SlideShare a Scribd company logo
1 of 18
Statistical Learning
V.Saranya
AP/CSE
Sri Vidya College of Engineering and
Technology,
Virudhunagar
Statistical Approaches
• Statistical Learning
• Naïve Bayes
• Instance-based Learning
• Neural Networks
Example: Candy Bags
• Candy comes in two flavors: cherry () and lime ()
• Candy is wrapped, can’t tell which flavor until opened
• There are 5 kinds of bags of candy:
– H1= all cherry (P(c|h1) = 1, P(l|h1) = 0)
– H2= 75% cherry, 25% lime
– H3= 50% cherry, 50% lime
– H4= 25% cherry, 75% lime
– H5= 100% lime
• Given a new bag of candy, predict H
• Observations: D1, D2 , D3, …
Bayesian Learning
• Calculate the probability of each hypothesis, given the data,
and make prediction weighted by this probability (i.e. use all
the hypothesis, not just the single best)
• Now, if we want to predict some unknown quantity X
)h(P)h|d(P)d|h(P ii)d(P
)h(P)h|d(P
i
ii
)d|h(P)h|X(P)d|X(P ii
i
Bayesian Learning cont.
)h(P)h|d(P)d|h(P iii
• Calculating P(h|d)
• Assume the observations are i.i.d.—independent
and identically distributed
likelihood prior
j
iji )h|d(P)h|d(P
Example:
• Hypothesis Prior over h1, …, h5 is
{0.1,0.2,0.4,0.2,0.1}
• Data:
• Q1: After seeing d1, what is P(hi|d1)?
• Q2: After seeing d1, what is P(d2= |d1)?
Making Statistical Inferences
• Bayesian –
– predictions made using all hypothesis, weighted by their probabilities
• MAP – maximum a posteriori
– uses the single most probable hypothesis to make prediction
– often much easier than Bayesian; as we get more and more data,
closer to Bayesian optimal
• ML – maximum likelihood
– assume uniform prior over H
– when
Naïve Bayes (20.2)
Naïve Bayes
• aka Idiot Bayes
• particularly simple BN
• makes overly strong independence
assumptions
• but works surprisingly well in practice…
Bayesian Diagnosis
• suppose we want to make a diagnosis D and there are n
possible mutually exclusive diagnosis d1, …, dn
• suppose there are m boolean symptoms, E1, …, Em
)e,...,e|d(P m1i
how do we make diagnosis?
)d(P i )d|e,...,e(P im1
we need:
)e,...,e(P
)d|e,...,e(P)d(P
m1
im1i
Naïve Bayes Assumption
• Assume each piece of evidence (symptom) is
independent give the diagnosis
• then
)d|e,...,e(P im1
what is the structure of the corresponding BN?
m
1k
ik )d|e(P
Naïve Bayes Example
• possible diagnosis: Allergy, Cold and OK
• possible symptoms: Sneeze, Cough and Fever
Well Cold Allergy
P(d) 0.9 0.05 0.05
P(sneeze|d) 0.1 0.9 0.9
P(cough|d) 0.1 0.8 0.7
P(fever|d) 0.01 0.7 0.4
my symptoms are: sneeze & cough, what is
the diagnosis?
Learning the Probabilities
• aka parameter estimation
• we need
– P(di) – prior
– P(ek|di) – conditional probability
• use training data to estimate
Maximum Likelihood Estimate (MLE)
• use frequencies in training set to estimate:
N
n
)d(p i
i
i
ik
ik
n
n
)d|e(p
where nx is shorthand for the counts of events in
training set
Example:
D Sneeze Cough Fever
Allergy yes no no
Well yes no no
Allergy yes no yes
Allergy yes no no
Cold yes yes yes
Allergy yes no no
Well no no no
Well no no no
Allergy no no no
Allergy yes no no
what is: P(Allergy)?
P(Sneeze| Allergy)?
P(Cough| Allergy)?
Laplace Estimate (smoothing)
• use smoothing to eliminate zeros:
nN
1n
)d(p i
i
2n
1n
)d|e(p
i
ik
ik
where n is number of possible values for d
and e is assumed to have 2 possible values
many other
smoothing
schemes…
Comments
• Generally works well despite blanket
assumption of independence
• Experiments show competitive with decision
trees on some well known test sets (UCI)
• handles noisy data
Learning more complex Bayesian
networks
• Two subproblems:
• learning structure: combinatorial search over
space of networks
• learning parameters values: easy if all of the
variables are observed in the training set;
harder if there are ‘hidden variables’

