SlideShare a Scribd company logo
1 of 64
Canal Regulation Works
170602
Module-IV
Part-II
Syllabus
• Canal Regulation Works:
• Canal Fall- Necessity and Location- Types of
Falls- Cross Regulator and Distributory Head
Regulator- Their Functions, Silt Control
Devices, Canal Escapes- Types of Escapes.
What is Canal Fall?
• Whenever the available natural ground slope
is steep than the designed bed slope of the
channel, the difference is adjusted by
constructing vertical ‘falls’ or ‘drops’ in the canal
bed at suitable intervals, as shown in figure
below. Such a drop in a natural canal bed will
not be stable and, therefore, in order to retain
this drop, a masonry structure is constructed.
Such a structure is called a Canal Fall or a
Canal drop.
Canal Fall
Canal Fall
Irrigation canals are designed for a prescribed bed
slope so that velocity becomes non silting or non
scouring. But if the ground topography is such that in
order to maintain the canal designed slope, indefinite
filling from falling ground level is to be made. This
indefinite filling is avoided by constructing a hydraulic
structure in the place of sudden bed level. This
hydraulic structure is called canal fall or drop. Beyond
the canal fall, canal again maintains its designed slope.
Canal Fall
• Thus, a canal fall or drop is an irrigation structure
constructed across a canal to lower down its bed
level to maintain the designed slope when there is a
change of ground level to maintain the designed
slope when there is change of ground level. This
falling water at the fall has some surplus energy. The
fall is constructed in such a way that it can destroy
this surplus energy.
Necessity of Canal Falls
• When the slope of the ground suddenly changes
to steeper slope, the permissible bed slope can
not be maintained. It requires excessive
earthwork in filling to maintain the slope. In such
a case falls are provided to avoid excessive earth
work in filling
Necessity of Canal Falls
Necessity of Canal Falls
• When the slope of the ground is more or
less uniform and the slope is greater than
the permissible bed slope of canal.
Necessity of Canal Falls
• In cross-drainage works, when the difference
between bed level of canal and that of
drainage is small or when the F.S.L of the
canal is above the bed level of drainage
then the canal fall is necessary to carry the
canal water below the stream or drainage.
Necessity of Canal Falls
Types of Canal Fall
• Depending on the ground level conditions and shape
of the fall the various types of fall are:
Ogee Fall
• The ogee fall was constructed by Sir Proby Cautley on
the Ganga Canal. This type of fall has gradual convex
and concave surfaces i.e. in the ogee form. The gradual
convex and concave surface is provided with an aim
to provide smooth transition and to reduce
disturbance and impact. A hydraulic jump is formed
which dissipates a part of kinetic energy. Upstream
and downstream of the fall is provided by Stone
Pitching.
Ogee Fall
Types of Canal Fall
Stepped Fall
• It consists of a series of vertical drops in the form of
steps. This steps is suitable in places where sloping
ground is very long and require a long glacis to
connect the higher bed level u/s with lower bed level
d/s. it is practically a modification of rapid fall. The
sloping glacis is divided into a number drops to bring
down the canal bed step by step to protect the canal
bed and sides from damage by erosion. Brick walls are
provided at each drop. The bed of the canal within the
fall is protected by rubble masonry with surface
finishing by rich cement mortar.
Stepped Fall
Types of Canal Fall
Vertical Fall (Sarda Fall)
• In the simple type, canal u/s bed is on the level of
upstream curtain wall, canal u/s bed level is
below the crest of curtain wall. In both the cases,
a cistern is formed to act as water cushion. Floor
is made of concrete u/s and d/s side stone
pitching with cement grouting is provided. This
type of fall is used in Sarda Canal UP and
therefore, it is also called Sarda Fall.
Vertical Fall
Types of Canal Fall
Rapid Fall
• When the natural ground level is even and
rapid, this rapid fall is suitable. It consists of
long sloping glacis. Curtain walls are
provided on both u/s and d/s sides. Rubble
masonry with cement grouting is provided
from u/s curtain wall to d/s curtain wall.
Masonry surface is finished with a rich
cement mortar.
Rapid Fall
Types of Canal Fall
Straight Glacis Fall
• It consists of a straight glacis provided with a
