SlideShare ist ein Scribd-Unternehmen logo
1 von 105
Downloaden Sie, um offline zu lesen
UNIVERSIDAD NACIONAL ABIERTA
   VICERRECTORADO ACADÉMICO
    CARRERA INGENIERÍA INDUSTRIAL




               ING. THAIS J. LINARES LANDINO
Ingeniería de Métodos




         UNIVERSIDAD NACIONAL ABIERTA
         VICERRECTORADO ACADÉMICO
         SUBPROGRAMA DE DISEÑO ACADEMICO
         ÁREA: INGENIERÍA
         CARRERA: INGENIERÍA INDUSTRIAL.




   PROBLEMARIO INGENIERÍA DE MÉTODOS


ASIGNATURA:
                    INGENIERÍA DE MÉTODOS

                    Código: 206
                    U.C.: 4

                    Ingeniería Industrial
CARRERA:

                    Código: 280
SEMESTRE:           VI
PRELACIONES:        Investigación de Operaciones I ( Cod. 315 )
                    Inferencia Estadística ( Cod. 738 )

REQUISITOS:         Ninguno

                    Ing. Thais Linares Landino.
AUTOR:


COMITÉ TÉCNICO:     Dra. Egleé de Rojas
Ingeniería de Métodos




                             INDICE
Introducción……………………………………………………………....                                    4

Orientaciones para el uso del Problemario ……………………………...                   6

Capítulo I: Diagramas de Actividades Múltiples
    Síntesis Teórica…………………………………………………….                                 7
    Problemas Resueltos ……………………………………………….                               9
       Caso 1: Diagrama Hombre-Máquina ……………………………                        9
       Caso 2: Diagrama de Cuadrilla ………………………………….                      14
       Caso 3: Atención Sincronizada ………………………………….                      17
       Caso 4: Atención al azar ………………………………………...                       19
       Caso 5: Combinaciones de Servicio Sincrónico y al azar ………        21
     Problemas Propuestos ……………………………………………...                           23
     Respuesta a los Problemas Propuestos …………………………….                   26

Capítulo II: Balance de líneas de Producción
    Síntesis Teórica…………………………………………………….                                33
    Problemas Resueltos ………………………………………………..                             34
       Caso 1: Para un solo producto …………………………………..                     34
       Caso 2: Para Productos Mezclados ……………………………...                   37
     Problemas Propuestos ……………………………………………...                           41
     Respuesta a los Problemas Propuestos …………………………….                   45

Capítulo III: Normalización y Cronometrado
    Síntesis Teórica……………………………………………………..                               49
    Problemas Resueltos ………………………………………………..                             50
    Problemas Propuestos ……………………………………………...                            55
    Respuesta a los Problemas Propuestos …………………………….                    58

Capítulo IV: El Tiempo Normal
    Síntesis Teórica…………………………………………………….                                 59
    Problemas Resueltos ……………………………………………….                               62
       Caso 1: Método Subjetivo ………………………………………                           62
       Caso 2: Calificación de Ejecución ………………………………                     63
       Caso 3: Calificación Sintética …………………………………..                     64
Ingeniería de Métodos




       Caso 4: Calificación Objetiva …………………………………..            65
       Caso 5: Word Factor …………………………………………….                  67
       Caso 6: MTM ……………………………………………………                        69
       Caso 7: BMT ……………………………………………………                        70
     Problemas Propuestos ……………………………………………...                 71
     Respuesta a los Problemas Propuestos …………………………….         75

Capítulo V: El Tiempo Estándar
    Síntesis Teórica…………………………………………………….                      76
    Problemas Resueltos ………………………………………………..                   77
    Problemas Propuestos ……………………………………………...                  79
    Respuesta a los Problemas Propuestos …………………………….          82

Bibliografía ………………………………………………………………                          83

Anexos
  Cuadernillo de Tablas
Ingeniería de Métodos



                           Introducción
      La Ingeniería de Métodos proporciona al estudiante de Ingeniería
Industrial un grupo de herramientas de análisis cuyo objetivo es la
incorporación de mejoras a un proceso dado. Los términos análisis de
operaciones, simplificación del trabajo e ingeniería de métodos se utilizan
frecuentemente como sinónimos. En la mayor parte de los casos se refieren a
técnicas para aumentar la producción por unidad de tiempo y en consecuencia,
reducir el costo por unidad. Por lo tanto, el objetivo de la Ingeniería de
Métodos es eliminar todo elemento u operación innecesarios y obtener el más
rápido y mejor método para realizar aquellas operaciones que han sido
determinadas como imprescindibles.

      En 1932, el termino “Ingeniería de Métodos” fue definido y utilizado
por H. B. Maynard y sus asociados, quedando expresado con las siguientes
palabras:


" Es la técnica que somete cada operación de una determinada parte del
trabajo a un delicado análisis para eliminar toda operación innecesaria y
encontrar el método más rápido para realizar toda operación necesaria;
abarca la normalización del equipo, métodos y condiciones de trabajo;
entrena al operario a seguir el método normalizado; realizado todo lo
precedente (y no antes), determina por medio de mediciones muy precisas, el
número de horas tipo en las cuales un operario, trabajando con actividad
normal, puede realizar el trabajo; por último (aunque no necesariamente),
establece en general un plan para compensación del trabajo, que estimule al
operario a obtener o sobrepasar la actividad normal "


       La Ingeniería de Métodos se refiere no solamente al establecimiento del
método en sí mismo, sino también a la estandarización o normalización de
todos los aspectos de cada tarea. El ingeniero industrial tiene a su disposición
una amplia variedad de técnicas analíticas, que pueden ser usadas
individualmente o en combinación, dependiendo de la profundidad deseada de
análisis.
       La clave de la aplicación afortunada de cada técnica de Ingeniería de
Métodos radica en el desarrollo de la actividad interrogativa; estas técnicas
son herramientas con los cuales el analista puede investigar sistemáticamente
y analizar cada aspecto del proceso.

                                                                             4
Ingeniería de Métodos




       El presente problemario pretende dar al estudiante de Ingeniería de
Métodos de la Carrera de Ingeniería Industrial de la Universidad Nacional
Abierta, una serie de problemas típicos de la asignatura, con el fin de que sea
utilizado como material complementario del texto: Ingeniería de Métodos,
Calidad, Productividad del Ing. Fernando Burgos, Universidad de Carabobo,
II edición y/o de la bibliografía recomendada en el Plan de Curso, el cual es
imprescindible para el uso de este problemario. Se desarrollan sólo los
objetivos evaluables de forma presencial mediante prueba escrita a excepción
del 1 por tratarse de un objetivo cuyo contenido es netamente teórico.


      Al principio de cada capitulo se da un breve resumen teórico con la
idea de ubicar al estudiante en el contenido, luego se desarrollan ejemplos
resueltos, para finalizar con un grupo de ejercicios propuestos cuya solución
se muestra al final de cada capítulo, de esta manera se ejercitan los
conocimientos adquiridos durante el estudio de cada objetivo y así enfrentar
con mayores posibilidades de éxito las oportunidades de evaluación.




                                                                            5
Ingeniería de Métodos



           Orientaciones para el uso del
                   Problemario

             Los contenidos cubiertos por este problemario son los
correspondientes a los objetivos 4, 5, 6, 8 y 9 del Plan de Curso de la
asignatura Ingeniería de Métodos (206). Se desarrollan sólo los objetivos
evaluables de forma presencial mediante prueba escrita a excepción del 1 por
tratarse de un objetivo cuyo contenido es netamente teórico.

      El estudiante debe prepararse suficientemente en la teoría de los
contenidos correspondiente a los objetivos evaluables en su libro texto
Ingeniería de Métodos, Calidad, Productividad del Ing. Fernando Burgos,
Universidad de Carabobo, II edición y/o en la bibliografía recomendada. Una
vez que se sienta preparado hará uso de este problemario.

       Para la facilidad de relacionar los Capítulos del problemario, con su
Plan de Curso, éstos mantienen el título de las unidades que contienen los
objetivos. Además, cada Capítulo cuenta con la información relativa al
Objetivo que se evalúa y su ubicación en el libro texto.

      Cada Capítulo cuenta con una síntesis teórica del tema a tratar, luego
una serie de problemas resueltos y explicados paso a paso y posteriormente
encontrará una serie de problemas propuestos cuyos resultados están al final
del Capítulo, esto con el fin de obtener una autoevaluación. Para la resolución
de algunos problemas el estudiante necesitará el uso de tablas, que están
contenidas en el texto, ahora bien, en el momento de las pruebas, el Supervisor
de Pruebas le entregará el Cuadernillo de Tablas, donde se encuentran
resumidas las mismas. Con la finalidad de que se familiarice con el uso de este
cuadernillo, el mismo lo encontrara en el anexo.




                                                                            6
Ingeniería de Métodos



Capitulo I:

     Diagramas de Actividades Múltiples




      El estudiante encontrará la teoría de esta unidad, en el Capitulo V del
texto de Burgos y en el Capitulo 6 del Niebel , que corresponde al Objetivo
n° 4 del Plan de Curso:

    “ Analizar sistemas de actividades Múltiples, mediante el uso de los
  diagramas respectivos y los modelos cuantitativos para la asignación de
                                máquinas.”



