Plastico (5)

G
1. Introdução
Atualmente vivemos em um mundo de produtos embalados e o plástico faz
parte de nossas vidas, praticamente todos os produtos vendidos são
embalados. Nossa economia tem uma estrutura muito complexa, e a
importância da embalagem dentro desse sistema está se tornando cada vez
mais significativa.
Ela contribui tanto para diminuição de perdas de produto, quanto para a
preservação do padrão de vida do homem moderno. As embalagens plásticas
apresentam uma ampla variedade de formas e modelos, algumas são
reconhecidas facilmente outras nem tanto, todas, porém proporcionam
benefícios que justificam a sua existência.
O produto e a embalagem estão tão relacionados que não podem ser
considerado um sem o outro. O produto não pode ser planejado separado da
embalagem, que por sua vez deve ser definida com base em engenharia,
marketing, comunicação, legislação, economia e inovação. Para alguns
produtos design, forma e função da embalagem podem ser tão importantes
quanto o seu conteúdo, por esses e por outros motivos podemos chamar a
embalagem de “vendedor silencioso”.
Nesse trabalho você ira ver diferentes tipos de plástico, suas propriedades,
aplicações, reciclagem e muito mais.
2. Tipos
Existem muitos tipos de plásticos. Os mais rígidos, os fininhos e fáceis de
amassar, os transparentes, etc.. São divididos em dois grupos de acordo com
as suas características de fusão ou derretimento: termoplásticos e
termorrígidos. Os termoplásticos são aqueles que amolecem ao serem
aquecidos, podendo ser moldados, e quando resfriados ficam sólidos e tomam
uma nova forma.
Esse processo pode ser repetido várias vezes. Correspondem a 80% dos
plásticos consumidos. Os termorrígidos ou termofixos são aqueles que não
derretem e que apesar de não poderem ser mais moldados, podem ser
pulverizados e aproveitados como carga ou serem incinerados para
recuperação de energia.
Termofixos
 PET – Polietileno Tereftalato
 PEAD – Polietileno de Alta Densidade
 PVC – Policloreto de Vinila
 PEBD – Polietileno de Baixa Densidade
 PP - Polipropileno
 PS – Poliestireno
 OUTROS
Termorrígidos
 PU - Poliuretanos
 EVA – Poliacetato de Etileno Vinil
3. Classificação
As numerosas substâncias plásticas existentes, naturais ou artificiais, são
classificadas em dois grandes grupos, chamados de termoplásticos e
termoestáveis devido a seu comportamento ante as variações de temperatura.
Materiais termoplásticos.
Termoendurecíveis: ganham forma de produtos rígidos por ação do calor e
de reações químicas e não são susceptíveis de serem moldados novamente
por ação do calor;
Termoplásticos: amolecem quando aquecidos e endurecem de novo
quando arrefecem o que permite moldá-los sucessivas vezes. Mais de 80% dos
plásticos vulgarmente utilizados são deste tipo.
4. Propriedades
 PEAD - Incolor e Opaco possui alta rigidez e resistência
 PEBD - Incolor Translúcido ou Opaco possui alta flexibilidade e boa
resistência mecânica.
 PP - Incolor e opaco possui boa resistência a choques e alta resistência
química
 PS - Incolor e transparente, grande rigidez, baixa resistência a choques
e riscos, transparência.
 PVC - Incolor e transparente, com flexibilidade com adição de
modificadores e alta resistência à chama.
 PET incolor, transparente ou opaco, alta resistência mecânica e
química, transparência.
 PU - Flexibilidade, leveza, resistência à abrasão, possibilidade de design
diferenciado.
5. Aplicações
 PET - (polietileno tereftalato) - garrafas de refrigerante, sucos e óleo de
cozinha, produtos farmacêuticos, produtos de limpeza, mantas de
impermeabilização e fibras
têxteis.
 PEAD - (polietileno de
alta densidade) - frascos de
shampoo e maquiagem, baldes,
utensílios domésticos,
embalagens para cosméticos,
produtos químicos e de
limpeza, tubos para líquidos e
gás, tanques de combustível
para veículos automotivos;
 PVC - (Policloreto de