crest wall. For dissipation of energy of flowing
water, a water cushion is provided. Curtain
walls are provided at toe and heel. Stone
pitching is required at upstream and
downstream of the fall.
Straight Glacis Fall
Types of Canal Fall
Trapezoidal Notch Fall
• It was designed by Reid in 1894. In this type a
body or foundation wall across the channel
consisting of several trapezoidal notches between
side pier and intermediate pier is constructed.
The sill of the notches are kept at upstream bed
level of the canal. The body wall is made of
concrete. An impervious floor is provided to
resist the scouring effect of falling water.
Upstream and downstream side of the fall is
protected by stone pitching finished with cement
grouting
Trapezoidal Notch Fall
Types of Canal Fall
Well or Cylinder Notch Fall
• In this type, water of canal from higher level
is thrown in a well or a cylinder from where
it escapes from bottom. Energy is dissipated in
the well in turbulence. They are suitable for
low discharges and are economical also.
Types of Canal Fall
Montague Type Fall
• In the straight glacis type profile, energy
dissipation is not complete. Therefore,
montague developed this type of profile
where energy dissipation takes place. His
profile is parabolic and is given by the
following equation,
Montague Type Fall
Montague Type Fall
Types of Canal Fall
Inglis or Baffle Fall
• Here glacis is straight and sloping, but baffle
wall provided on the downstream floor
dissipate the energy. Main body of glacis is
made of concrete. Curtain walls both at toe
and heel are provided. Stone pitching are
essential both at u/s and d/s ends
Inglis or Baffle Fall
Canal Escape
• It is a side channel constructed to remove
surplus water from an irrigation channel (main
canal, branch canal, or distributary etc.) into a
natural drain.
• The water in the irrigation channel may become
surplus due to -
• Mistake
• Difficulty in regulation at the head
• Excessive rainfall in the upper reaches
• Outlets being closed by cultivators as they find
the demand of water is over
Canal Escape
• It is the structure required to dispose of surplus or
excess water from canal from time to time. Thus, a
canal escape serves as safety valve for canal system. It
provides protection to the canal from possible damage
due to excess supply which may be due to mistake in
releasing water at head regulator or heavy rainfall
that makes sudden regular demand of water. The
excess supply makes the canal banks vulnerable to
failure due to overtopping or dangerous leaks.
Therefore, provision for disposing this surplus water
in form of canal escapes at suitable intervals along the
canal is essential. Moreover emptying canal for repair
and maintenance and removal of sediment deposited
in the canal can also be achieved with the help of
canal escapes.
Escapes are usually of the following
three types.
Surplus Escape
• It is also called regulator type. In this type sill
of the escape is kept at canal bed level and the
flow is controlled by a gate. This type of
escapes are preferred now-a-days as they
give better control and can be used for
employing the canal for maintenance.
Surplus Escape
Surplus Escape
Escapes are usually of the following
three types.
Tail Escape
• A tail escape is provided at the tail end of the
canal and is useful in maintaining the
required FSL in the tail reaches of the canal
and hence, they are called tail escape.
Tail Escape
Escapes are usually of the following
three types.
Scouring Escape
• This escape is constructed for the purpose of scouring
of excess silt deposited in the head reaches from time
to time. Hence, it is called scouring escape. Here the
sill of the regulator is kept at about 0.3 m below the
canal bed level at escape site. When deposited silt to be
scoured, a higher discharge than the FSL is allowed to
enter the canal from the head works. The gate of the
escape is raised so as to produce scouring velocity
which remove the deposited silt. This type of Escape
has become obsolete as silt ejector provided in the
canal can produce better efficiency.
Scouring Escape
Head Regulator
• Regulators Constructed at the off taking point are called head
regulators. When it is constructed at the head of main canal it
is known as canal head regulator. And when it is constructed
at the head of distributary, it is called distributary head
regulator.
• Function:
• To control the entry of water either from the reservoir or
from the main canal.
• To control the entry of silt into off taking or main canal.