Síntesis Teórica:

       Los diagramas de procesos con actividades múltiples presentan
gráficamente el tiempo coordinado de trabajo y paro de dos o más hombres,
dos o más máquinas o cualquier combinación de hombres y máquinas; por
esta razón, el diagrama de actividades múltiples es llamado, a veces “diagrama
hombre-máquina”. Un diagrama de actividades múltiples consiste en rayas
dibujadas sobre una escala de tiempo para representar la relación entre el
tiempo de trabajo y el de paro.

       Con el uso de un diagrama de actividades múltiples, el analista puede
reordenar el ciclo de trabajo del hombre o de máquina o de ambos, y entonces
desarrollar una combinación de actividades más efectivas. A veces es posible
incluir la realización de trabajo adicional durante el ciclo de la máquina o
eliminar el tiempo de mano de obra adicional incluida en una operación,
realizada previamente, fuera del ciclo de la máquina.


Los diagramas de actividades múltiples estudiados son:


                                                                            7
Ingeniería de Métodos




   • Diagrama Hombre-Máquina: Se emplea para estudiar, analizar y
     mejorar sólo una estación de trabajo a la vez. Este diagrama indica la
     relación exacta en tiempo entre el ciclo de trabajo de la persona y el
     ciclo de operaciones de su máquina. Actualmente, muchas máquinas-
     herramientas están completamente automatizadas, como el torno
     automático para tornillos, o son sólo parcialmente automáticas, como el
     torno revolver. En la operación de estos tipos de instalaciones el
     operario frecuentemente permanece inactivo durante una parte del ciclo.
     La utilización de este tiempo de inactividad puede aumentar la
     retribución del operario y mejorar la eficiencia de la producción.

   • Diagrama de Cuadrilla: Es la representación gráfica, sobre una escala
     de tiempo, de las actividades realizadas por un grupo de personas que
     persiguen un fin común, como lo es la ejecución de una tarea.

   Aunque el diagrama de proceso hombre-máquina se puede usar para
determinar el número de máquinas a asignar a un operario, tal número puede
ser calculado frecuentemente en mucho menor tiempo mediante el desarrollo
de un modelo matemático.

     Los tipos de relaciones entre hombre y máquina pueden ser:

     • De atención sincronizada: es el caso ideal, donde tanto el trabajador
       como la máquina que atiende estén ocupados durante todo el ciclo y
       se puede saber con certeza cuándo la máquina va a requerir de los
       servicios o atención del operario y cuánto tiempo va a tardar el
       operario sirviendo a dicha máquina.

     • De atención al azar: se refiere a los casos en que no se sabe cuándo
       haya que atender una máquina, o cuánto tiempo se necesitará para
       hacerlo. Los valores medios generalmente se conocen o se pueden
       determinar; con estos promedios las leyes de probabilidades sirven
       para determinar el número de máquinas a asignar a un operario.

     • De combinaciones de servicio sincrónico y al azar: son quizás el
       tipo más común de relaciones entre hombres y máquinas. En este
       caso, el tiempo de atención es constante, pero el tiempo muerto de
       máquina es aleatorio.


                                                                          8
Ingeniería de Métodos



Problemas Resueltos:

Caso 1 : Diagrama Hombre – Máquina

     En una empresa metalmecánica, se desea determinar si un operario
puede atender una o dos máquinas. Se dispone de los siguientes datos de
tiempos:

               Actividad                           Tiempo (min.)
         Cargar máquina                                 3
         Descargar máquina                              3
         Maquinado                                      5
         Ir de una máquina a otra                      0,5

      En cada ciclo de máquina se elabora una pieza. El costo de la mano de
obra es de 600 Bs./hr , el costo de la máquina parada es de 800 Bs./hr y el de
la máquina funcionando es de 950 Bs./hr. Sobre la base de esta información
determine cuál es la asignación óptima.


Solución:

       Dado que el problema en cuestión es determinar el número óptimo de
máquinas que puede manejar el operario, debemos realizar el análisis
económico y escoger el que proporcione el menor costo. Para esto debemos
hacer el estudio para las dos alternativas:
      Alternativa 1 ⇒ 1 operario – 1 máquina.
      Alternativa 2 ⇒ 1 operario - 2 máquinas.

   • Paso 1: Se realiza el diagrama Hombre – Máquina para la
     alternativa 1.     Para esto debe seleccionarse la escala adecuada, de
     manera que la representación se disponga en forma bien proporcionada.
     En este caso la escala seleccionada es 1 división = 0,5 min.
     Una vez seleccionada la escala, se procede a empezar a realizar el
     gráfico. Al lado izquierdo se indican las operaciones y los tiempos
     correspondientes al operario. El tiempo de trabajo del operario se
     representa en color negro y el tiempo de ocio en color blanco. Al lado
     derecho se representan las operaciones y los tiempos correspondientes a
     la máquina. De igual forma el color negro representa el tiempo de


                                                                            9
Ingeniería de Métodos


      trabajo, el color blanco el tiempo de ocio y una línea punteada
      representa los tiempos de preparación de la máquina, indicando así que
      no esta inactiva pero tampoco se está efectuando trabajo de producción.
      Al pie del diagrama se indica el tiempo de trabajo ( Activo ) y el tiempo
      de ocio, tanto para el operario como para la máquina. El tiempo
      productivo más el tiempo inactivo del operario, tiene que ser igual a la
      suma de los tiempos respectivos de su máquina. En la Fig. 1 se
      representa el Diagrama Hombre – Máquina para esta alternativa.

   • Paso 2 : Una vez realizado el diagrama de la alternativa 1, se procede
     en forma similar a realizar el Diagrama Hombre – Máquina para la
     alternativa 2. El sitio más lógico para considerar posibles mejoras es en
     la porción de inactividad del ciclo del operario. En la Fig. 2 se
     representa el Diagrama Hombre – Máquina para esta alternativa.

   • Paso 3 : Debe tenerse cuidado en no dejarse engañar con lo que
     parezca ser una cantidad apreciable de tiempo de ocio del operario. En
     muchos casos es más conveniente o económico que un operario esté
     inactivo durante una parte sustancial del ciclo, a que lo esté un costoso
     equipo. Con el objeto de estar seguro de que la propuesta es la mejor,
     debe realizarse el análisis económico de las dos alternativas:

   Alternativa 1: 1 operario – 1 máquina.

      Tiempo del ciclo = 11 min.
      Tiempo de máquina funcionando = 5 min.
      Tiempo de máquina parada = 6 min.

Costo Total = Costo de Mano de Obra + Costo de Maquinado.

                       1hr    11min 1ciclo
CMO = 600 Bs / hr ∗         ∗      ∗       = 110 Bs./pieza
                      60 min ciclo pieza

                          1hr           5 min . 1ciclo
CM = 950 Bs / hr.máq ∗         ∗ 1máq ∗        ∗
                       60 min           ciclo pieza
                                6 min 1ciclo
     + 800 Bs / hr.máq ∗ 1máq ∗       ∗        = 159,20 Bs / pieza
                                 ciclo pieza

Entonces, el Costo Total1 = 110Bs/pieza + 159,20 Bs/pieza = 269,20 Bs./pieza


                                                                                   10
Ingeniería de Métodos




Fig. 1

                       11
Ingeniería de Métodos




   Alternativa 2 : 1 operario – 2 máquinas.

      Tiempo del ciclo = 13 min.
      Tiempo de máquina funcionando = 5 min.
      Tiempo de máquina parada = 8 min.
      Piezas producidas por ciclo = 2 piezas.

Costo Total = Costo de Mano de Obra + Costo de Maquinado.

                       1hr    13 min 1ciclo
CMO = 600 Bs / hr ∗         ∗       ∗       = 65 Bs./pieza
                      60 min ciclo 2 pieza

                         1hr           5 min . 1ciclo
CM = 950 Bs / hr.máq ∗        ∗ 2máq ∗        ∗
                       60 min          ciclo 2 pieza
                                8 min 1ciclo
     + 800 Bs / hr.máq ∗ 2máq ∗      ∗         = 185,90 Bs / pieza
                                ciclo 2 pieza

Entonces, el Costo Total Alternativa 2 :

    CT2 = 65 Bs/pieza + 185,90 Bs/pieza = 250,90 Bs./pieza


   • Paso 4: Se comparan los costos de las alternativas y se escoge la de
     menor costo. En este caso la alternativa 2 proporciona un menor costo
     ⇒ Conviene asignar 2 máquinas al operario.




                                                                                   12
Ingeniería de Métodos




Fig. 2



                       13
Ingeniería de Métodos


Caso 2 : Diagrama de Cuadrilla

       Miguel, Guillermo, Marcos y Víctor, trabajan en el departamento de
juguetes de la tienda “Chamitos”. El trabajo que ellos realizan consiste en
buscar cajas con juguetes en el depósito, envolverlas y atarlas. Posteriormente
estas cajas se trasladan a un camión para llevarlas a diversos sitios del país.