More Related Content

What's hot

Push Down Automata (PDA) | TOC (Theory of Computation) | NPDA | DPDA
Push Down Automata (PDA) | TOC  (Theory of Computation) | NPDA | DPDAPush Down Automata (PDA) | TOC  (Theory of Computation) | NPDA | DPDA
Push Down Automata (PDA) | TOC (Theory of Computation) | NPDA | DPDAAshish Duggal
 
CONTEXT FREE GRAMMAR
CONTEXT FREE GRAMMAR CONTEXT FREE GRAMMAR
CONTEXT FREE GRAMMAR Zahid Parvez
 
Statistical learning
Statistical learningStatistical learning
Statistical learningSlideshare
 
Bayesian classification
Bayesian classificationBayesian classification
Bayesian classificationManu Chandel
 
Ll(1) Parser in Compilers
Ll(1) Parser in CompilersLl(1) Parser in Compilers
Ll(1) Parser in CompilersMahbubur Rahman
 
Pattern recognition binoy 05-naive bayes classifier
Pattern recognition binoy 05-naive bayes classifierPattern recognition binoy 05-naive bayes classifier
Pattern recognition binoy 05-naive bayes classifier108kaushik
 
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering College
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering CollegeBayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering College
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering CollegeDhivyaa C.R
 
Dealing with inconsistency
Dealing with inconsistencyDealing with inconsistency
Dealing with inconsistencyRajat Sharma
 
Cs2303 theory of computation all anna University question papers
Cs2303 theory of computation all anna University question papersCs2303 theory of computation all anna University question papers
Cs2303 theory of computation all anna University question papersappasami
 

What's hot (20)

Pda
PdaPda
Pda
 
First and follow set
First and follow setFirst and follow set
First and follow set
 
Regular expressions
Regular expressionsRegular expressions
Regular expressions
 
Push Down Automata (PDA) | TOC (Theory of Computation) | NPDA | DPDA
Push Down Automata (PDA) | TOC  (Theory of Computation) | NPDA | DPDAPush Down Automata (PDA) | TOC  (Theory of Computation) | NPDA | DPDA
Push Down Automata (PDA) | TOC (Theory of Computation) | NPDA | DPDA
 
CONTEXT FREE GRAMMAR
CONTEXT FREE GRAMMAR CONTEXT FREE GRAMMAR
CONTEXT FREE GRAMMAR
 
Statistical learning
Statistical learningStatistical learning
Statistical learning
 
Bayesian classification
Bayesian classificationBayesian classification
Bayesian classification
 
String matching algorithms
String matching algorithmsString matching algorithms
String matching algorithms
 
Ll(1) Parser in Compilers
Ll(1) Parser in CompilersLl(1) Parser in Compilers
Ll(1) Parser in Compilers
 
Ai lab manual
Ai lab manualAi lab manual
Ai lab manual
 
Pattern recognition binoy 05-naive bayes classifier
Pattern recognition binoy 05-naive bayes classifierPattern recognition binoy 05-naive bayes classifier
Pattern recognition binoy 05-naive bayes classifier
 
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering College
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering CollegeBayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering College
Bayesian Learning by Dr.C.R.Dhivyaa Kongu Engineering College
 
Compiler construction
Compiler constructionCompiler construction
Compiler construction
 
Finite Automata
Finite AutomataFinite Automata
Finite Automata
 
Compiler unit 2&3
Compiler unit 2&3Compiler unit 2&3
Compiler unit 2&3
 
Lexical analysis - Compiler Design
Lexical analysis - Compiler DesignLexical analysis - Compiler Design
Lexical analysis - Compiler Design
 