• To serve as a meter for measuring discharge of water.
Head Regulator
• Construction: The components of head regulator
depends upon the size of canal and location of head
regulator. It consists of one or more gated research
openings with barrels running through the bank.
For large canals head regulators are flumed to
facilitate the measurement of discharge.
Head Regulator
Cross Regulator
• Cross Regulator
• A Regulator Constructed in the main canal or parent
canal downstream of an off take canal is called cross-
regulator.
• It is generally constructed at a distance of 9 to 12 km
along the main canal and 6 to 10 km along branch
canal.
• Functions:
• (i) To Control the flow of water in canal system
• (ii) To feed the off taking Canals
• (iii) To enable closing of the canal breaches on the d/s
• (iv) To provide roadway for vehicular traffic
Cross Regulator
Cross Regulator
Construction: For Cross Regulators abutments
with grooves and piers are constructed parallel
to the parent canal. The sill of regulation is kept
little higher than the u/s bed level of canal
across which it is constructed. Vertical lift gates
are fitted in the grooves. The gates can be
operate from the road.
Canal regulators
Canal regulators
Cross Regulator
Head Regulator
Silt Control Devices
• Scouring Sluices or Under sluices, silt pocket and silt
excluders
• The above three components are employed for silt
control at the head work. Divide wall creates a silt
pocket. Silt excluder consists of a number under
tunnels resting on the floor pocket. Top floor of the
tunnel is at the level of sill of the head regulator.
• Various tunnels of different lengths are made. The
tunnel near the head regulator is of same length of
head regulator and successive tunnels towards the
divide wall are short. Velocity near the silt laden water
is disposed downstream through tunnels and under
sluices.
Silt Control Devices
• Silt Excluder: The silt excluder is located on
the u/s of diversion weir and in front of the
head regulator. The object is to remove silt
that has entered in the stilling basin through
scouring sluices.
• Silt Ejector: Silt Ejector is located in the canal
take off from the diversion weir at 6 to 10 km
in the canal reach. It ejects the silt that has
entered in the canal
Silt Control Devices
Silt Excluder
Silt Control Devices
Silt Ejector
Silt Control Devices
Canal Outlet/modules
• A canal outlet or a module is a small
structure built at the head of the water
course so as to connect it with a minor or a
distributary channel.
• It acts as a connecting link between the
system manager and the farmers.
Canal Outlet/modules
Non-Modular Modules
• Non-modular modules are those through which the
discharge depends upon the head difference
between the distributary and the water course.
Common examples are:
(i) Open sluice
(ii) Drowned pipe outlet
Types of Outlet/modules
• Non-modular modules
Semi-Modules or Flexible modules
• Due to construction, a super-critical velocity is
ensured in the throat and thereby allowing the
formation of a jump in the expanding flume.
• The formation of hydraulic jump makes the outlet
discharge independent of the water level in water
course, thus making it a semi module. Semi-modules
or flexible modules are those through which the
discharge is independent of the water level of the
water course but depends only upon the water level of
the distributary so long as a minimum working head is
available.
• Examples are pipe outlet, open flume type etc.
Semi-Modules or Flexible modules
Rigid Modules or Modular Outlets
• Rigid modules or modular outlets are those through
which discharge is constant and fixed within limits,
irrespective of the fluctuations of the water levels of
either the distributary or of the water course or both.
• An example is Gibb’s module:
Gibb’s Module
Exam Questions
Dec 2011, June 2012
• What do you understand by a fall in
canal? Why it is necessary?
• What are the functions of a canal head
regulator?
• Explain functions of cross regulator and
distributory head regulator.
• Write a S.N. on Types of Canal Falls
References
• Irrigation Engineering
– By Prof N N Basak
– Tata Mcgraw-Hill
• Irrigation Engineering & Hydraulic Structures
– By Prof. Santosh Kumar Garg
– Khanna Publishers
• Internet Websites
• http://www.uap-bd.edu/
• Lecture Notes By: Dr. M. R. Kabir
• Professor and Head, Department of Civil Engineering Department
• University of Asia Pacific (UAP), Dhaka
Thanks………..GHT