Vinila) - tubos e conexões de encanamento; alguns frascos de detergente,
pastas para material escolar, calçados. É mais rígido, porém resistente, frascos
de agua mineral, tubos e conexões, calçados, encapamentos de cabos
elétricos, equipamentos medico-cirúrgicos, esquadrias e revestimentos.
 PEBD - (polietileno de baixa densidade) - plástico "filme" - sacos
plásticos de lixo, brinquedos. São finos e bastante flexíveis, embalagens de
alimentos, sacos industriais, sacos para lixo, lonas agrícolas, filmes flexíveis
para embalagens e rótulos de brinquedos.
 PP - (Polipropileno) - plásticos "filme" de proteção de alimentos, peças
de automóveis, embalagens de massas e biscoitos, potes de margarina,
seringas descartáveis, equipamentos medico-cirúrgicos, fibras e fios têxteis,
utilidades domesticas, autopeças (para-choque de carro).
 PS – (poliestireno) - copos plásticos; sacos de batata, copos
descartáveis, placas isolantes, aparelhos de som e TV, embalagens de
alimentos, revestimento de geladeiras, material escolar;.
 OUTROS – Utilizados em eletrodomésticos, aparelhos telefônicos,
revestimentos diversos, pisos, plásticos especiais e de engenharia, CDs,
corpos de computadores etc.
 PU & EVA – solados de calçados, interruptores, peças indústrias
elétricas, peças para banheiros, prato, travessas, cinzeiros, telefones e etc.
6. Problemas Ambientais
Em 1997, pesquisadores estimaram que o Oceano Atlântico estivesse
contaminado com 580.000 peças flutuantes de plástico por quilômetro
quadrado. De acordo com o
Greenpeace, o problema
não é apenas o plástico que
flutua: 70% do plástico
afundam, contaminando o
fundo dos oceanos, com
cerca de 110 pedaços de
lixo por quilômetro quadrado.
No oceano Pacífico, existe
uma enorme ilha de plástico
chamada de Grande Porção de Lixo do Pacífico. Calcula-se que sua área seja
maior do que a dos estados brasileiros de São Paulo, Rio de Janeiro, Minas
Gerais e Goiás somado. A degradação do plástico é de até 450 anos. O
descarte, na natureza, de material plástico à base de poliuretano, causa
problemas ambientais. Uma hipótese, ainda em estudo, para solucionar tal
problema seria o uso do fungo Pestalotiopsis Microspora, supostamente capaz
de alimentar-se de poliuretano.
Devido à sua insolubilidade
em água e inércia química
relativa, plásticos puros
geralmente têm baixa
toxicidade. Alguns produtos de
plástico contêm uma variedade
de aditivos, alguns dos quais
podem ser tóxicos. Por
exemplo, plastificantes como
ftalatos e adipatos são muitas vezes adicionados aos plásticos frágeis, como
cloreto de polivinila, para torná-los flexíveis o suficiente para uso em
embalagens de alimentos, brinquedos e muitos outros itens. Traços destes
compostos podem lixiviar para fora do produto. Devido a preocupações sobre
os efeitos que isso pode causar, a União Europeia tem restringido o uso do
DEHP e outros ftalatos em algumas aplicações. Alguns compostos de lixiviação
de recipientes para alimentos de poliestireno têm sido propostos para interferir
nas funções hormonais e são suspeitos de causar câncer.
As embalagens plásticas estão sendo mais usadas devidas algumas
vantagens que apresentam. Elas são obtidas a baixo custo, são impermeáveis,
flexíveis e ao mesmo tempo são resistentes a impactos. Sendo assim, foram
substituindo as antigas embalagens até serem usadas em larga escala como
nos dias atuais.
Durante muitos anos as embalagens plásticas estão sendo despejadas em
aterros sanitários, mas o fato de não serem biodegradáveis faz com que se
acumulem no ambiente conservando por muitos anos suas propriedades
físicas, já que possuem elevada resistência.
São necessários de 100 a 150 anos (aproximadamente) para que os
polímeros sejam degradados no ambiente. Por isso a poluição causada pelos
polímeros se tornou uma preocupação em escala mundial, além de poluir rios e
lagos, polui também o solo de um modo geral.
Os grandes vilões deste século são os materiais poliméricos como as