      El método empleado actualmente para llevar a cabo esta tarea es el
siguiente:
Miguel va al depósito, busca 3 cajas y las trae hasta el sitio donde se encuentra
Guillermo, quien las envuelve y se las pasa a Marcos. Marcos ata las cajas con
un cordel. Víctor toma las cajas atadas, las lleva y coloca en el camión y
regresa al sitio donde esta Marcos.

      Los tiempos de ejecución de cada una de estas actividades son los
siguientes:

                       ACTIVIDAD                               TIEMPO (min)
Tomar 3 cajas y llevarlas al puesto de Guillermo                   1.0
Envolver las cajas                                                 2.0
Trasladar 3 cajas al puesto de Marcos                              1.0
Atar las 3 cajas                                                   2.0
Llevar y cargar 3 cajas al camión                                  2.5
Desplazarse sin cajas                                              1.0

     Analice las actividades de estos cuatro operarios utilizando el diagrama
de cuadrillas. Indique el rendimiento de cada operario.( Se considera el
paquete de 3 cajas como una unidad procesada ).

Solución:

    • Paso 1 : Se realiza el diagrama de cuadrilla ( Fig. 3 ). En la primera
      columna “ N° ”, sirve para asignar a cada actividad un número. En la
      columna “ Descripción ” se describe la actividad realizada. Para esto a
      cada actividad imputable a un determinado operario se le asigna un
      número distinto, el cual se repetirá tantas veces como lo requiera el
      tiempo total consumido por la actividad en concordancia con la escala
      seleccionada en la columna que corresponde al operario. A cada
      operario se le asigna una columna ( de la A a la L ) y cada cuadro o
      división, corresponde a la escala de tiempo.

                                                                             14
Ingeniería de Métodos




En nuestro caso las actividades a realizar serán:

             1.   Tomar 3 cajas y llevarlas a Guillermo
             2.   Regresar a depósito
             3.   Envolver 3 cajas
             4.   Trasladar 3 cajas a Marcos.
             5.   Regresar al sitio de Guillermo.
             6.   Atar 3 cajas.
             7.   Llevar y cargar 3 cajas al camión.
             8.   Regresar al sitio de Marcos.
             9.   Demora.

La columna A representa a Miguel; la B a Guillermo y la C a Marcos y D a
Victor.
La escala de tiempo será cada división representa 0,5 minuto.

   • Paso 2: Se determina el tiempo del ciclo. Para esto se empieza el ciclo
     en el momento que comienza a realizar su actividad el último operario
     hasta que se encuentre la repitencia de las actividades. Entonces, en
     nuestro caso el tiempo del ciclo será:

             8 divisiones * 0,5 min./división = 4 min.

   • Paso 3: Se calcula el número de pasos por unidad ( en cada ciclo se
     procesa una unidad )

             4operarios ∗ 8div. 1ciclo
                               ∗        = 32 pasos./ unidad
                  ciclo          unidad

   • Paso 4: Se calcula el rendimiento de cada operario:

                          RA = 8/8 = 100 %
                          RB = 8/8 = 100 %
                          RC = 4/8 = 50 %
                          RD = 7/8 = 87,5 %




                                                                            15
Ingeniería de Métodos




Fig. 3



                       16
Ingeniería de Métodos




Caso 3: Atención sincronizada.

       En función a costos, determine cuántas máquinas pueden ser asignadas
a un operario que maneja una cepilladora, si se dispone de los siguientes
datos:
       - Tiempo de carga y descarga de cada máquina = 8 min.
       - Tiempo de maquinado automático = 15 min.
       - Tiempo de ir de una máquina a otra = 48 segundos.
       - Costo de la maquina = 1200 Bs./ hr.
       - Salario del operador = 1000 Bs. / hr.

      Se elaboran 8 horas diarias y 5 días a la semana.


Solución:

      Según los datos de problema, tenemos:

            Tiempo de servicio por máquina ⇒ O = 8 min.
            Tiempo de desplazamiento por máquina ⇒ d = 48 seg./60 =
0,8 min.
            Tiempo de maquinado ⇒             M = 15 min.

      • Paso 1: Se calcula el número de máquinas que podrá manejar un
        operario:

                        M + O 15 + 8
                   N=        =        = 2,6maq.
                        d + O 0,8 + 8

       Como el resultado no es un número entero, habrá 2 alternativas : asignar
2 máquinas (N1) ó asignar 3 máquinas (N2). En el caso de asignar 2 máquinas
el operario estará manejando menos facilidades físicas de las que él es capaz
de operar, por lo tanto permanecerá en ocio durante parte de su ciclo. Pero si
se le asignan 3 máquinas se estará superando la capacidad de atención que
tiene el operario, en este caso serán las máquinas las que permanecerán en
ocio al no poder ser atendidas cuando lo requieran. Entonces, el criterio que
prevalece para la decisión será el económico.



                                                                           17
Ingeniería de Métodos


      • Paso 2: Se realiza el análisis económico para N1. En este caso el
        ciclo del sistema estará determinado por el tiempo del ciclo de la
        máquina ( M + O ), ya que el operario tendrá un cierto tiempo de
        ocio. Entonces el Costo Total Unitario será:

                  Costo de mano de obra + Costo de las máquinas
      CTU N 1 =                                                 ,           entonces
                                       N1

                  K1 ( M + O) + K 2 N1 ( M + O)
      CTU N 1 =                                 , donde K1 es el salario del operador y
                               N1
                                                              K2 es el costo de la máquina.

Sustituyendo, tenemos entonces que:

                       1000(23 / 60) + 1200 * 2 * (23 / 60)
          CTU N1 =                                          = 651,67 Bs / Pza.
                                        2

      • Paso 3: Se realiza el análisis económico para N2 . En este caso el
        ciclo del sistema estará determinado por el tiempo del ciclo del
        operario N2(d + O), ya que las máquinas tendrán cierto tiempo de
        ocio. Entonces, el costo total unitario para este caso viene dado por:

                       K1 N 2 (d + O) + K 2 N 2 (d + O)
                                              2
          CTU N 2 =                                     = (d + O)( K1 + K 2 N 2 ) ,   sustituyendo
                                     N2

                       8,8
           CTU N 2 =       ∗ (1000 + 1200 ∗ 3) = 674,67 Bs/Pza.
                       60

      • Paso 4 : Se comparan los costos y el número de máquinas a asignar
        dependerá de la alternativa más económica.

       Por lo tanto el arreglo que proporciona el mínimo costo, en este caso, es
el de asignarle 2 máquinas al operario.




                                                                                             18
Ingeniería de Métodos




Caso 4: Atención al azar

       Al realizar un análisis de métodos, se observó que las máquinas, en
promedio operaban el 40 % del tiempo sin requerir atención y el promedio o
probabilidad de que no estén funcionando ( esté parada ) y requieran atención
del operario es del 60 %, usted decide hacer la comparación asignando al
operario que maneja varios taladros automáticos, la posibilidad de que trabaje
con 3 ó 4 máquinas solamente.
      Para esto, debe determinar la proporción mínima de tiempo de
maquinado perdido por día de trabajo de 8 horas, para la posibilidad de
asignarle al operador 3 ó 4 taladros.

Solución:

Probabilidad que la máquina este funcionando ⇒ p = 0,40
Probabilidad que la máquina no este funcionando ⇒  q = 0,60

      • Paso 1: Utilizando la distribución binomial, para n = 3, encontramos
        las probabilidades de que las máquinas estén paradas.

            ( p + q ) 3 = p 3 + 3 p 2 q + 3 pq 2 + q 3
                      = (0,40) 3 + 3(0,40) 2 (0,60) + 3(0,40)(0,60) 2 + (0,60) 3
                      = 0,064 + 0,288 + 0,432 + 0,216

      Ordenando tenemos:

Nº máq. paradas         Probabilidad                     Hr. máq. pérdidas en 8 hr/día
      0                    0,064                                      0
      1                    0,288                                      0
      2                    0,432                             (1)(0,432)8 = 3,456
      3                    0,216                             (2)(0,216)8 = 3,456
                                                                           6,912

      • Paso 2: Calculamos las horas máquinas totales disponibles:

            8 horas x 3 taladros = 24 horas-máq.




                                                                                         19
Ingeniería de Métodos


     • Paso 3: Dividiendo el total de horas máquinas pérdidas por día entre
       las horas máquinas disponibles por día, tendremos la proporción de
       tiempo de maquinado para los 3 taladros que se pierde:

                                   6,912hr − maq.
                                                  = 0,288 ≅ 28,8%
                                     24hr − maq.