More Related Content

What's hot (20)

Earthen Dams
Earthen DamsEarthen Dams
Earthen Dams
 
Diversion head works
Diversion head worksDiversion head works
Diversion head works
 
Gravity dam
Gravity damGravity dam
Gravity dam
 
Failure of weir and barrage
Failure of weir and barrageFailure of weir and barrage
Failure of weir and barrage
 
Canal
CanalCanal
Canal
 
Canal outlets and modules
Canal outlets and modulesCanal outlets and modules
Canal outlets and modules
 
Spillways
SpillwaysSpillways
Spillways
 
Chapter 4 seepage theories
Chapter 4 seepage theoriesChapter 4 seepage theories
Chapter 4 seepage theories
 
Design of Canal (Kennedy & Lacey Theory) & Diversion Headwork
Design of Canal (Kennedy & Lacey Theory) & Diversion HeadworkDesign of Canal (Kennedy & Lacey Theory) & Diversion Headwork
Design of Canal (Kennedy & Lacey Theory) & Diversion Headwork
 
Canal headworks
Canal headworksCanal headworks
Canal headworks
 
energy dissipator in hydraulic structure
energy dissipator  in  hydraulic structure energy dissipator  in  hydraulic structure
energy dissipator in hydraulic structure
 
coulomb's theory of earth pressure
 coulomb's theory of earth pressure coulomb's theory of earth pressure
coulomb's theory of earth pressure
 
presentation : cross drainage work
presentation : cross drainage workpresentation : cross drainage work
presentation : cross drainage work
 
river training work
river training workriver training work
river training work
 
Gravity Dam
Gravity DamGravity Dam
Gravity Dam
 
Cross drainage work
Cross drainage workCross drainage work
Cross drainage work
 
Canal irrigation
Canal irrigationCanal irrigation
Canal irrigation
 
Design of Hydraulic Structures
Design of Hydraulic StructuresDesign of Hydraulic Structures
Design of Hydraulic Structures
 
River training works lecture
River training works lectureRiver training works lecture
River training works lecture
 
Sewer Appurtenances
Sewer AppurtenancesSewer Appurtenances
Sewer Appurtenances
 

Similar to Canal Fall

Canal Regulation Works
Canal Regulation WorksCanal Regulation Works
Canal Regulation WorksSANJEEV Wazir
 
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptx
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptxMODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptx
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptxSilasChaudhari
 
Canal MASONRY WORK
Canal MASONRY WORKCanal MASONRY WORK
Canal MASONRY WORKSAGAR RAUT
 
hydraulic structures in civil engineering
hydraulic structures in civil engineeringhydraulic structures in civil engineering
hydraulic structures in civil engineeringBittuRajkumar
 
Unit 3 spillway
Unit 3 spillwayUnit 3 spillway
Unit 3 spillwayMood Naik
 
Diversionheadworks 150327075328-conversion-gate01
Diversionheadworks 150327075328-conversion-gate01Diversionheadworks 150327075328-conversion-gate01
Diversionheadworks 150327075328-conversion-gate01saibabu48
 
Chapter Five-CANAL APPURTENANT STRUCTURES.pdf
Chapter Five-CANAL APPURTENANT STRUCTURES.pdfChapter Five-CANAL APPURTENANT STRUCTURES.pdf
Chapter Five-CANAL APPURTENANT STRUCTURES.pdfAbdanurJihad
 
diversionheadworks-150327075328-conversion-gate01.pdf
diversionheadworks-150327075328-conversion-gate01.pdfdiversionheadworks-150327075328-conversion-gate01.pdf
diversionheadworks-150327075328-conversion-gate01.pdfShrutiLotliker
 
Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...Denish Jangid
 
weir & barrage
weir & barrageweir & barrage
weir & barrageRaj Daxini
 
Diversion of headwork
Diversion of headwork Diversion of headwork
Diversion of headwork Jay Khoradiya
 
CANAL IRRIGATION
CANAL IRRIGATIONCANAL IRRIGATION
CANAL IRRIGATIONkannan1407
 
Presentation1 hydro;ogy-SKK.pdf
Presentation1 hydro;ogy-SKK.pdfPresentation1 hydro;ogy-SKK.pdf
Presentation1 hydro;ogy-SKK.pdfShrutiLotliker
 

Similar to Canal Fall (20)

Canal Regulation Works
Canal Regulation WorksCanal Regulation Works
Canal Regulation Works
 
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptx
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptxMODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptx
MODULE 4 REGULATING AND CROSS DRAINAGE WORKS.pptx
 