garrafas PET de refrigerantes, que acarretam problemas ambientais pelas
características de serem descartáveis. A poluição pelos polímeros poderia ser
minimizada com a reciclagem dos plásticos ou o emprego de polímeros
biodegradáveis.
7.Reciclagem
 A Reciclagem Energética:
É hoje uma realidade e uma importante alternativa no gerenciamento do
lixo urbano. É a tecnologia que transforma lixo urbano em energia elétrica e
térmica, um processo amplamente utilizado no exterior e que aproveita o alto
poder calorífico contido nos plásticos para
uso como combustível.
Países que adotam esse processo,
além de criar novas matrizes energéticas,
conseguem reduzir substancialmente o
volume de seus resíduos, um benefício
incalculável para cidades com problemas
de espaço para a destinação do lixo
urbano.
Embora a Reciclagem Energética
ainda não exista no Brasil, a Plastivida
entende que essa é uma alternativa
ambientalmente correta, economicamente
viável e socialmente recomendável.
Investir na Reciclagem Energética do lixo urbano proporciona vantagens e
benefícios inquestionáveis:
 Reciclagem Mecânica:
No Brasil, é amplamente; é mais barata e mantém uma boa qualidade do
produto: Para facilitar a separação dos materiais plásticos para a reciclagem,
foram estabelecidos códigos para diferenciar cada tipo.
 Reciclagem Química:
Esse tipo de reciclagem reprocessa os plásticos transformando-os em
petroquímicos básicos: monômeros ou misturas de hidrocarbonetos que
servem como matéria-prima, em refinarias ou centrais petroquímicas, para a
obtenção de produtos nobres de elevada qualidade.
O objetivo da reciclagem química é a recuperação dos componentes
químicos individuais para serem reutilizados como produtos químicos ou para a
produção de novos plásticos.
Essa reciclagem permite tratar mistura de plásticos, reduzindo custos de
pré-tratamento, custos de coleta e seleção. Além disso, permite produzir
plásticos novos com a mesma qualidade de um polímero original.
Os novos processos de reciclagem química desenvolvidos permitem a
reciclagem de misturas de plásticos diferentes, com aceitação de determinado
grau de contaminantes (ex.: tintas, papéis etc.).
Existem vários processos de reciclagem química, entre eles:
o HIDROGENAÇÃO:
As cadeias são quebradas mediante o tratamento com hidrogênio e
calor, gerando produtos capazes de serem processados em refinarias.
o GASEIFICAÇÃO:
Os plásticos são aquecidos com ar ou oxigênio, gerando-se gás de
síntese contendo monóxido de carbono e hidrogênio.
o QUIMÓLISE:
Consiste na quebra parcial ou total dos plásticos em monômeros na
presença de glicol/metanol e água.
o PIRÓLISE:
É a quebra das moléculas pela ação do calor na ausência de oxigênio. Este
processo gera frações de hidrocarbonetos capazes de serem processados em
refinarias.
8. Conclusão
Tente viver no mundo de hoje sem o plástico. Observe ao seu redor, com
certeza algum material próximo será de plástico. Agora, imagine se a matéria-
prima dessa peça fosse substituída por outro material em pleno século XXI. Um
pen-drive de alumínio? Uma seringa de metal? Nos dias de hoje, é impossível
pensar no bem-estar da população sem os benefícios gerados pela indústria
plástica e seus progressos tecnológicos. O plástico é indispensável na
infraestrutura atual e do futuro, em tubulações e canalizações, assim como nos
meios de transporte, tornando trens, carros e aviões mais leves e, portanto,
mais econômicos. Isso sem falar na biomedicina, na qual temos seringas,
implantes e próteses e até um coração artificial de plástico, que mantém o
paciente vivo até ser transplantado. O consumo per capita do material vem
registrando taxas de crescimento superiores às do Produto Interno Bruto (PIB).
Vendo por este ponto é impossível viver sem plástico, ele nos trás muitas
praticidades e é impossível de imaginar substituir tudo de plástico por outros
materiais.

