to a centralised controller” D i s t r i b u t e d A p p ro a c h V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 4
  5. 5. REQ U I R E M E N T S COMPACT HUMANOID ELECTRICAL SYSTEM  Distributed controllers capable of interfacing with all sensors and actuators on a single limb  Compact electrical design for minimizing size and weight  Capability of high frequency, hard real time control loops  High speed, low latency intercommunication between limbs  Clear development pat V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 5
  6. 6. DEVELOPMENT PATH T O M E E T T H E R E Q U I R E M E N T S  selection of the embedded processor and its complimentary specialist components  Essentially allow us to “plan ahead” for future changes  Accommodate the increasing processing load of humanoids.  DSP  FPGA  PIC  ARM  Architectures under consideration V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 6
  7. 7. WHAT IS FPGA……….?  A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing hence “field-programmable”  Contain programmable logic components called "logic blocks", and interconnects.  FPGA chips handle dense logic and memory elements offering very high logic capacity  Can be configurable without change their hardware  Vendors: Xilinx, Altera, Actel  FPGA products:- Xilinx Virtex-7 FPGA, Spartan-6 LXT FPGA & Stratix V from Altera V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 7
  8. 8. WHY FPGA……?  Performance  Time to Market  Cost  Reliability  Long-Term Maintenance Size comparison of the Spartan 6 USB-FPGA Module . Heat sinks are delivered with the LX45 V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 8
  9. 9. SYSTEM OVERVIEW  Heart of system is a distributed network of FPGA modules.  Every limp has a FPGA module and which are networked together in a star formation..  Star network has a “Central controller” in the center Which is a combination of FPGA and duo core ARM processors.  ARM processors are running FreeRTOS which is a real-time OS on one core, that takes care of the low level control and Ubuntu on the second core.  An Ethernet connection from the central controller to the High-Level PCs where all the cognitive processing is computed. V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 9
  10. 10. FPGA MODULE  FPGA module is based around an Xilinx Sparten 6 FPGA  currently consists of: • Xilinx Spartan-6 LX45 FPGA. • 6 axis IMU, MPU-6050. • 8 Channel ADC, ADS8332. • 2 x Full-duplex 200 Mb/s interconnection. • 128Mb SPI Flash. • 70 I/O, User configurable. • 17 programmable LEDs • Size: 35mm x 35mm. • Weight: 8g Version 2.0 of the FPGA Module V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 10
  11. 11. 2) CONTROL BOARDS  Each limb has its own electrical requirements due to different actuators and sensors.  Thus each limb has a custom control board. 1) Low Amp BLDC controller.  control a 3 DoF neck, which had a brushless motor which communicated via hall effect sensors and a digital encoder in each joint 2) Brushed Motor Driver.  very simple 2 layer board developed for controlling a pair of eyes with 2 DoF each. 3) High Current BLDC Controller.  developed for the thigh, which has high power requirements  interface with the frameless motors that have their own magnetic encoders.  interface with the foil strange gauges used to measure the torque at the joint V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 11
  12. 12. 12 3) CENTRAL CONTROLLER  Central hard real-time controller based on a Xilinx Zynq-XC7Z020  An FPGA and dual core ARM “A9 MP Core” processor running at 667MHz on a single chip.  Includes 512MB of DDR3 RAM, Gigabit Ethernet, USB and an SD card reader. Central hard real-time controller based on a Xilinx Zynq-XC7Z020  The central controller has 6 high speed communication ports as well as interfaces for a range of sensors  The FPGA fabric is used primarily for the communication to the other FPGA modules e.g. acting like an intelligent hub. V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S
  13. 13. CENTRAL CONTROLLER CONTINUES The ARM processors is configured in an asymmetric multi-processing (AMP) configuration, with two separate OS running on each core Overview of central controller hardwareFIRST CORE  For hard real time control loop  This loop used for scheduling the network communication as well as the low level control (Requires a fast update) and hard real time. {E.g. the walking and balancing controller. }  Runs RealRTOS, an open source real time operating system. SECOND CORE  Runs UBUNTU and Robot Operating System (ROS)  Used for the soft real time code{E.g. the path planning or human robot interaction. }  Has a Gigabit Ethernet connector to communicate to the High-level PCs V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 13