Canal MASONRY WORK
Canal MASONRY WORKCanal MASONRY WORK
Canal MASONRY WORK
 
Canal falls
Canal fallsCanal falls
Canal falls
 
hydraulic structures in civil engineering
hydraulic structures in civil engineeringhydraulic structures in civil engineering
hydraulic structures in civil engineering
 
12. Canal Head Regulation.1.pdf
12. Canal Head Regulation.1.pdf12. Canal Head Regulation.1.pdf
12. Canal Head Regulation.1.pdf
 
Diversion head work
Diversion head workDiversion head work
Diversion head work
 
Unit 3 spillway
Unit 3 spillwayUnit 3 spillway
Unit 3 spillway
 
Diversionheadworks 150327075328-conversion-gate01
Diversionheadworks 150327075328-conversion-gate01Diversionheadworks 150327075328-conversion-gate01
Diversionheadworks 150327075328-conversion-gate01
 
Chapter Five-CANAL APPURTENANT STRUCTURES.pdf
Chapter Five-CANAL APPURTENANT STRUCTURES.pdfChapter Five-CANAL APPURTENANT STRUCTURES.pdf
Chapter Five-CANAL APPURTENANT STRUCTURES.pdf
 
diversionheadworks-150327075328-conversion-gate01.pdf
diversionheadworks-150327075328-conversion-gate01.pdfdiversionheadworks-150327075328-conversion-gate01.pdf
diversionheadworks-150327075328-conversion-gate01.pdf
 
Canal structures
Canal structuresCanal structures
Canal structures
 
Canal structures
Canal structuresCanal structures
Canal structures
 
Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...
 
weir & barrage
weir & barrageweir & barrage
weir & barrage
 
Diversion of headwork
Diversion of headwork Diversion of headwork
Diversion of headwork
 
Spillway
SpillwaySpillway
Spillway
 
CANAL IRRIGATION
CANAL IRRIGATIONCANAL IRRIGATION
CANAL IRRIGATION
 
Presentation1 hydro;ogy-SKK.pdf
Presentation1 hydro;ogy-SKK.pdfPresentation1 hydro;ogy-SKK.pdf
Presentation1 hydro;ogy-SKK.pdf
 
Spillways
SpillwaysSpillways
Spillways
 

More from GAURAV. H .TANDON

Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City PlanningGAURAV. H .TANDON
 
Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City PlanningGAURAV. H .TANDON
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesGAURAV. H .TANDON
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesGAURAV. H .TANDON
 
Crash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxCrash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxGAURAV. H .TANDON
 
Ecological Footprint (1).pptx
Ecological Footprint (1).pptxEcological Footprint (1).pptx
Ecological Footprint (1).pptxGAURAV. H .TANDON
 
The unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesThe unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesGAURAV. H .TANDON
 
Gamification of Smart Cities
Gamification of Smart Cities Gamification of Smart Cities
Gamification of Smart Cities GAURAV. H .TANDON
 
Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters GAURAV. H .TANDON
 
Cyber Security in Smart Buildings
Cyber Security in Smart Buildings Cyber Security in Smart Buildings
Cyber Security in Smart Buildings GAURAV. H .TANDON
 

More from GAURAV. H .TANDON (20)

Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City Planning
 
Suicide Prevention through Architecture (Building) and City Planning
Suicide Prevention through  Architecture (Building) and City PlanningSuicide Prevention through  Architecture (Building) and City Planning
Suicide Prevention through Architecture (Building) and City Planning
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart Cities
 
Digital Detoxing in Smart Cities
Digital Detoxing in Smart CitiesDigital Detoxing in Smart Cities
Digital Detoxing in Smart Cities
 
Premerital Sceening .pptx
Premerital Sceening .pptxPremerital Sceening .pptx
Premerital Sceening .pptx
 
Polymath(Renaissance man)
Polymath(Renaissance man)Polymath(Renaissance man)
Polymath(Renaissance man)
 
Crash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptxCrash for Cash-Organized Crime (COC).pptx
Crash for Cash-Organized Crime (COC).pptx
 