Recomendados

Plastico (3)Plastico (3)
Plastico (3)ggmota93
814 views9 Folien
Plastico (1)Plastico (1)
Plastico (1)ggmota93
483 views7 Folien
PlásticosPlásticos
Plásticosluismonteiro1998
3.8K views16 Folien
70 304-1-pb70 304-1-pb
70 304-1-pbPetiano Camilo Bin
355 views7 Folien
Os plasticosOs plasticos
Os plasticosAna Paula Silva
1.9K views12 Folien

Más contenido relacionado

Was ist angesagt?

PlásticoPlástico
PlásticoJoão Marcos Silva
1.4K views16 Folien
O que é reciclagemO que é reciclagem
O que é reciclagemRecupera
93 views4 Folien
Plástico - PPPlástico - PP
Plástico - PPEcodar
5.6K views19 Folien
Economia de EnergiaEconomia de Energia
Economia de EnergiaRene83
1.2K views18 Folien

Was ist angesagt?(15)

Biopolimeros posterBiopolimeros poster
Biopolimeros poster
gracindabento1.6K views
PlásticoPlástico
Plástico
João Marcos Silva1.4K views
O que é reciclagemO que é reciclagem
O que é reciclagem
Recupera93 views
Plástico - PPPlástico - PP
Plástico - PP
Ecodar5.6K views
Economia de EnergiaEconomia de Energia
Economia de Energia
Rene831.2K views
Os plásticos e a reciclagemOs plásticos e a reciclagem
Os plásticos e a reciclagem
Ana Duarte2.1K views
SustentabilidadeSustentabilidade
Sustentabilidade
Luisd30001.2K views
BiopolímerosBiopolímeros
Biopolímeros
Jair Borges6.6K views
Ecodesign Ciclo De VidaEcodesign Ciclo De Vida
Ecodesign Ciclo De Vida
martha5.2K views
V19n2a09V19n2a09
V19n2a09
Josiane Messias227 views
Aula 26 e 27   ecodesign e acvAula 26 e 27   ecodesign e acv
Aula 26 e 27 ecodesign e acv
estilista profesional1.2K views

Destacado(6)

PlasticosPlasticos
Plasticos
ggmota935.3K views
PlasticosPlasticos
Plasticos
pmcabrita6.8K views
PlásticosPlásticos
Plásticos
andreosurfista4.7K views

Similar a Plastico (5)

Seminário de aaeSeminário de aae
Seminário de aaeMonica Silva
788 views16 Folien
PolietilenoPolietileno
Polietilenoeduardoguirro
6.8K views8 Folien
PolimerosPolimeros
Polimeroslucas campos
723 views50 Folien

Similar a Plastico (5)(20)

Seminário de aaeSeminário de aae
Seminário de aae
Monica Silva788 views
PolietilenoPolietileno
Polietileno
eduardoguirro6.8K views
Material auxiliar plástico iiMaterial auxiliar plástico ii
Material auxiliar plástico ii
profNICODEMOS1.3K views
PolimerosPolimeros
Polimeros
lucas campos723 views
PALESTRA MICROPLÁTICOS - Copia.pdfPALESTRA MICROPLÁTICOS - Copia.pdf
PALESTRA MICROPLÁTICOS - Copia.pdf
JurandirMarkante3 views
Os PláSticos Mathilde Paulo RitaOs PláSticos Mathilde Paulo Rita
Os PláSticos Mathilde Paulo Rita
guest4580c5c358 views
Reciclagem de plásticosReciclagem de plásticos
Reciclagem de plásticos
soradinda_593.5K views
Projeto - Reciclagem de garrafa PetProjeto - Reciclagem de garrafa Pet
Projeto - Reciclagem de garrafa Pet
Paola Prudente10K views
Aula7Aula7
Aula7
Tiago Cruz2.2K views
Reciclagem de garrafas petReciclagem de garrafas pet
Reciclagem de garrafas pet
projetoehs12.9K views
Polímeros SintéticosPolímeros Sintéticos
Polímeros Sintéticos
Escola Estadual Manoel Lúcio da Silva872 views
Bioplásticos e biopolimerosBioplásticos e biopolimeros
Bioplásticos e biopolimeros
Thiago Santos3.7K views
Lixo plásticoLixo plástico
Lixo plástico
soradinda_591.9K views
Lixo plasticoLixo plastico
Lixo plastico
soradinda_592.7K views
Reciclagem de garrafas pet apresentação  completaReciclagem de garrafas pet apresentação  completa
Reciclagem de garrafas pet apresentação completa
Claudinéa Ribeiro Neves2.3K views
Pesquisas: Do berço ao túmuloPesquisas: Do berço ao túmulo
Pesquisas: Do berço ao túmulo
Profesornc561 views

