Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

R Software and Reliability

557 Aufrufe

Veröffentlicht am

Looking for an inexpensive and powerful data analysis tool? R is free. R is an open source statistical programing language. Let’s explore R’s many capabilities concerning reliability statistics from field data analysis, to statistical process control.

Detailed Information: Reliability engineering relies on reliability statistics. We need software tools that allow us to explore and model data on a regular basis. Simply plotting the data, from a histogram to a probability plot allows us to ask better questions and solve problems faster. There are commercial software packages available from general purpose statistics, JMP or MiniTab, to specialized reliability packages, Weibull++ or Reliability and Maintenance Analyst. There are versatile math packages like MathCad or Mathematica. All are expensive and provide customer support and, training. R is a statistical programing language. It’s free. It has an extensive library of speciality packages. And, an immense supportive community.

It’s powerful, capable of producing publication ready graphics, includes basic and advance statistical tools, and you only need to learn a few basics to get started. Let’s explore using R for a range of common reliability statistics problems. Plotting field data, exploring process capability with statistical process control examples will highlight the power and versatility of this amazing resource.

This Accendo Reliability webinar originally broadcast on 10 March 2015.

Veröffentlicht in: Technologie
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

R Software and Reliability

  1. 1. R Software and Reliability Fred Schenkelberg
  2. 2. Reliability Statistics?Estimating reliability performance
  3. 3. Everything Varies
  4. 4. Starting Off • www.r-project.org • Cran.r-project.org • Code School “Try R” • r-tutor.com • statmethods.net
  5. 5. Test Drive
  6. 6. Weather Data 1990 - 2010 California Temperatures (°C) Celisus Density -10 0 10 20 30 40 0.000.010.020.030.04
  7. 7. Do you deal with data?
  8. 8. Better Question s
  9. 9. Which is better: a plot or a number?
  10. 10. What are your Questions? Thanks for participating.

×