Voting Age .pptx
Voting Age .pptxVoting Age .pptx
Voting Age .pptx
 
Ecological Footprint (1).pptx
Ecological Footprint (1).pptxEcological Footprint (1).pptx
Ecological Footprint (1).pptx
 
Urban Heat Island Effect
Urban Heat Island EffectUrban Heat Island Effect
Urban Heat Island Effect
 
Communication Skills
Communication SkillsCommunication Skills
Communication Skills
 
The unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companiesThe unethical practice of gift giving to doctors by pharma companies
The unethical practice of gift giving to doctors by pharma companies
 
Compassionate Cities
Compassionate CitiesCompassionate Cities
Compassionate Cities
 
Gamification of Smart Cities
Gamification of Smart Cities Gamification of Smart Cities
Gamification of Smart Cities
 
Anti-Microbial Copper
Anti-Microbial Copper Anti-Microbial Copper
Anti-Microbial Copper
 
Smart Forest City
Smart Forest City Smart Forest City
Smart Forest City
 
Smart forest cities
Smart forest cities Smart forest cities
Smart forest cities
 
Automotive Hacking
Automotive Hacking Automotive Hacking
Automotive Hacking
 
Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters Collusion and Fraud Detection on Electronic Energy Meters
Collusion and Fraud Detection on Electronic Energy Meters
 
Cyber Security in Smart Buildings
Cyber Security in Smart Buildings Cyber Security in Smart Buildings
Cyber Security in Smart Buildings
 

Recently uploaded

Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 

Recently uploaded (20)