     • Paso 4 : Se repite el paso 1 pero utilizando la distribución binomial
       para n = 4.
                      ( p + q ) 4 = p 4 + 4 p 3 q + 6 p 2 q 2 + 4 pq 3 + q 4

           = (0,40) 4 + 4(0,40) 3 (0,60) + 6(0,40) 2 (0,60) 2 + 4(0,40)(0,60) 3 + (0,60) 4

            = 0,0256 + 0,1536 + 0,3456 + 0,3456 + 0,1296
Ordenando tenemos:

Nº máq. paradas       Probabilidad                    Hr. máq. pérdidas en 8 hr/día
      0                  0,0256                                    0
      1                  0,1536                                    0
      2                  0,3456                         (1)(0,3456)8 = 2,7648
      3                  0,3456                         (2)(0,3456)8 = 2,7648
      4                  0,1296                          (3)(0,1296)8 = 3,1104
                                                                         8,6400

     • Paso 5: Calculamos las horas máquinas totales disponibles, para 4
       taladros: 8 horas x 4 taladros = 32 horas-máq.

     • Paso 6: Dividiendo el total de horas máquinas pérdidas por día entre
       las horas máquinas disponibles por día, tendremos la proporción de
       tiempo de maquinado para los 4 taladros que se pierde:

                                        8,64hr − maq.
                                                      ≅ 27%
                                         32hr − maq.

     • Paso 7: Se determina la asignación de máquinas que dé el menor
       tiempo perdido.

   En este caso el que proporciona menor tiempo perdido es asignando 4
  taladros.


                                                                                             20
Ingeniería de Métodos




Caso 5: Combinaciones de Servicio Sincrónico y al Azar

       Seis máquinas automáticas actualmente en operación, requieren ser
preparadas periódicamente, a fin de producir una nueva parte. Dichas
máquinas necesitan atención a intervalos aleatorios ( Poisson ). El tiempo que
tardan los operarios en atenderlas es una variable aleatoria exponencialmente
distribuida.
       Sí cada máquina opera en promedio por 70 horas y luego requiere un
promedio de atención de 30 horas-hombre, ¿ Cuántos operarios deberían
asignarse para atender el grupo de máquinas ?
       Cada operario gana 1500 Bs./h y cada máquina elabora un producto que
representa un ingreso de 4500 Bs. por hora de producción.

Solución:

Número de máquinas ⇒ m = 6
Tiempo promedio de operación (funciona sin requerir al operador)⇒Ti= 70 hr.
Tiempo promedio de servicio ⇒ Ts = 30 hr-hombre

      • Paso 1: Calculamos el Factor de Utilización ( X ), tomando como
        base una base una hora :

                           Ts      30
                   X =          =        = 0,30
                         Ts + Ti 30 + 70

      • Paso 2: Determinamos la expresión del Número promedio de
        máquinas en operación ( Li ) :

                  Li = m F( 1 - X ) ⇒      6 F( 1 - 0,30 ) ⇒ Li = 4,2 F

      • Paso 3: Utilizando las Tablas de Peck y Hazelwood, podemos
        encontrar los valores de ( Eficiencia del sistema ) para diferentes
        valores de C ( Número de operarios ). Con estos valores calculamos:
           o El valor de Li (sustituyendo la ecuación del Paso 2) ⇒
              Li = 4,2 F
           o El Ingreso ⇒ I = 4500 ∗ Li
           o Costo de mano de obra ⇒ CMO = 1500 ∗ C
           o Ingreso Neto ⇒ IN = I - CMO


                                                                            21
Ingeniería de Métodos


Entonces buscamos en la Tabla de Peck y Hazelwood los valores de F, en la
columna correspondiente a la población 6, con el valor de X igual a 0,3. y se
construye el siguiendo cuadro:


     C                 1              2               3                4
     F              0,513           0,880           0,978            0,997
     Li             2,155           3,696           4,108            4,187
      I             9697,5          16632           18486           18841,5
    CMO              1500            3000            4500            6000
Ingreso Neto        8197,5          13632           13986           12841,5
   (Bs./h)



      • Paso 4: Se escoge la alternativa que proporcione el mayor Ingreso
        Neto.

   En este caso es 13986 Bs./ h., por consiguiente, por lo tanto la alternativa
   a escoger es la de asignarse 3 operarios.




                                                                           22
Ingeniería de Métodos



Problemas Propuestos:

1.- En una determinada empresa se realiza el trabajo de procesar lotes de
artículos a través de una cepilladora automática; dicha cepilladora es cargada
y descargada por un solo operario; los tiempos correspondientes al
procesamiento de una pieza son los siguientes:

             Actividad                           Tiempo ( 0,01 min. )
      Cargar Máquina                                     30
      Cepillado Automático                               80
      Descargar Cepilladora                              30
      Quitar Rebabas                                     60

      En cada ciclo realizado por la maquina, se elabora una pieza y se trabaja
durante 8 ½ horas por día.
      El estudio de costos realizado arrojo lo siguiente: El costo de la
máquina funcionando es de 320 Bs./hora y parada es de 240 Bs./hora. El
operario tiene un sueldo de 12.500 Bs./semana. (se trabaja de Lunes a
Viernes)
En función de los datos suministrados:
      a) Diseñe un método mejorado, elaborando el diagrama hombre-
      máquina para el método actual y para el diseñado por Ud.
      b) Realice, basándose en la producción diaria y el costo por pieza producida,
      comparación entre los dos métodos ( actual y propuesto).

2.- Determinar el número óptimo de operarios que deben asignarse a 5
máquinas. El tiempo de servicio es una variable aleatoria, exponencialmente
distribuida y el número de máquinas que requiere servicio en un momento
dado, es una variable aleatoria, que sigue la distribución de poisson.
       En promedio cada máquina funciona en forma continua e independiente
durante el 70% del tiempo. Cada máquina produce 6 unidades de producto por
hora efectiva de operación.
       Al operario se le paga 50 Bs./h y cada máquina cuesta 90 Bs./h.

3.- En una empresa ensambladora ocurren interrupciones aleatorias en el
proceso productivo, durante la jornada de trabajo diaria de 8 horas.
Actualmente un operario está encargado de atender 4 máquinas. Por estudio de
muestreo de trabajo realizados, se sabe que, en promedio, cada máquina opera
el 70% del tiempo sin requerir atención. El tiempo de atención prestada por el


                                                                               23
Ingeniería de Métodos


operario a intervalos regulares es, en promedio, 30%. Calcule qué proporción
de tiempo de máquina perdido proporcionará este arreglo.

4.- En una empresa textil, se le han asignado 7 telares a un operario. Por
estudios de tiempo y registros históricos se ha determinado que cada máquina
requiere en promedio 1 minuto de servicio por cada 8 minutos transcurridos.
Se considera que el operador se desplaza desde un punto medio común a todas
las máquinas.
    a) Determine el valor promedio de interferencia por máquina.
    b) Determine el porcentaje inevitable de ocio del operario, inherente a la
       asignación realizada.
Interprete el significado de ambos valores.

5.- Tres operarios ensamblan un componente eléctrico al realizar las
operaciones siguientes:


   OPERARIO            OPERACION           TIEMPO (min.)       PRECEDENCIA
      A                    1                    3                   __
                           2                    4                    1
                           3                    1                   __
        B                  4                    3                    3
                           5                    5                    1
                           6                    1                    4
        C                  7                    2                 2,5 y 6
                           8                    2                    7

Use la herramienta de análisis adecuada para el método actual y proponer un método
mejor.

6.- A través de la jornada de trabajo diario de 8 horas en una empresa envasadora
de alimentos, ocurren interrupciones aleatorias en el proceso productivo. Actualmente,
un operario se encarga de atender 3 máquinas. Por estudios realizados se sabe que
en promedio cada máquina opera el 65% del tiempo sin requerir atención. El tiempo
de atención prestada por el operario, a intervalos regulares es en promedio 35%.
¿ Qué proporción de tiempo de máquina perdido proporcionará este arreglo ?




                                                                                 24
Ingeniería de Métodos




7.- Se desea procesar 1980 artículos en una fresadora semi-automática. Un
solo operario puede cargar y descargar dicha fresadora. Disponemos de los
siguientes tiempos:

          ACTIVIDAD                              TIEMPO (MIN)
   Cargar material en fresadora                       1
   Fresado automático                                 4
   Descargar producto                                 1
   Inspeccionar                                       1

       En la determinación de los costos, se acostumbra añadir un 10% al
tiempo de ciclo para cubrir imprevistos. El operario gana 80 Bs./h en jornadas
de trabajo normal y 95 Bs./h en tiempo extra. La fábrica trabaja 8 horas por
día, pudiendo trabajar hasta 6 horas diarias de sobretiempo.
       La hora-máquina se estima en 90 Bs. Se puede disponer de 2 fresadoras
para cumplir con este pedido, el cual debe estar listo a más tardar en 15 días.
El tiempo para ir de una máquina a otra se puede considerar despreciable.
Determine el tiempo y costo de fabricación. ¿ Cuál es el arreglo más favorable
desde el punto de vista económico?



8.- Establecer la cantidad de máquinas semiautomáticas que pueden ser
asignadas a un operario, si conocemos que para la elaboración de las piezas se
requiere de las siguientes secuencias de actividades:

              Actividad                            Tiempo ( min.)
     Carga y descarga máquina                            4
     Maquinado                                           5
     Ir de una máquina a otra                           0,7

      El costo del maquinado es de 590 Bs./ hr. El costo del operario es de
3120,50 Bs./ hr. en jornada regular.
      En función a costos, seleccione la mejor alternativa .




