Anzeige
Anzeige

Más contenido relacionado

Anzeige

Clase 3 Potencias y raices.pptx

  1. MATEMATICA APLICADAI Clase n°3: Potencias y raíces
  2. Índice •Introducción al álgebra •Potencias •Propiedades de potencias •Notación científica •Raíces •Propiedades raíces
  3. Un Término Algebraico es la relación entre números y letras donde intervienen operaciones como la multiplicación, división, potencias y/o raíces. Consta de un “Coeficiente numérico”, un “factor literal” y el “grado”. Coeficiente Grado Numérico 23x5y8 Factor Literal 5 + 8 = 13 Ejemplos: mn3p, 3a4b, 2q 5p, 7 Obs: 1x=x Término algebraico
  4. Tipos de Expresiones Algebraicas 4 Expresiones algebraicas Racionales Enteras Fraccionarias Irracionales 3 1 2 . 2 2 2    y y x x y x x 2  5 4 2 3 y y x x   3 1 2   y x x
  5. Monomio Expresión algebraica que consta de UN término algebraico Ejemplo: 36x5 8ab3 73p4q2 Binomio Expresión algebraica que consta de DOS términos Ejemplo: 2m3n4 + 7ab Trinomio Expresión algebraica que consta de TRES términos Ejemplo: 3a6b2 + 8ab – 5a7 Polinomio Expresión algebraica que consta de cuatro o más términos Ejemplo: 3x – 2y + 3yx – 4z + 6 Clasificación de expresiones algebraicas
  6. Una potencia es una forma abreviada de escribir un producto de varios factores iguales. a·a·a·a·a = a5 Ejemplo: La potencia de base 3 y exponente 5 es: 35 = 3 · 3 · 3 · 3 · 3 = 243 BASE EXPONENTE EXPONENTE BASE Potencias
  7. Propiedades de potencias Propiedades de Potencias Producto de potencias igual base 𝑎𝑚 ⋅ 𝑎𝑛 = 𝑎𝑚+𝑛 32 ⋅ 33 = 32+3 = 35 Cuociente de potencias igual base 54 51 = 54−1 = 53 Potencia de una potencia 𝑎𝑚 𝑛 = 𝑎𝑚∙𝑛 33 5 = 33⋅5 = 315 Potencia de un producto Potencia de un cuociente 𝑎𝑚 : 𝑎𝑛 = 𝑎𝑚 𝑎𝑛 = 𝑎𝑛−𝑚 𝑎 ⋅ 𝑏 𝑚 = 𝑎𝑚 ⋅ 𝑏𝑚 𝑎: 𝑏 𝑚 = 𝑎 𝑏 𝑚 = 𝑎𝑚 𝑏𝑚 15 4 = 5 ⋅ 3 4 = 54 ⋅ 34 7: 2 3 = 7 2 3 = 73 23
  8. Potencias Especiales 3 3 3 3 3 3 3 3 3 3 3 3 4 5          1 3 3 3 3 3 3 3 3 3 3 4 4         2 5 3 3 1 3 3 3 3 3 3 3 3 3 3         1 4 5 4 5 3 3 3 3    0 4 4 4 4 3 3 3 3    2 5 3 5 3 3 3 3 3     3 31  1 30  2 2 3 1 3   Aplicando la definición de potencia y simplificando Aplicando la propiedad del cociente de potencias de igual base Si los dos resultados han de ser iguales debe ser:
  9. Los ejemplos anteriores permite ver que es necesario definir las potencias de exponente negativo (que ya no consisten en multiplicar un número por sí mismo) de manera que además sigan cumpliendo las propiedades que ya conocemos. Las potencias de exponente entero se definen así: ► an = a . a . a . ... . a, para n natural y mayor que 1. ► a1 = a ► a0 = 1 ► a–n = para n natural y n > 0 1 an
  10. Ejercicios
  11. Notación científica Un número está escrito en notación científica si se escribe de la forma: Potencias de base 10 𝐾 × 10𝑛 , 𝑑𝑜𝑛𝑑𝑒 1 ≤ 𝑘 < 10 𝑦 𝑛 𝜖 𝑍
  12. Raíces En general llamamos raíz n-ésima de un número dado al número que elevado a n nos da el primero. radical radicando Índice Arriba hemos visto ejemplos de radicales de índice 2 (cuadráticos) y de índice 3 (cúbicos). Observa que, en el caso de los cuadráticos, el índice no se escribe. b = a  bn = a n n a Se escribe
  13. Raíces Observaciones:
  14. Propiedades de las Raíces Propiedad • Producto de radicales • Cuociente de radicales • Potencia de un radical • Raíz de una raíz Ejemplo • • • • Enunciado • Para multiplicar raíces del mismo índice se deja el mismo índice y se multiplican los radicandos. • Para dividir raíces del mismo índice se deja el mismo índice y se dividen los radicandos. • Para elevar una raíz a una potencia se eleva el radicando a dicha potencia. • Para hallar la raíz de otra raíz se multiplican los índices de ambas 𝑛 𝑎 ⋅ 𝑛 𝑏 = 𝑛 𝑎𝑏 𝑛 𝑎: 𝑛 𝑏 = 𝑛 𝑎 𝑏 𝑛 𝑎 𝑚 = 𝑛 𝑎𝑚 = 𝑎 𝑚 𝑛 𝑛 𝑚 𝑎 = 𝑛𝑚 𝑎 7 12 ⋅ 7 4 = 7 12 ⋅ 4 = 7 48 7 12: 7 4 = 7 12 4 = 7 3 5 6 11 = 5 611 = 6 11 5 3 5 2 = 3⋅5 2 = 15 2
  15. Propiedades de las Raíces 2 10 2 · 2 · 5 2 · 5 2 · 5 200 3 2 3 2     75 3 · 5 3 · 5 3 · 5 2 2    3 3 3 3 3 3 3 40 5 · 2 5 · 2 5 2   
  16. Ejercicios
  17. Adición y sustracción de raíces
  18. Racionalización Racionalizar el denominador de una fracción consiste en transformarla en una fracción equivalente cuyo denominador no contenga ninguna raíz
Anzeige