Input-Buffering
Input-BufferingInput-Buffering
Input-Buffering
 
Cs419 lec10 left recursion and left factoring
Cs419 lec10   left recursion and left factoringCs419 lec10   left recursion and left factoring
Cs419 lec10 left recursion and left factoring
 
Dealing with inconsistency
Dealing with inconsistencyDealing with inconsistency
Dealing with inconsistency
 
Cs2303 theory of computation all anna University question papers
Cs2303 theory of computation all anna University question papersCs2303 theory of computation all anna University question papers
Cs2303 theory of computation all anna University question papers
 

More from Slideshare

Crystal report generation in visual studio 2010
Crystal report generation in visual studio 2010Crystal report generation in visual studio 2010
Crystal report generation in visual studio 2010Slideshare
 
Report generation
Report generationReport generation
Report generationSlideshare
 
Security in Relational model
Security in Relational modelSecurity in Relational model
Security in Relational modelSlideshare
 
Entity Relationship Model
Entity Relationship ModelEntity Relationship Model
Entity Relationship ModelSlideshare
 
Major issues in data mining
Major issues in data miningMajor issues in data mining
Major issues in data miningSlideshare
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessingSlideshare
 
What is in you
What is in youWhat is in you
What is in youSlideshare
 
Propositional logic & inference
Propositional logic & inferencePropositional logic & inference
Propositional logic & inferenceSlideshare
 
Logical reasoning 21.1.13
Logical reasoning 21.1.13Logical reasoning 21.1.13
Logical reasoning 21.1.13Slideshare
 
Resolution(decision)
Resolution(decision)Resolution(decision)
Resolution(decision)Slideshare
 
Reinforcement learning 7313
Reinforcement learning 7313Reinforcement learning 7313
Reinforcement learning 7313Slideshare
 
Neural networks
Neural networksNeural networks
Neural networksSlideshare
 
Instance based learning
Instance based learningInstance based learning
Instance based learningSlideshare
 
Neural networks
Neural networksNeural networks
Neural networksSlideshare
 
Logical reasoning
Logical reasoning Logical reasoning
Logical reasoning Slideshare
 
Instance based learning
Instance based learningInstance based learning
Instance based learningSlideshare
 
Input & output devices
Input & output devicesInput & output devices
Input & output devicesSlideshare
 

More from Slideshare (20)

Crystal report generation in visual studio 2010
Crystal report generation in visual studio 2010Crystal report generation in visual studio 2010
Crystal report generation in visual studio 2010
 
Report generation
Report generationReport generation
Report generation
 
Trigger
TriggerTrigger
Trigger
 
Security in Relational model
Security in Relational modelSecurity in Relational model
Security in Relational model
 
Entity Relationship Model
Entity Relationship ModelEntity Relationship Model
Entity Relationship Model
 
OLAP
OLAPOLAP
OLAP
 
Major issues in data mining
Major issues in data miningMajor issues in data mining
Major issues in data mining
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
What is in you
What is in youWhat is in you
What is in you
 
Propositional logic & inference
Propositional logic & inferencePropositional logic & inference
Propositional logic & inference
 
Logical reasoning 21.1.13
Logical reasoning 21.1.13Logical reasoning 21.1.13
Logical reasoning 21.1.13
 
Logic agent
Logic agentLogic agent
Logic agent
 
Resolution(decision)
Resolution(decision)Resolution(decision)
Resolution(decision)
 
Reinforcement learning 7313
Reinforcement learning 7313Reinforcement learning 7313
Reinforcement learning 7313
 
Neural networks
Neural networksNeural networks
Neural networks
 
Instance based learning
Instance based learningInstance based learning
Instance based learning
 
Neural networks
Neural networksNeural networks
Neural networks
 
Logical reasoning
Logical reasoning Logical reasoning
Logical reasoning
 
Instance based learning
Instance based learningInstance based learning
Instance based learning
 
Input & output devices
Input & output devicesInput & output devices
Input & output devices
 