                                                                           25
Ingeniería de Métodos




Respuesta Problemas Propuestos:


1.- a) Diagrama Hombre-Máquina método Actual , ver Fig. 4
       Diagrama Hombre-Máquina método Propuesto, ver Fig. 5

    b)         Método                Piezas por día            Costo por pieza
               Actual                     255                      20,10
              Propuesto                   365                      13,53


2.- Conviene asignar 2 operarios para atender las 5 máquinas

3.- La proporción de tiempo de máquina perdido es de 11,003 %.

4.- a) El valor promedio de interferencia por máquina es de 9,10 %
    b) El porcentaje de ocio inevitables es de 20,5 %
    c) En promedio por cada 100 minutos transcurridos, cada uno de los 7
    telares permanecerá ocioso 9,10 minutos debido a la interferencia de
    máquinas y el operario tendrá un tiempo de ocio de 20,5 minutos.

5.- Diagrama de Cuadrilla método Actual, ver Fig. 6
    Diagrama de Cuadrilla método Propuesto, ver Fig. 7.

6.- La proporción de tiempo de máquina perdido es de 10,83 %

7.- Diagrama Hombre-Máquina 1operario, 1máquina + sobre tiempo,
   ver Fig 8
    Diagrama Hombre-Máquina 1 operario,2 máquina ver Fig. 9

             Alternativa                            Costo por pieza
       1operario+1máq.+ sobre tiempo                   193,50 Bs.
       1operario + 2 máq.                             143,00 Bs.
La segunda alternativa ( 1 operario y 2 máquinas ) es el más conveniente, ya
que es el que tiene asociado el menor costo unitario.
El tiempo necesario para fabricar las 1600 piezas es de 18 días

8.- La mejor alternativa es asignar 2 máquinas.



                                                                               26
Ingeniería de Métodos




Fig. 4



                       27
Ingeniería de Métodos




Fig. 5


                       28
Ingeniería de Métodos




Fig. 6



                       29
Ingeniería de Métodos




Fig. 7


                       30
Ingeniería de Métodos




Fig. 8


                       31
Ingeniería de Métodos




Fig. 9


                       32
Ingeniería de Métodos



Capitulo II:

        Balance de Líneas de Producción


      El estudiante encontrará la teoría de estea Unidad en el Capitulo VI del
texto de Burgos y en el Capitulo 6 del Niebel , que corresponde al Objetivo
n° 5 del Plan de Curso:

   “Resolver problemas de balance de líneas de ensamblaje de producción de
una empresa, con el fin de optimizar el proceso de producción industrial de
la misma.”




Síntesis Teórica:


       Se puede distinguir dos tipos de líneas de producción, “ Líneas de
Fabricación “ y “ Líneas de Ensamble ”. Las líneas de fabricación se
caracterizan por la formación o procesamiento de partes. En una línea de
fabricación las operaciones realizadas en las áreas de trabajo pueden ser por
ejemplo: taladrando, torneando, etc. Las líneas de ensamblaje se caracterizan
por la adición de partes para obtener un ensamble total.

      Una definición de línea de ensamble sería: “ es una serie de estaciones
de trabajo colocadas en forma sucesiva. En cada una de ellas se realiza
trabajo sobre el producto, bien sea añadiendo partes o complementando
operaciones de ensamblaje ”

       La rata de producción de la línea viene determinada por el tiempo del
ciclo y a su vez el tiempo del ciclo será igual al tiempo de operación mayor de
los correspondientes a las estaciones de trabajo. Es decir, el tiempo del ciclo
de la línea es igual al tiempo de operación de la estación de trabajo cuello de
botella.



                                                                           33
Ingeniería de Métodos


       El problema de balance de una línea de ensamble puede resolverse
utilizando técnicas analíticas que tienen como finalidad asignar todas las
unidades de trabajo a una serie de estaciones de trabajo a fin de que cada
estación no realice sino el trabajo que permite el tiempo de ocio total mínimo.

       Para la aplicación de los modelos analíticos hemos considerado dos
tipos de líneas de ensamble:

   • En la que se produce un solo tipo de producto
   • En la que se producen diferentes variedades de un mismo producto o
     “productos mezclados”


Problemas Resueltos:


Caso 1: Para un solo producto.

      La Kia de Venezuela, utiliza un sistema flexible de producción
controlado por robots para armar los carros que vende. En la operación de
ensamblaje se deben completar las tareas especificas a continuación:

         Tarea                 Tiempo ( seg. )         Tarea (s) Precedente
          A                         12                          ----
          B                         22                          ----
          C                         19                           A
          D                         47                           A
          E                         14                           C
           F                        12                           C
          G                         29                           B
          H                         07                           E
           I                        21                         F,G
           J                        22                        D,H,I
          K                         34                           I
          L                         20                          J,K




                                                                           34
Ingeniería de Métodos




Sobre la base de la información anterior:

   a) Construya el diagrama de precedencias para esta operación.

   b) Balancee de la manera más eficiente las tareas en la línea de montaje
      para obtener 360 unidades por día de trabajo de 6 horas productivas.

   c) ¿ Cuál es la eficiencia del balance ?




Solución:

a) Diagrama de Precedencias:

         12               19             14            7
    A                 C              E             H
                               14                 21            22              20
                           F                  I             J               L
                     22         14
                 B         G
            14                                             14
                                                       K
         D




b) Balance de Línea:

   • Paso 1 : Se calculan las posiciones ponderadas para cada unidad, como
     recordará las posiciones ponderadas pueden interpretarse como el
     tiempo que se perdería si no se realiza la unidad de trabajo considerada,
     por ello son iguales a las sumas de los tiempos de ejecución de la
     unidad en cuestión y de aquellas unidades a las cuales debe preceder
     dicha unidad.

                                                                                     35
Ingeniería de Métodos




Elemento    Tiempo (seg.) Posición Ponderada
 ( tarea)
    A             12           12+19+14+7+12+21+47+22+34+20 = 208
     B            22                        22+29+21+22+34+20 = 148
     C            19                  19+14+12+7+21+22+34+20 = 149
    D             47                                  47+22+20 = 89
     E            14                               14+7+22+20 = 63
     F            12                           12+21+22+34+20 = 109
    G             29                           29+21+22+34+20 = 126
    H             07                                   7+22+20 = 49
     I            21                              21+22+34+20 = 97
     J            22                                     22+20 = 42
    K             34                                     34+20 = 54
     L            20                                                20
   • Paso 2: Se ordenan las posiciones ponderadas de mayor a menor:

         Elemento (Tarea)              Posición Ponderada
               A                                       208
               C                                       149
               B                                       148
               G                                       126
                F                                      109
                I                                       97
               D                                        89
                E                                       63
               K                                        54
               H                                        49
                J                                       42
                L                                       20

  • Paso 3: Se determina el tiempo del ciclo
                                6 horas     60 min
                                          ∗        = 1 min./unid.= 60 seg./unid.
                              360 unidades horas

  • Paso 4: Se realiza la asignación a estaciones de Trabajo: para esto debe
    tenerse presente que el tiempo de operación de trabajo no puede ser
    mayor que el tiempo del ciclo, en este caso no puede ser mayor que 60


                                                                              36
Ingeniería de Métodos


      seg. La asignación de las unidades de trabajo se hace dando prioridad a
      aquellas unidades de trabajo con las mayores posiciones ponderadas.
      Las reglas de asignación las encontrará en las Pág. 173 de su libro texto.

  Estación          Elementos       Precedencia       Tiempo de la       Tiempo Acumulado
                    Asignados        Inmediata         tarea (seg.)            (seg.)
                        A               ---                12                    12
     I                  B               ---                22                    34
                        C                A                 19                    53
                        G                B                 29                    29
     II                 F                C                 12                    41
                        E                C                 14                    55
     III                D                A                 47                    47
                        I               F,G                21                    21
    IV                  H                E                  7                    28
                        J              D,H,I               22                    50
     V                  K                 I                34                    34
                        L               J,K                20                    54

   c) La Eficiencia del Balance ( EB ) viene dado por

                EB =                      ∑t                  x100 ,   donde
                         Tiempo de ciclo x n° de estaciones

∑ t = 259 seg          4,32 min.; Tiempo del ciclo = 1 min.; n° de estaciones = 5

entonces:
                    4,32
             EB =        ∗ 100 = 86,4 %
                    1∗ 5


Caso 2 : Productos Mezclados

En una fábrica de secadores de pelo se desea realizar un balance mezclado de
la línea de producción. La planta produce tres modelos : A, B y C. Se trabaja 8
horas diarias con un receso de 35 min. La naturaleza del producto no permite
previsión de inventario entre las estaciones de trabajo. El plan de producción
diario es el siguiente:




                                                                                        37
Ingeniería de Métodos




  MODELO            Nº unid. Requeridas          Operaciones que Lleva
    A                       12                          Todas
    B                        6                      No lleva 2 ni 4
    C                        4                      No lleva 1 ni 2

Los tiempos de ejecución y restricciones de precedencia son :

     ELEMENTO                TIEMPO ( MIN. )          PRECEDENCIA
         1                         4                       ---
         2                         6                       ---
         3                         4                        1
         4                         7                        2
         5                         6                      3, 4
         6                         5                        5
         7                         6                        5
         8                         4                      6, 7


Sobre la base de la información anterior:
            a) Construya el diagrama de precedencias.
            b) Balancee la línea de producción.
            c) Formule posibles secuencias para llevar a cabo la
             programación.