★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 

Canal Fall

  • 2. Syllabus • Canal Regulation Works: • Canal Fall- Necessity and Location- Types of Falls- Cross Regulator and Distributory Head Regulator- Their Functions, Silt Control Devices, Canal Escapes- Types of Escapes.
  • 3. What is Canal Fall? • Whenever the available natural ground slope is steep than the designed bed slope of the channel, the difference is adjusted by constructing vertical ‘falls’ or ‘drops’ in the canal bed at suitable intervals, as shown in figure below. Such a drop in a natural canal bed will not be stable and, therefore, in order to retain this drop, a masonry structure is constructed. Such a structure is called a Canal Fall or a Canal drop.
  • 5. Canal Fall Irrigation canals are designed for a prescribed bed slope so that velocity becomes non silting or non scouring. But if the ground topography is such that in order to maintain the canal designed slope, indefinite filling from falling ground level is to be made. This indefinite filling is avoided by constructing a hydraulic structure in the place of sudden bed level. This hydraulic structure is called canal fall or drop. Beyond the canal fall, canal again maintains its designed slope.
  • 6. Canal Fall • Thus, a canal fall or drop is an irrigation structure constructed across a canal to lower down its bed level to maintain the designed slope when there is a change of ground level to maintain the designed slope when there is change of ground level. This falling water at the fall has some surplus energy. The fall is constructed in such a way that it can destroy this surplus energy.
  • 7. Necessity of Canal Falls • When the slope of the ground suddenly changes to steeper slope, the permissible bed slope can not be maintained. It requires excessive earthwork in filling to maintain the slope. In such a case falls are provided to avoid excessive earth work in filling
  • 9. Necessity of Canal Falls • When the slope of the ground is more or less uniform and the slope is greater than the permissible bed slope of canal.
  • 10. Necessity of Canal Falls • In cross-drainage works, when the difference between bed level of canal and that of drainage is small or when the F.S.L of the canal is above the bed level of drainage then the canal fall is necessary to carry the canal water below the stream or drainage.
  • 12. Types of Canal Fall • Depending on the ground level conditions and shape of the fall the various types of fall are: Ogee Fall • The ogee fall was constructed by Sir Proby Cautley on the Ganga Canal. This type of fall has gradual convex and concave surfaces i.e. in the ogee form. The gradual convex and concave surface is provided with an aim to provide smooth transition and to reduce disturbance and impact. A hydraulic jump is formed which dissipates a part of kinetic energy. Upstream and downstream of the fall is provided by Stone Pitching.
  • 14. Types of Canal Fall Stepped Fall • It consists of a series of vertical drops in the form of steps. This steps is suitable in places where sloping ground is very long and require a long glacis to connect the higher bed level u/s with lower bed level d/s. it is practically a modification of rapid fall. The sloping glacis is divided into a number drops to bring down the canal bed step by step to protect the canal bed and sides from damage by erosion. Brick walls are provided at each drop. The bed of the canal within the fall is protected by rubble masonry with surface finishing by rich cement mortar.
  • 16. Types of Canal Fall Vertical Fall (Sarda Fall) • In the simple type, canal u/s bed is on the level of upstream curtain wall, canal u/s bed level is below the crest of curtain wall. In both the cases, a cistern is formed to act as water cushion. Floor is made of concrete u/s and d/s side stone pitching with cement grouting is provided. This type of fall is used in Sarda Canal UP and therefore, it is also called Sarda Fall.
  • 18. Types of Canal Fall Rapid Fall • When the natural ground level is even and rapid, this rapid fall is suitable. It consists of long sloping glacis. Curtain walls are provided on both u/s and d/s sides. Rubble masonry with cement grouting is provided from u/s curtain wall to d/s curtain wall. Masonry surface is finished with a rich cement mortar.
  • 20. Types of Canal Fall Straight Glacis Fall • It consists of a straight glacis provided with a crest wall. For dissipation of energy of flowing water, a water cushion is provided. Curtain walls are provided at toe and heel. Stone pitching is required at upstream and downstream of the fall.
  • 22. Types of Canal Fall Trapezoidal Notch Fall • It was designed by Reid in 1894. In this type a body or foundation wall across the channel consisting of several trapezoidal notches between side pier and intermediate pier is constructed. The sill of the notches are kept at upstream bed level of the canal. The body wall is made of concrete. An impervious floor is provided to resist the scouring effect of falling water. Upstream and downstream side of the fall is protected by stone pitching finished with cement grouting
  • 24. Types of Canal Fall Well or Cylinder Notch Fall • In this type, water of canal from higher level is thrown in a well or a cylinder from where it escapes from bottom. Energy is dissipated in the well in turbulence. They are suitable for low discharges and are economical also.
  • 25. Types of Canal Fall Montague Type Fall • In the straight glacis type profile, energy dissipation is not complete. Therefore, montague developed this type of profile where energy dissipation takes place. His profile is parabolic and is given by the following equation,
  • 28. Types of Canal Fall Inglis or Baffle Fall • Here glacis is straight and sloping, but baffle wall provided on the downstream floor dissipate the energy. Main body of glacis is made of concrete. Curtain walls both at toe and heel are provided. Stone pitching are essential both at u/s and d/s ends
  • 30. Canal Escape • It is a side channel constructed to remove surplus water from an irrigation channel (main canal, branch canal, or distributary etc.) into a natural drain. • The water in the irrigation channel may become surplus due to - • Mistake • Difficulty in regulation at the head • Excessive rainfall in the upper reaches • Outlets being closed by cultivators as they find the demand of water is over