Más de ggmota93

ParnasianismoParnasianismo
Parnasianismoggmota93
8.8K views8 Folien
DensidadeDensidade
Densidadeggmota93
1.6K views3 Folien
CubismoCubismo
Cubismoggmota93
864 views9 Folien
CubismoCubismo
Cubismoggmota93
2.8K views32 Folien

Más de ggmota93(10)

ParnasianismoParnasianismo
Parnasianismo
ggmota938.8K views
Modernismo Segunda Fase BrasilModernismo Segunda Fase Brasil
Modernismo Segunda Fase Brasil
ggmota9314.3K views
DensidadeDensidade
Densidade
ggmota931.6K views
CubismoCubismo
Cubismo
ggmota93864 views
CubismoCubismo
Cubismo
ggmota932.8K views
A Arte BarrocaA Arte Barroca
A Arte Barroca
ggmota936.2K views
A Arte BarrocaA Arte Barroca
A Arte Barroca
ggmota93734 views
A Arte BarrocaA Arte Barroca
A Arte Barroca
ggmota932.9K views
Tabela periodicaTabela periodica
Tabela periodica
ggmota931.4K views

Último(20)

Plastico (5)

  • 1. 1. Introdução Atualmente vivemos em um mundo de produtos embalados e o plástico faz parte de nossas vidas, praticamente todos os produtos vendidos são embalados. Nossa economia tem uma estrutura muito complexa, e a importância da embalagem dentro desse sistema está se tornando cada vez mais significativa. Ela contribui tanto para diminuição de perdas de produto, quanto para a preservação do padrão de vida do homem moderno. As embalagens plásticas apresentam uma ampla variedade de formas e modelos, algumas são reconhecidas facilmente outras nem tanto, todas, porém proporcionam benefícios que justificam a sua existência. O produto e a embalagem estão tão relacionados que não podem ser considerado um sem o outro. O produto não pode ser planejado separado da embalagem, que por sua vez deve ser definida com base em engenharia, marketing, comunicação, legislação, economia e inovação. Para alguns produtos design, forma e função da embalagem podem ser tão importantes quanto o seu conteúdo, por esses e por outros motivos podemos chamar a embalagem de “vendedor silencioso”. Nesse trabalho você ira ver diferentes tipos de plástico, suas propriedades, aplicações, reciclagem e muito mais.
  • 2. 2. Tipos Existem muitos tipos de plásticos. Os mais rígidos, os fininhos e fáceis de amassar, os transparentes, etc.. São divididos em dois grupos de acordo com as suas características de fusão ou derretimento: termoplásticos e termorrígidos. Os termoplásticos são aqueles que amolecem ao serem aquecidos, podendo ser moldados, e quando resfriados ficam sólidos e tomam uma nova forma. Esse processo pode ser repetido várias vezes. Correspondem a 80% dos plásticos consumidos. Os termorrígidos ou termofixos são aqueles que não derretem e que apesar de não poderem ser mais moldados, podem ser pulverizados e aproveitados como carga ou serem incinerados para recuperação de energia. Termofixos  PET – Polietileno Tereftalato  PEAD – Polietileno de Alta Densidade  PVC – Policloreto de Vinila  PEBD – Polietileno de Baixa Densidade  PP - Polipropileno  PS – Poliestireno  OUTROS Termorrígidos  PU - Poliuretanos  EVA – Poliacetato de Etileno Vinil
  • 3. 3. Classificação As numerosas substâncias plásticas existentes, naturais ou artificiais, são classificadas em dois grandes grupos, chamados de termoplásticos e termoestáveis devido a seu comportamento ante as variações de temperatura. Materiais termoplásticos. Termoendurecíveis: ganham forma de produtos rígidos por ação do calor e de reações químicas e não são susceptíveis de serem moldados novamente por ação do calor; Termoplásticos: amolecem quando aquecidos e endurecem de novo quando arrefecem o que permite moldá-los sucessivas vezes. Mais de 80% dos plásticos vulgarmente utilizados são deste tipo. 4. Propriedades  PEAD - Incolor e Opaco possui alta rigidez e resistência  PEBD - Incolor Translúcido ou Opaco possui alta flexibilidade e boa resistência mecânica.  PP - Incolor e opaco possui boa resistência a choques e alta resistência química  PS - Incolor e transparente, grande rigidez, baixa resistência a choques e riscos, transparência.  PVC - Incolor e transparente, com flexibilidade com adição de modificadores e alta resistência à chama.  PET incolor, transparente ou opaco, alta resistência mecânica e química, transparência.  PU - Flexibilidade, leveza, resistência à abrasão, possibilidade de design diferenciado.