Solución:

   a) Diagrama de precedencia:
            4                4                              4
        1                3                   6          1                      4
                                                                           8
                                         5

            6                7                              6
        2                4                              7




                                                                               38
Ingeniería de Métodos




  b) Balance de Línea:

        • Paso 1: Se construye un cuadro en el cual se indica el tiempo
          total consumido por día para la realización de cada elemento o
          unidad de trabajo. La suma de estos tiempos representará el
          tiempo total necesario para cubrir la producción diaria.


                          Unidades a producir por              Tiempo
               Tiempo        día y por modelo          Total    Total
   Elemento     (min.)     A         B    C           Unidades (min.)
       1          4        12        6       ---         18       72
       2          6        12       ---      ---         12       72
       3          4        12        6        4          22       88
       4          7        12       ---       4          16      112
       5          6        12        6        4          22      132
       6          5        12        6        4          22      110
       7          6        12        6        4          22      132
       8          4        12        6        4          22       88
                                                                 806


  • Paso2: Se determina el número mínimo de estaciones de trabajo
    necesarias para cumplir con la producción programada por jornada. Para
    esto se divide el tiempo total por día entre el tiempo efectivo disponible
    por jornada de trabajo. ( como el número obtenido no es entero, se
    aproxima al inmediato superior)

                                                          806
              Número mínimo de estaciones de trabajo :        = 1,81 ≅ 2
                                                          445

   El número mínimo de estaciones de trabajo será 2 y el tiempo por
estación es 806/ 2 = 403 min.

  • Paso 3: Se realiza entonces la asignación de los elementos de trabajo a
    las diferentes estaciones de trabajo (Para esto puede utilizarse el
    método heurístico de Kilbridge y Wester o el de Posiciones Ponderadas)



                                                                           39
Ingeniería de Métodos




Asignación a estaciones de trabajo: ( Posiciones Ponderadas )


    Estación            Elemento          Tiempo Total   Tiempo asignado
                        Asignado             (min.)       estación (min.)
                            1                  72
                            2                  72
        I                   3                  88                  344
                            4                 112
                            5                 132
        II                  6                 110                  374
                            7                 132
       III                  8                  88                   88


   • Paso 4: Se determinan los tiempos que tarda cada unidad de cada uno
     de los modelos en cada estación ( según la asignación de elementos de
     trabajo a las estaciones )


Tiempos de operación en cada estación:

               Estación      Tiempo de operación por modelo ( min. )
                                 A             B              C
                   I            21              8            11
                   II           17             17            17
                  III            4              4             4


c ) Formulación de posibles secuencias:

      Se determina la secuencia a seguir para la programación del ensamblaje
de los diferentes modelos. Para ello se calcula la proporción en que debe
producirse cada modelo, de acuerdo con el programa de producción. Esto se
hace sacando el Máximo Común Divisor ( MCD ) de las cantidades a producir
de cada modelo, en nuestro caso será:


                                                                              40
Ingeniería de Métodos


                          MCD de 12, 6 y 4 es 2

Luego, las proporciones correspondientes a cada modelo serán:


   Modelo A = 12/ 2 = 6 ;         Modelo B = 6/ 2 = 3;   Modelo C = 4/ 2 = 2


Finalmente, algunas posibles secuencias son:


                   AAABBBAAACC ;  AAABCCAABBA ;
                           AABBCAABCAA


Problemas Propuestos:


1.- En una fábrica de neveras se quiere hacer un balance mezclado de la línea
de producción. La planta produce cuatro modelos: ordinaria, estándar, de lujo
y superior. Se trabajan 8 horas diarias con un receso de 30 min.
El plan de producción es el siguiente:

MODELO             Nº UND. REQUERIDAS        OPERACIONES QUE LLEVA
Ordinaria                   20                   No lleva ni la 2 ni la 3
Estándar                    30                   No lleva la 1
De lujo                     10                   No lleva la 2
Superior                      5                  Todas

El diagrama de precedencias es el siguiente:

           6                  7                 6               5
       1                 4                  5               6


               8              7
       2                  3




                                                                           41
Ingeniería de Métodos




Se pide:
      Balancear la línea y formular posibles secuencias para hacer la
programación diaria. (no haga la programación)

2.- Una operación de ensamblaje, esta conformada por 8 elementos, los
tiempos de ejecución tomados con cronómetro se muestran en la siguiente
tabla, al igual que las restricciones de precedencia:

     ELEMENTO              TIEMPO ( MIN. )           PRECEDENCIA
         1                       5                        ---
         2                       6                         1
         3                       7                         1
         4                       8                        2,3
         5                       6                         4
         6                       9                         4
         7                       7                        5,6
         8                       6                         7

Sobre la base de la información anterior:
      a) Construya el diagrama de precedencias.
      b) Balancee la línea de producción para obtener 35 unidades por día de
      trabajo de 8 horas.

3.- Una operación de ensamblaje está compuesta por 10 elementos, cuyos
tiempos de ejecución y restricciones de precedencia son los siguientes:

      ELEMENTO              TIEMPO ( min. )          PRECEDENCIA
          1                      8                        ---
          2                      2                         1
          3                      5                         2
          4                      7                         1
          5                      3                         4
          6                      1                         4
          7                      5                        5,6
          8                      7                        3,7
          9                      4                         7
         10                      5                        8,9




                                                                         42
Ingeniería de Métodos




Se pide:
      a ) Construir el diagrama de precedencias.
      b ) Balancear la línea para obtener 30 unidades por día de trabajo de 8
      horas.

4.- En la fábrica donde Ud. hace pasantías se debe realizar un balance de la
línea de producción; la empresa fábrica en este sector los siguientes tipos o
modelos de aire acondicionado denominados así: para uso A, para uso B y tipo
estándar E. En esta empresa se trabaja 8 horas/día con tiempo para almorzar
de 45 minutos.
      La naturaleza del producto no permite previsión de inventario entre las
estaciones de trabajo.
      Contando con el siguiente plan de producción diaria y el diagrama de
precedencias:
                           PLAN DE PRODUCCIÓN

        Modelo                 Nº de Unidades             Operaciones
        Tipo A                        8                   No lleva la 9
        Tipo B                        6                   No lleva la 1
       Estándar E                     8                  Las lleva todas




                    DIAGRAMA DE PRECEDENCIAS

       7                              7                         6
   1                              5                       8
                6          5                     4                            5
            3          4                     7                           10
       8                              5                         6
   2                              6                       9



       Se le solicita llevar a cabo este balance de línea de producción y
también, formular posibles secuencias que permitan hacer la programación
diaria, sin hacer la programación.

                                                                            43
Ingeniería de Métodos


5.- Una empresa produce tres modelos de neveras clasificados como tipos A,
B y C. La empresa trabaja durante 8 horas con un receso de 30 min.

           Modelo               Nº de Unidades                Operaciones
             A                        20                        Todas
             B                        15                      Menos 7 y 8
             E                         5                     Menos 4, 5 y 6

       El diagrama de precedencias se muestra a continuación:

                  3                              2
              2                              6

       5                                                 5                  4
   1                       1             6           9                 10
                       4             7
                  7
              3
                           9             2
                      5              8


      Los tiempos están expresados en minutos. Balancee la línea de
producción, formule los secuencias posibles para una programación diaria.
( No realice la programación )

6.- - Una operación de ensamblaje está integrada por 10 elementos. Los
tiempos de ejecución y restricciones de precedencia de estos elementos, se
indican a continuación:

       ELEMENTO                TIEMPO (MIN)              PRECEDENCIA
           1                        6                          --
           2                        5                          1
           3                        3                          1
           4                        4                          2
           5                        5                          3
           6                        7                         4,5
           7                        3                          6
           8                        6                          6
           9                        5                         7,8
          10                        5                          9


                                                                                44
Ingeniería de Métodos




Se pide:
      a.- Construir el diagrama de precedencias.
      b.- Balancear la línea para obtener 30 unidades por día de trabajo de 8
      horas.
      c.- ¿ Cuál es la eficiencia del balance?


7.- Se necesita implantar una operación de submontaje, en una línea de
ensamblaje para añadir un componente que puede producir 90 unidades
durante un turno normal de 8 horas. Las operaciones han sido diseñadas para
tres actividades con los tiempos que se muestran a continuación:

       Operación                  Actividad           Tiempo Estándar ( min. )
          A                   Montaje Mecánico                  15
          B                   Cableado Eléctrico                20
          C                        Prueba                       6

Sobre la base de esta información:
     a.- ¿ Cuántas estaciones de trabajo ( en paralelo ) se requerirán para cada
      actividad ?
      b.- Suponiendo que los trabajadores de cada estación no pueden ser
      utilizados para otras actividades en la planta ¿cuál es el porcentaje
      apropiado de tiempo ocioso para esta operación de subensamblaje ?