  • 31. Canal Escape • It is the structure required to dispose of surplus or excess water from canal from time to time. Thus, a canal escape serves as safety valve for canal system. It provides protection to the canal from possible damage due to excess supply which may be due to mistake in releasing water at head regulator or heavy rainfall that makes sudden regular demand of water. The excess supply makes the canal banks vulnerable to failure due to overtopping or dangerous leaks. Therefore, provision for disposing this surplus water in form of canal escapes at suitable intervals along the canal is essential. Moreover emptying canal for repair and maintenance and removal of sediment deposited in the canal can also be achieved with the help of canal escapes.
  • 32. Escapes are usually of the following three types. Surplus Escape • It is also called regulator type. In this type sill of the escape is kept at canal bed level and the flow is controlled by a gate. This type of escapes are preferred now-a-days as they give better control and can be used for employing the canal for maintenance.
  • 35. Escapes are usually of the following three types. Tail Escape • A tail escape is provided at the tail end of the canal and is useful in maintaining the required FSL in the tail reaches of the canal and hence, they are called tail escape.
  • 37. Escapes are usually of the following three types. Scouring Escape • This escape is constructed for the purpose of scouring of excess silt deposited in the head reaches from time to time. Hence, it is called scouring escape. Here the sill of the regulator is kept at about 0.3 m below the canal bed level at escape site. When deposited silt to be scoured, a higher discharge than the FSL is allowed to enter the canal from the head works. The gate of the escape is raised so as to produce scouring velocity which remove the deposited silt. This type of Escape has become obsolete as silt ejector provided in the canal can produce better efficiency.
  • 39. Head Regulator • Regulators Constructed at the off taking point are called head regulators. When it is constructed at the head of main canal it is known as canal head regulator. And when it is constructed at the head of distributary, it is called distributary head regulator. • Function: • To control the entry of water either from the reservoir or from the main canal. • To control the entry of silt into off taking or main canal. • To serve as a meter for measuring discharge of water.
  • 40. Head Regulator • Construction: The components of head regulator depends upon the size of canal and location of head regulator. It consists of one or more gated research openings with barrels running through the bank. For large canals head regulators are flumed to facilitate the measurement of discharge.
  • 42. Cross Regulator • Cross Regulator • A Regulator Constructed in the main canal or parent canal downstream of an off take canal is called cross- regulator. • It is generally constructed at a distance of 9 to 12 km along the main canal and 6 to 10 km along branch canal. • Functions: • (i) To Control the flow of water in canal system • (ii) To feed the off taking Canals • (iii) To enable closing of the canal breaches on the d/s • (iv) To provide roadway for vehicular traffic
  • 44. Cross Regulator Construction: For Cross Regulators abutments with grooves and piers are constructed parallel to the parent canal. The sill of regulation is kept little higher than the u/s bed level of canal across which it is constructed. Vertical lift gates are fitted in the grooves. The gates can be operate from the road.
  • 49. Silt Control Devices • Scouring Sluices or Under sluices, silt pocket and silt excluders • The above three components are employed for silt control at the head work. Divide wall creates a silt pocket. Silt excluder consists of a number under tunnels resting on the floor pocket. Top floor of the tunnel is at the level of sill of the head regulator. • Various tunnels of different lengths are made. The tunnel near the head regulator is of same length of head regulator and successive tunnels towards the divide wall are short. Velocity near the silt laden water is disposed downstream through tunnels and under sluices.
  • 50. Silt Control Devices • Silt Excluder: The silt excluder is located on the u/s of diversion weir and in front of the head regulator. The object is to remove silt that has entered in the stilling basin through scouring sluices. • Silt Ejector: Silt Ejector is located in the canal take off from the diversion weir at 6 to 10 km in the canal reach. It ejects the silt that has entered in the canal
  • 54. Canal Outlet/modules • A canal outlet or a module is a small structure built at the head of the water course so as to connect it with a minor or a distributary channel. • It acts as a connecting link between the system manager and the farmers.
  • 56. Non-Modular Modules • Non-modular modules are those through which the discharge depends upon the head difference between the distributary and the water course. Common examples are: (i) Open sluice (ii) Drowned pipe outlet
  • 57. Types of Outlet/modules • Non-modular modules
  • 58. Semi-Modules or Flexible modules • Due to construction, a super-critical velocity is ensured in the throat and thereby allowing the formation of a jump in the expanding flume. • The formation of hydraulic jump makes the outlet discharge independent of the water level in water course, thus making it a semi module. Semi-modules or flexible modules are those through which the discharge is independent of the water level of the water course but depends only upon the water level of the distributary so long as a minimum working head is available. • Examples are pipe outlet, open flume type etc.
  • 60. Rigid Modules or Modular Outlets • Rigid modules or modular outlets are those through which discharge is constant and fixed within limits, irrespective of the fluctuations of the water levels of either the distributary or of the water course or both. • An example is Gibb’s module:
  • 62. Exam Questions Dec 2011, June 2012 • What do you understand by a fall in canal? Why it is necessary? • What are the functions of a canal head regulator? • Explain functions of cross regulator and distributory head regulator. • Write a S.N. on Types of Canal Falls
  • 63. References • Irrigation Engineering – By Prof N N Basak – Tata Mcgraw-Hill • Irrigation Engineering & Hydraulic Structures – By Prof. Santosh Kumar Garg – Khanna Publishers • Internet Websites • http://www.uap-bd.edu/ • Lecture Notes By: Dr. M. R. Kabir • Professor and Head, Department of Civil Engineering Department • University of Asia Pacific (UAP), Dhaka