  • 4. 5. Aplicações  PET - (polietileno tereftalato) - garrafas de refrigerante, sucos e óleo de cozinha, produtos farmacêuticos, produtos de limpeza, mantas de impermeabilização e fibras têxteis.  PEAD - (polietileno de alta densidade) - frascos de shampoo e maquiagem, baldes, utensílios domésticos, embalagens para cosméticos, produtos químicos e de limpeza, tubos para líquidos e gás, tanques de combustível para veículos automotivos;  PVC - (Policloreto de Vinila) - tubos e conexões de encanamento; alguns frascos de detergente, pastas para material escolar, calçados. É mais rígido, porém resistente, frascos de agua mineral, tubos e conexões, calçados, encapamentos de cabos elétricos, equipamentos medico-cirúrgicos, esquadrias e revestimentos.  PEBD - (polietileno de baixa densidade) - plástico "filme" - sacos plásticos de lixo, brinquedos. São finos e bastante flexíveis, embalagens de alimentos, sacos industriais, sacos para lixo, lonas agrícolas, filmes flexíveis para embalagens e rótulos de brinquedos.  PP - (Polipropileno) - plásticos "filme" de proteção de alimentos, peças de automóveis, embalagens de massas e biscoitos, potes de margarina, seringas descartáveis, equipamentos medico-cirúrgicos, fibras e fios têxteis, utilidades domesticas, autopeças (para-choque de carro).  PS – (poliestireno) - copos plásticos; sacos de batata, copos descartáveis, placas isolantes, aparelhos de som e TV, embalagens de alimentos, revestimento de geladeiras, material escolar;.  OUTROS – Utilizados em eletrodomésticos, aparelhos telefônicos, revestimentos diversos, pisos, plásticos especiais e de engenharia, CDs, corpos de computadores etc.
  • 5.  PU & EVA – solados de calçados, interruptores, peças indústrias elétricas, peças para banheiros, prato, travessas, cinzeiros, telefones e etc. 6. Problemas Ambientais Em 1997, pesquisadores estimaram que o Oceano Atlântico estivesse contaminado com 580.000 peças flutuantes de plástico por quilômetro quadrado. De acordo com o Greenpeace, o problema não é apenas o plástico que flutua: 70% do plástico afundam, contaminando o fundo dos oceanos, com cerca de 110 pedaços de lixo por quilômetro quadrado. No oceano Pacífico, existe uma enorme ilha de plástico chamada de Grande Porção de Lixo do Pacífico. Calcula-se que sua área seja maior do que a dos estados brasileiros de São Paulo, Rio de Janeiro, Minas Gerais e Goiás somado. A degradação do plástico é de até 450 anos. O descarte, na natureza, de material plástico à base de poliuretano, causa problemas ambientais. Uma hipótese, ainda em estudo, para solucionar tal problema seria o uso do fungo Pestalotiopsis Microspora, supostamente capaz de alimentar-se de poliuretano. Devido à sua insolubilidade em água e inércia química relativa, plásticos puros geralmente têm baixa toxicidade. Alguns produtos de plástico contêm uma variedade de aditivos, alguns dos quais podem ser tóxicos. Por exemplo, plastificantes como
  • 6. ftalatos e adipatos são muitas vezes adicionados aos plásticos frágeis, como cloreto de polivinila, para torná-los flexíveis o suficiente para uso em embalagens de alimentos, brinquedos e muitos outros itens. Traços destes compostos podem lixiviar para fora do produto. Devido a preocupações sobre os efeitos que isso pode causar, a União Europeia tem restringido o uso do DEHP e outros ftalatos em algumas aplicações. Alguns compostos de lixiviação de recipientes para alimentos de poliestireno têm sido propostos para interferir nas funções hormonais e são suspeitos de causar câncer. As embalagens plásticas estão sendo mais usadas devidas algumas vantagens que apresentam. Elas são obtidas a baixo custo, são impermeáveis, flexíveis e ao mesmo tempo são resistentes a impactos. Sendo assim, foram substituindo as antigas embalagens até serem usadas em larga escala como nos dias atuais. Durante muitos anos as embalagens plásticas estão sendo despejadas em aterros sanitários, mas o fato de não serem biodegradáveis faz com que se acumulem no ambiente conservando por muitos anos suas propriedades físicas, já que possuem elevada resistência. São necessários de 100 a 150 anos (aproximadamente) para que os polímeros sejam degradados no ambiente. Por isso a poluição causada pelos polímeros se tornou uma preocupação em escala mundial, além de poluir rios e lagos, polui também o solo de um modo geral. Os grandes vilões deste século são os materiais poliméricos como as garrafas PET de refrigerantes, que acarretam problemas ambientais pelas características de serem descartáveis. A poluição pelos polímeros poderia ser minimizada com a reciclagem dos plásticos ou o emprego de polímeros biodegradáveis. 