Respuesta Problemas Propuestos:

1.- Tiempo total para cubrir la producción diaria = 1588 min.
    N° mínimo de estaciones = 4 ⇒ Tiempo de estación = 397 min.
    Posible balance:

              Estación Elementos Asignados Tiempo estación
                   I          1,2,4             340
                  II           3,5              286
                 III           6,7              364
                 IV            8,9              312
                  V           10,11             286


                                                                            45
Ingeniería de Métodos




  Proporciones a producir: E = 3; L = 4; S = 6
  Posibles secuencias ⇒ EEELLLSSSSSS ; EELLESSSLLSSS


2.- a)
                              6                       6
                      2                           5
             5
                                          8                               7                    6
       1                          4                               7                      8
                              7                       8
                      3                           6


  b) Tiempo del ciclo = 14 min./und.
     Posible asignación:


                 Estación Elementos Asignados Tiempo estación
                     I            1,3              12
                     II           2,4              14
                    III           5,6              14
                    IV            7,8              13



3.- a)
                          3                   6                               5
                  2                   3                               8
         7
                                                                                                   7
   1                                                                                      10
                                                              4
                          5                   5
                  4                   5                   7
                                                                          5
                                          3                           9
                                      6




                                                                                                   46
Ingeniería de Métodos




 b)   Tiempo del ciclo = 12 min./und.
       Posible asignación:

              Estación Elementos Asignados Tiempo estación
                   I           1,4              12
                  II          5,6,2             11
                 III           7,3              10
                 IV            8,9              10
                 V             10                7


4.- Tiempo total para cubrir la producción diaria = 1208 min.
   N° mínimo de estaciones = 3 ⇒ Tiempo de estación = 403 min.
   Posible balance:

              Estación Elementos Asignados Tiempo estación
                   I           1,2              288
                  II          3,4,5             396
                 III          6,7,8             330
                 IV           9,10              194

  Proporciones a producir: A = 4; B = 3; E = 4
  Posibles secuencias ⇒ AAAABBBEEEE ; AABBBAAEEEE

5.- Tiempo total para cubrir la producción diaria = 1580 min.
   N° mínimo de estaciones = 4 ⇒ Tiempo de estación = 395 min.

Posible balance:

              Estación Elementos Asignados Tiempo estación
                   I           1,2              320
                  II          3,4,6             385
                 III           5,8              365
                 IV            7,9              300
                  V            10               160

  Proporciones a producir: A = 4; B = 3; C = 1
  Posibles secuencias ⇒ AAAABBBC ; AABBABAC

                                                                              47
Ingeniería de Métodos




6.- a)
                    5            4                  3
                2            4                  7
         6                                 7                    5               5
     1                                6                    9               10
                    3            5                  6
                3            5                  8



   b)    Tiempo del ciclo = 16 min./und.
         Posible asignación:

               Estación Elementos Asignados Tiempo estación
                    I          1,2,3             14
                   II          4,5,6             16
                  III          8,7,9             14
                  IV            10                5


   c) Para este balance la EB = 76,6 %


   7.- a) 3 estaciones para A, 4 estaciones para B y 1 estación para B.
        b) 3,91%




                                                                             48
Ingeniería de Métodos



Capítulo III:

          Normalización y Cronometrado


      El estudiante encontrará la teoría de esta Unidad en el Capitulo VII del
texto de Burgos que corresponde al Objetivo n° 6 del Plan de Curso:

     “Determinar el número de ciclos y el tiempo de ejecución de una
operación, mediante los métodos continuo e intermitente de cronometrado.”

      Para la resolución de los problemas de este Capítulo, es necesario el uso
de Tablas de la Distribución de t Student y de la Distribución Normal.
Recuerde que en el momento de la evaluación presencial, estas tablas se
encuentran en el cuadernillo que le será entregado por el supervisor de la
prueba.



Síntesis Teórica:


       La búsqueda de un nuevo método originara la formulación de una serie
de alternativas que constituyen posibles soluciones al problema planteado;
pero entre ellas habrá una que con base en las variables seleccionadas, las
restricciones impuestas y los criterios de evaluación escogidos, que será más
ventajosa que las otras y será la que se convertirá en el método propuesto. Este
método propuesto deberá luego ser Normalizado para finalmente proceder a
medir su tiempo de ejecución.

      Normalizar significa establecer una norma, un patrón. El Tiempo
Estándar, de acuerdo con su definición, debe corresponder a un método y
equipo dados, bajo condiciones de trabajo específicas y el Estudio de Tiempos
en concordancia con ello estará referido al trabajo realizado bajo las
condiciones que prevalecen en el momento de realizar dicho estudio. Si esas
condiciones cambian, habrá que hacer modificaciones al tiempo establecido.



                                                                            49
Ingeniería de Métodos


      El Estudio de Tiempos se define como una técnica para establecer un
Tiempo Estándar para realizar una tarea dada. Esta técnica se basa en la
medición del contenido de trabajo del método prescrito, permitiendo las
debidas Tolerancias por fatiga, demoras inevitables y necesidades personales.
El objetivo del Estudio de Tiempos no es determinar cuánto tarda un trabajo,
sino cuánto debería tardar.

      Una vez que tenemos registrada toda la información general y la
referente al método normalizado de trabajo, la siguiente fase consiste en hacer
la medición del tiempo de operación. A esta tarea se le llama cronometraje.
En el momento de realizar el cronometraje, los sucesivos tiempos de un
mismo elemento del ciclo de trabajo, resultan variables por una serie de
causas. Por lo tanto, para establecer un tiempo que sea justo, es preciso tomar
varios tiempos y actuaciones, para cada elemento, de tal manera que se facilite
la oportunidad de que se presenten, durante el cronometraje, las pequeñas
variaciones difíciles de registrar. La garantía del valor medio del tiempo
correspondiente a un elemento establecido por cronometraje, aumenta cuando
crece el número de datos obtenidos.


Problemas Resueltos:


1.- En un estudio de tiempos con cronómetro se requiere saber si el número
de observaciones realizadas son suficientes, para un nivel de confianza de
90% y una precisión de ± 5%. Se han registrado 10 ciclos cuyos tiempos en
0,01 minutos se dan a continuación:
                      10, 11, 12, 10, 12, 11, 09, 07, 10, 07
Si deben hacerse observaciones adicionales, calcule cuántas son necesarias
para obtener la precisión deseada.

Solución:

Según los datos del problema, tenemos que:

Intervalo de Confianza ⇒ C = 0,90 ;
Precisión del estudio ⇒ K = 0,05
N° de ciclos de la operación ⇒   M = 10



                                                                           50
Ingeniería de Métodos


   • Paso 1: Se determina la Desviación Estándar de la muestra ( S ):


              S=
                   ∑x   2
                            − (∑ x ) 2 / M
                            M −1

en nuestro caso:
              S=
                              (
                    1009 − (99 ) / M
                                    2
                                             )
                                     = 1,79 x 10- 2
                           9

   • Paso 2: Se calcula el intervalo de Confianza Im provisto por esta
     muestra:
                                  I m tc ∗ S                   2 ∗ tc ∗ S
                                     =               ⇒ Im =
                                   2     M                          M

donde tc ,   se obtiene de la Tabla de Probabilidades para la Distribución “t”
             con C y M –1 grados de libertad ( Tabla 5 del Cuadernillo
             de Tabla ) : t0,90;9 = 1,833




Entonces :
                       2 * 1,833 * 1,79 x10 −2
                Im =                                   = 0,0208
                                        10

      • Paso 3: Comparamos el valor de I m con I , para esto calculamos el
        valor de I en base a la media muestral:
                      _                          _
              I                                      99             −2
                = K ∗ x,      siendo             x = 10 = 9,9 x10        min .
              2
      Luego,
                                                              -2
                                  I = 2 * 0,050 * 99x10 = 0,0099

Sí I m ≤ I ⇒ La muestra de observaciones satisface los requerimientos de
             muestreo.
Sí I m > I ⇒ Se necesitan observaciones adicionales.




                                                                                               51
Ingeniería de Métodos



       Por consiguiente, como I m > I       el número de observaciones no es
suficiente, se necesitan observaciones adicionales.

    • Paso 4 : Se calcula el número total de observaciones. a partir de:
                                             2
                                         4 tc ∗ S 2
                  I
                    = tc∗
                          S
                                ⇒N=
                  2       N                 I2

Entonces ,
                       4(1,833) 2 ∗ (0,0179) 2
                  N=                           = 44 Observaciones.
                            (0,0099) 2

      Las observaciones adicionales que tendremos que hacer son N – M , es
decir 44 – 10 = 34 ⇒ Por lo tanto, es necesario realizar 34 observaciones
adicionales.