  14. 14. 4) COMMUNICATION Each FPGA module has two ways to communicate. 1. Simple Ethernet controller  Based on 10Mb/s 10BASE-T communication and UDP packets.  Primarily used for debugging and to use the boards in a stand alone situation. 2. High speed intercommunication  FPGA fabric of central controller – Master & all FPGA modules - Slaves  To chain the boards together and to connect them to the central controller  EtherCAT, Powelink… ( High electronic complexity) @ 100Mb/s  Direct pin–pin connection @1.05Gb/s-28.05Gb/s V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 14
  15. 15. DISCUSSIONS AND EXPERIMENTAL RESULTS A) HIGH PERFORMANCE MOTOR CONTROL  Figure shows a torque controlled humanoid robot test platform  To verify the performance of the High Current BLDC Controller  Controls two high power PMSM motors(580 Watts) from RoboDrive  controller computed the desired current  Low level motor controller produce the correct waveform by using space vector modulation (SVM) Space vector modulation (SVM) is an algorithm for the control of pulse width modulation (PWM). V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 15
  16. 16. B) Six DOFs Stereo Vision System  High speed vision tracking system  6 degrees of freedom 2 pan + 2 tilt + 2 torsion.  Each eye is controlled by 3 piezo motors, to control their position and velocity  FPGA module receives desired angles alpha, beta and gamma for each eye from the central controller  Angles are then converted into desired motor positions and velocity using a Soft Core at 1khz V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 16
  17. 17. C) Network  A setup for testing and debugging the High speed communication  Test for integrity  send frames from the central controller to FPGA modules  Frame travels around the network and returned to the central controller  The central controller then checks the data processed and that it does not have any errors, as well as validates the returned data.  Test for latency  The time it takes to send a frame from the central controller around the 3 modules with 150 bytes to each module and back. V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 17
  18. 18. CONCLUSION  FPGA module to fulfill the requirements to support the construction of humanoid robots  Only design the FPGA once and then using it on different boards  On upgrading we only had to reconfigure the FPGA to communicate with the new device  Using FPGA, 1)High demanding control can be accomplished for the main humanoid limbs; 2)Multiple DoF can be controlled in parallel with a single FPGA module; 3)We can achieve high speed, low latency intercommunications for a network of modules. V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S 18
  19. 19. 19 REFERENCES 1. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998, pp. 1321–1326. 2. A. Nagakubo, Y. Kuniyoshi, and G. Cheng, “Development of a High- Performance Upper-Body Humanoid System,” Advanced Robotics, vol. 17, no. 2, pp. 149–164, 2003. 3. N. Kanehira, T. Kawasaki, S. Ohta, T. Isozumi, T. Kawada, F. Kanehiro, S. Kajita, and K. Kaneko, “Design and Experiments of Advanced Leg Module ( HRP-2L ) for Humanoid Robot ( HRP-2 ) Development,” Magnesium, vol. 2, no. October, pp. 2455–2460, 2002. 4. T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,N. Vahrenkamp, and R. Dillmann, ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control. IEEE, Dec. 2006 5. G. Cheng, S. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin, W. Scroggin, and S. C. Jacobsen, “CB: A Humanoid Research Platform for Exploring NeuroScience,” Advanced Robotics, vol. 21, no. 10, pp. 1097–1114, 2007 6. F. Kanehiro, Y. Ishiwata, H. Saito, K. Akachi, G. Miyamori, T. Isozumi, K. Kaneko, and H. Hirukawa, Distributed Control System of Humanoid Robots based on Real-time Ethernet. IEEE, Oct. 2006 7. Z. Wen-Hong, “FPGA-based adaptive friction compensation for precision control of harmonic drivers,” Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 4657–4662, 2010. 8. N. Ito, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, Development of very small high output motor driver fo realizing forceful musculoskeletal humanoids. IEEE, Dec. 2010. 9. R. Hartenstein, M. Serv´ıt, A. Dollas, B. Ward, and J. Babcock, “FPGA based low cost Generic Reusable Module for the rapid prototyping of subsystems - Field-Programmable Logic Architectures, Synthesis and Applications - Lecture Notes in Computer Science,” pp. 259–270–270,1994. 10. S. Falsig and A. Soerensen, “An fpga based approach to increased flexibility, modularity and integration of low level control in robotics research,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, oct. 2010, pp. 6119 –6124. V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S
  20. 20. 20 V E R S A T I L E M O D U L A R E L E C T R O N I C S F O R R A P I D D E S I G N A N D D E V E L O P M E N T O F H U M A N O I D R O B O T I C S U B S Y S T E M S

×