Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Hildegard McNicoll
openEHR Archetypes:
Observations
Use Case
New Falls Risk Assessment
Existing archetypes don’t fit
Intention to share
OBSERVATION archetypes
Gathering of evidence
Measurable / observable data
Patient history, physical examination
Lab tests,...
ENTRY sub-type features
Provider
Subject
Data
History
Event
Protocol State Activities Pathway
OBSERVATIONS Yes Yes Yes Yes...
ENTRY sub-type features
Provider
Subject
Data
History
Event
Protocol State Activities Pathway
OBSERVATIONS Yes Yes Yes Yes...
ENTRY: History/Event feature
All data inside event
Allows complex, repeated
‘events’ to be captured efficiently
Multiple p...
Blood Pressure, Published Archetype [Internet]. openEHR Foundation,
openEHR Clinical Knowledge Manager [cited: 2016-03-09]...
ENTRY: ’State’ feature
State of patient with possible impact on interpretation
Exercise level
Fasting state
Anxiety
Stress...
ENTRY: ’State’ feature
State of patient with possible impact on interpretation
Exercise level
Fasting state
Anxiety
Stress...
ENTRY: ’Protocol’ feature
Secondary information about the method or
circumstances of data collection
Device/ methodology e...
SLOTS
Allow modeller to leave a gap
‘plug in’ another archetype
Allows building complex ideas by
mixing combinations of ar...
SLOT Rules
Defined in Reference Model
Compositions
Sections, Entries, Clusters (in context only)
Sections
other Sections, ...
Report, Published Archetype [Internet]. openEHR Foundation,
openEHR Clinical Knowledge Manager [cited: 2016-03-09].
Availa...
SLOT Constraints
Determine which archetypes can fill the slot
Good practice
Keep slot options ‘open’
Use the slot constrai...
SLOT constraint examples
Blood Pressure, Published Archetype [Internet]. openEHR Foundation, openEHR
Clinical Knowledge Ma...
Data types
Ordinal
Count?
Quantity?
Text
Let’s build an observation
Data
Protocol (Extension slot)
State (Confounding factors)
Events (Point in time)
Nächste SlideShare
Wird geladen in …5
×

2 3 open_ehr archetypes observation

28 Aufrufe

Veröffentlicht am

This presentation describes the use of observation archetypes in openEHR clinical modelling, using a real-life use case as an illustration.

Veröffentlicht in: Technologie
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

2 3 open_ehr archetypes observation

  1. 1. Hildegard McNicoll openEHR Archetypes: Observations
  2. 2. Use Case New Falls Risk Assessment Existing archetypes don’t fit Intention to share
  3. 3. OBSERVATION archetypes Gathering of evidence Measurable / observable data Patient history, physical examination Lab tests, imaging Scores and scales
  4. 4. ENTRY sub-type features Provider Subject Data History Event Protocol State Activities Pathway OBSERVATIONS Yes Yes Yes Yes Yes EVALUATIONS Yes Yes Yes INSTRUCTIONS Yes Yes Yes Yes ACTIONS Yes Yes Yes Yes ADMIN_ENTRY Yes Yes
  5. 5. ENTRY sub-type features Provider Subject Data History Event Protocol State Activities Pathway OBSERVATIONS Yes Yes Yes Yes Yes EVALUATIONS Yes Yes Yes INSTRUCTIONS Yes Yes Yes Yes ACTIONS Yes Yes Yes Yes ADMIN_ENTRY Yes Yes
  6. 6. ENTRY: History/Event feature All data inside event Allows complex, repeated ‘events’ to be captured efficiently Multiple pulse readings Apgar scores at different times Support averages, max , min etc
  7. 7. Blood Pressure, Published Archetype [Internet]. openEHR Foundation, openEHR Clinical Knowledge Manager [cited: 2016-03-09]. Available from: http://openehr.org/ckm/#showArchetype_1013.1.130 http://www.openehr.org/releases/RM/latest/docs/data_structures/diagrams/history_ogtt.png
  8. 8. ENTRY: ’State’ feature State of patient with possible impact on interpretation Exercise level Fasting state Anxiety Stress Other confounding factors
  9. 9. ENTRY: ’State’ feature State of patient with possible impact on interpretation Exercise level Fasting state Anxiety Stress Other confounding factors
  10. 10. ENTRY: ’Protocol’ feature Secondary information about the method or circumstances of data collection Device/ methodology e.g. Cuff size Extension slot
  11. 11. SLOTS Allow modeller to leave a gap ‘plug in’ another archetype Allows building complex ideas by mixing combinations of archetypes
  12. 12. SLOT Rules Defined in Reference Model Compositions Sections, Entries, Clusters (in context only) Sections other Sections, Entries Entries Clusters only i.e. Entries cannot be nested
  13. 13. Report, Published Archetype [Internet]. openEHR Foundation, openEHR Clinical Knowledge Manager [cited: 2016-03-09]. Available from: http://openehr.org/ckm/ #showArchetype_1013.1.677 Laboratory test, Draft Archetype [Internet]. openEHR Foundation, openEHR Clinical Knowledge Manager [cited: 2016-03-09]. Available from: http://openehr.org/ckm/#showArchetype_1013.1.2191
  14. 14. SLOT Constraints Determine which archetypes can fill the slot Good practice Keep slot options ‘open’ Use the slot constraint to define common slot fills Only occasionally ‘lock down’ the slot to specific archetypes
  15. 15. SLOT constraint examples Blood Pressure, Published Archetype [Internet]. openEHR Foundation, openEHR Clinical Knowledge Manager [cited: 2016-03-21]. Available from: http:// www.openehr.org/ckm/#showArchetype_1013.1.130
  16. 16. Data types Ordinal Count? Quantity? Text
  17. 17. Let’s build an observation Data Protocol (Extension slot) State (Confounding factors) Events (Point in time)

×