7.Reciclagem  A Reciclagem Energética: É hoje uma realidade e uma importante alternativa no gerenciamento do lixo urbano. É a tecnologia que transforma lixo urbano em energia elétrica e
  • 7. térmica, um processo amplamente utilizado no exterior e que aproveita o alto poder calorífico contido nos plásticos para uso como combustível. Países que adotam esse processo, além de criar novas matrizes energéticas, conseguem reduzir substancialmente o volume de seus resíduos, um benefício incalculável para cidades com problemas de espaço para a destinação do lixo urbano. Embora a Reciclagem Energética ainda não exista no Brasil, a Plastivida entende que essa é uma alternativa ambientalmente correta, economicamente viável e socialmente recomendável. Investir na Reciclagem Energética do lixo urbano proporciona vantagens e benefícios inquestionáveis:  Reciclagem Mecânica: No Brasil, é amplamente; é mais barata e mantém uma boa qualidade do produto: Para facilitar a separação dos materiais plásticos para a reciclagem, foram estabelecidos códigos para diferenciar cada tipo.  Reciclagem Química: Esse tipo de reciclagem reprocessa os plásticos transformando-os em petroquímicos básicos: monômeros ou misturas de hidrocarbonetos que
  • 8. servem como matéria-prima, em refinarias ou centrais petroquímicas, para a obtenção de produtos nobres de elevada qualidade. O objetivo da reciclagem química é a recuperação dos componentes químicos individuais para serem reutilizados como produtos químicos ou para a produção de novos plásticos. Essa reciclagem permite tratar mistura de plásticos, reduzindo custos de pré-tratamento, custos de coleta e seleção. Além disso, permite produzir plásticos novos com a mesma qualidade de um polímero original. Os novos processos de reciclagem química desenvolvidos permitem a reciclagem de misturas de plásticos diferentes, com aceitação de determinado grau de contaminantes (ex.: tintas, papéis etc.). Existem vários processos de reciclagem química, entre eles: o HIDROGENAÇÃO: As cadeias são quebradas mediante o tratamento com hidrogênio e calor, gerando produtos capazes de serem processados em refinarias. o GASEIFICAÇÃO: Os plásticos são aquecidos com ar ou oxigênio, gerando-se gás de síntese contendo monóxido de carbono e hidrogênio. o QUIMÓLISE: Consiste na quebra parcial ou total dos plásticos em monômeros na presença de glicol/metanol e água. o PIRÓLISE: É a quebra das moléculas pela ação do calor na ausência de oxigênio. Este processo gera frações de hidrocarbonetos capazes de serem processados em refinarias. 8. Conclusão Tente viver no mundo de hoje sem o plástico. Observe ao seu redor, com certeza algum material próximo será de plástico. Agora, imagine se a matéria- prima dessa peça fosse substituída por outro material em pleno século XXI. Um pen-drive de alumínio? Uma seringa de metal? Nos dias de hoje, é impossível pensar no bem-estar da população sem os benefícios gerados pela indústria plástica e seus progressos tecnológicos. O plástico é indispensável na infraestrutura atual e do futuro, em tubulações e canalizações, assim como nos meios de transporte, tornando trens, carros e aviões mais leves e, portanto,
  • 9. mais econômicos. Isso sem falar na biomedicina, na qual temos seringas, implantes e próteses e até um coração artificial de plástico, que mantém o paciente vivo até ser transplantado. O consumo per capita do material vem registrando taxas de crescimento superiores às do Produto Interno Bruto (PIB). Vendo por este ponto é impossível viver sem plástico, ele nos trás muitas praticidades e é impossível de imaginar substituir tudo de plástico por outros materiais.