Recently uploaded

fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 

Recently uploaded (20)

fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 

Statistical learning

  • 1. Statistical Learning V.Saranya AP/CSE Sri Vidya College of Engineering and Technology, Virudhunagar
  • 2. Statistical Approaches • Statistical Learning • Naïve Bayes • Instance-based Learning • Neural Networks
  • 3. Example: Candy Bags • Candy comes in two flavors: cherry () and lime () • Candy is wrapped, can’t tell which flavor until opened • There are 5 kinds of bags of candy: – H1= all cherry (P(c|h1) = 1, P(l|h1) = 0) – H2= 75% cherry, 25% lime – H3= 50% cherry, 50% lime – H4= 25% cherry, 75% lime – H5= 100% lime • Given a new bag of candy, predict H • Observations: D1, D2 , D3, …
  • 4. Bayesian Learning • Calculate the probability of each hypothesis, given the data, and make prediction weighted by this probability (i.e. use all the hypothesis, not just the single best) • Now, if we want to predict some unknown quantity X )h(P)h|d(P)d|h(P ii)d(P )h(P)h|d(P i ii )d|h(P)h|X(P)d|X(P ii i
  • 5. Bayesian Learning cont. )h(P)h|d(P)d|h(P iii • Calculating P(h|d) • Assume the observations are i.i.d.—independent and identically distributed likelihood prior j iji )h|d(P)h|d(P
  • 6. Example: • Hypothesis Prior over h1, …, h5 is {0.1,0.2,0.4,0.2,0.1} • Data: • Q1: After seeing d1, what is P(hi|d1)? • Q2: After seeing d1, what is P(d2= |d1)?
  • 7. Making Statistical Inferences • Bayesian – – predictions made using all hypothesis, weighted by their probabilities • MAP – maximum a posteriori – uses the single most probable hypothesis to make prediction – often much easier than Bayesian; as we get more and more data, closer to Bayesian optimal • ML – maximum likelihood – assume uniform prior over H – when
  • 9. Naïve Bayes • aka Idiot Bayes • particularly simple BN • makes overly strong independence assumptions • but works surprisingly well in practice…
  • 10. Bayesian Diagnosis • suppose we want to make a diagnosis D and there are n possible mutually exclusive diagnosis d1, …, dn • suppose there are m boolean symptoms, E1, …, Em )e,...,e|d(P m1i how do we make diagnosis? )d(P i )d|e,...,e(P im1 we need: )e,...,e(P )d|e,...,e(P)d(P m1 im1i
  • 11. Naïve Bayes Assumption • Assume each piece of evidence (symptom) is independent give the diagnosis • then )d|e,...,e(P im1 what is the structure of the corresponding BN? m 1k ik )d|e(P
  • 12. Naïve Bayes Example • possible diagnosis: Allergy, Cold and OK • possible symptoms: Sneeze, Cough and Fever Well Cold Allergy P(d) 0.9 0.05 0.05 P(sneeze|d) 0.1 0.9 0.9 P(cough|d) 0.1 0.8 0.7 P(fever|d) 0.01 0.7 0.4 my symptoms are: sneeze & cough, what is the diagnosis?
  • 13. Learning the Probabilities • aka parameter estimation • we need – P(di) – prior – P(ek|di) – conditional probability • use training data to estimate
  • 14. Maximum Likelihood Estimate (MLE) • use frequencies in training set to estimate: N n )d(p i i i ik ik n n )d|e(p where nx is shorthand for the counts of events in training set
  • 15. Example: D Sneeze Cough Fever Allergy yes no no Well yes no no Allergy yes no yes Allergy yes no no Cold yes yes yes Allergy yes no no Well no no no Well no no no Allergy no no no Allergy yes no no what is: P(Allergy)? P(Sneeze| Allergy)? P(Cough| Allergy)?
  • 16. Laplace Estimate (smoothing) • use smoothing to eliminate zeros: nN 1n )d(p i i 2n 1n )d|e(p i ik ik where n is number of possible values for d and e is assumed to have 2 possible values many other smoothing schemes…
  • 17. Comments • Generally works well despite blanket assumption of independence • Experiments show competitive with decision trees on some well known test sets (UCI) • handles noisy data
  • 18. Learning more complex Bayesian networks • Two subproblems: • learning structure: combinatorial search over space of networks • learning parameters values: easy if all of the variables are observed in the training set; harder if there are ‘hidden variables’