2.- Sobre la base de una estimación preliminar, la desviación estándar de una
actividad es 10 segundos ¿ Cuántas observaciones deben hacerse en el estudio
de tiempos para tener 90% de confianza de que la media muestral esté dentro
de 2 segundos (± 2) del valor de población real ? Observe que en este caso se
manejan medias muestrales ( x ) en lugar de proporciones muéstrales. Las
medias y proporciones muestrales generalmente siguen una distribución
normal.


Solución:

Según los datos del problema, tenemos que:

Precisión ⇒ e = 2        ;

Desviación Estándar ⇒ S = 10

   • Paso 1: Se determina el valor de z en la tabla Área bajo la curva
     Normal Tipificada de z ( Tabla 6 del Cuadernillo de Tablas )

               z = 1,64


                                                                                   52
Ingeniería de Métodos




  • Paso 2: Con los datos se calcula el valor de n:

                                                  z∗S ⎞
                                                          2

                                            ⇒ n=⎛
                                         S
               e = z ∗ Sx    = z∗               ⎜     ⎟ ,
                                          n     ⎝ e ⎠
Sustituyendo
                       ⎛ 1,64 ∗ 10 ⎞
                                     2

                     n=⎜           ⎟ ≅ 68 observaciones
                       ⎝     2     ⎠



3.- Determine el tiempo promedio seleccionado de la siguiente operación
( tiempo expresado en 0,01 min. ):


                                             ELEMENTOS
   CICLO               I                   II         III               IV
                 T          L            T      L   T      L        T          L
      1                     18                 28         33                  43
      2                     48                 58         64                  75
                                                                             A
      3                     80                 89         94                   04
      4                     15                 25         35                  45
      5                     51                71/61      61/51                86
      6                     91                 01         06                  16
      7                     21                 32         37                  48
      8                     53                 63         69                  80
                                     09
Elementos extraños:              A
                                     04

Solución:


  • Paso1: Se completa el formato de Estudio de Tiempo, para esto se
    resta la columna Ln+1 de la columna Ln. Se calculan los valores de X




                                                                             53
Ingeniería de Métodos




                                           ELEMENTOS
    CICLO                  I             II          III               IV
                    T          L    T         L   T       L       T           L
       1            18         18   10       28   05     33       10         43
       2            05         48   10       58   06     64       11         75
                                                                            A
       3            05         80   09       89   05     94       10          04
       4            06         15   10       25   10     35       10         45
       5            06         51   10      71/61 06    61/51     15         86
       6            05         91   10       01   05     06       10         16
       7            05         21   11       32   05     37       11         48
       8            05         53   10       63   06     69       11         80
       ∑                37               80          38               73
n                        7               8            7               7
X                      5,287             10         5,429           10,429

Elementos extraños:            A    09        05
                                    04


    • Paso 2: Calcula el Tiempo Promedio Seleccionado que será la ∑ X
      Para esto se deben descartar los valores que caen fuera del rango de
      aceptación

     Ciclo               I               II           III             IV
      ∑t                37               80           38              73
      n                  7               8             7               7
       __
                       5,287             10          5,429          10,429
       X


                                                                             __
    • Paso 3: Se calcula el Tiempo Promedio Seleccionado que será la     ∑X
                      __
            TPS =   ∑ X = 5,287 + 10 + 5,429 + 10,429 = 31,15 min./ciclo.




                                                                            54
Ingeniería de Métodos




Problemas Propuestos:


1.- En un estudio de tiempos con cronómetro se requiere saber si el número de
observaciones realizadas son suficientes, para un nivel de confianza de 99% y
una precisión de ± 10%. Se han registrado 15 ciclos cuyos tiempos en
centésimas de minutos se dan a continuación:
           20, 22, 21, 19, 20, 22, 23, 19, 22, 19, 20, 19, 21, 20, 22
¿Se requieren hacer observaciones adicionales para obtener la precisión
deseada ?, ¿ cuántas son necesarias ?


2.- Determine el tiempo promedio seleccionado de la siguiente operación
( tiempo expresado en 0,01 min. ):


                                    ELEMENTOS
   CICLO              I            II         III                     IV
                  T       L      T      L   T      L              T         L
     1                    13           23         28                        38
     2                    43           53         59                       A70
     3                    83           92         98                        08
     4                    14           24         29                        39
     5                    44           54         64                        74
     6                    79          94/84      84/79                      04
     7                    09           19         24                        33
     8                    39           49         ---                       59
     9                    64           73         78                        88
     10                   93           03         08                        22

Elementos extraños:             78
                           A    70




                                                                           55
Ingeniería de Métodos


3.- Un analista de estudios de tiempos desea determinar el ciclo de tiempo
necesario, para una operación de ensamblaje dentro de ± 0,05 minutos, con un
nivel de confianza de 96%. Si la desviación estándar del ciclo de tiempo (σ )
es 0,11 minutos. ¿ Cuántas observaciones se requieren ?

4.- Realizando estudios de tiempo en una línea de producción, se tomó una
operación en particular que proporcionó una desviación estándar igual a 15
segundos. ¿ Cuántas observaciones deben hacerse en el estudio si se desea
obtener 90% de confianza de que la media muestral esté dentro de ± 7
segundos del valor de población real?


5.- Determine el tiempo promedio seleccionado para la siguiente operación
( tiempos en centésimas de minutos )

                               ELEMENTOS
                 I               II         III                    IV
 CICLO      T        L       T        L   T       L            T         L
   1                 14              24          30                      38
   2                 48              57          63                      71
   3                 81              91          96                      03
   4                 12              27          ---                     60
   5                 70              79          85                      93
   6                 02             18/08       08/02                    30
   7                 39              49          59                      67
   8                 76              85          94                      02
   9                 12              21          27                      35
   10                45              55          61                      68



6.- En la siguiente tabla se muestran los resultados de un estudio de tiempos
con cronómetro de una cierta operación. Se requiere saber si el número de
observaciones realizadas es suficiente o cuantas observaciones adicionales
deben hacerse para un nivel de confianza de 90 % y un intervalo de confianza
de 0,12 minutos. ( Los tiempos se dan en centésimas de minuto )




                                                                          56
Ingeniería de Métodos




    Ciclos      1       2         3      4        5       6         7          8
Elementos
      I        11       14        12     11      13       10       12         11
     II        13       14        16     14      17       13       15         14
    III        12       13        15     13      16       12       14         16

7 .- Un analista desea desarrollar un costo estándar de mano de obra, para una
actividad manual de arreglo de carpetas. Los elementos son los siguientes:
1) recoger las tarjetas; 2) arreglarlas y 3) archivarlas. Para el elemento 2, la
desviación estándar es calculada en σ = 2,55. Para determinar el tiempo de
arreglo con una seguridad dentro de ± 0,7 minutos con 95,5% de confianza.
¿ Qué tan grande debe ser la muestra tomada ?


8.- Los resultados de un Estudio de Tiempos con cronómetro de cierta
operación, se muestra a continuación:

     CICLO                                ELEMENTOS
                              I               II                        III
        1                    15               18                        17
        2                    13               17                        13
        3                    11               16                        16
        4                    14               15                        15
        5                    13               17                        13
        6                    15               16                        16
        7                    13               15                        14

Los tiempos se expresan en centésimas de minutos. Se requiere saber si el
número de observaciones realizadas es suficiente, para un nivel de confianza
de 95% y una precisión de ± 10%.




                                                                              57
Ingeniería de Métodos




Respuesta a los Problemas Propuestos:


   1.- No. Ninguna observación adicional.

   2.- 0,3027 min./ciclo

   3.- 20 Observaciones.

   4.- 13 Observaciones.

   5.- 0,327 min./ciclo.

   6.- El número de observaciones realizadas son suficientes.

   7.- 53 Observaciones.

   8.- Las observaciones realizadas son suficientes.




                                                                        58
Ingeniería de Métodos



Capitulo IV:

                     EL Tiempo Normal


      El estudiante encontrará la teoría de esta Unidad en el Capitulo VII del
texto de Burgos que corresponde al Objetivo n° 8 del Plan de Curso:

“Estimar el tiempo normal de ejecución de una operación, mediante el uso
de técnicas de calificaciones de velocidad, la aplicación de Tiempos de
Movimientos Básicos Sintéticos y la construcción de Fórmulas de tiempo.”

      Para la resolución de los problemas de este Capítulo, es necesario el uso
de Tablas de tiempos de movimientos contenidas en Cuadernillo de Tablas del
anexo. Recuerde que en el momento de la evaluación presencial, este
cuadernillo será entregado por el Supervisor de la prueba.




Síntesis Teórica:

      Al registrar las lecturas elementales en el curso de un estudio de
tiempos, debe dirigirse la atención, especialmente, hacia el nivel de actividad
que el operario está empleando. Es decir, ¿ se está ejecutando el trabajo
rápidamente ? o ¿ el operario está tomando, deliberadamente, más tiempo que
el que necesita para hacer este trabajo ?.

      Cuando varios operarios están ejecutando un mismo trabajo, su
producción raramente es la misma. En general, hay un operario que
regularmente produce más que los otros del grupo. Su superioridad puede
deberse, en parte, a que utiliza un método mejor para hacer el trabajo, pero
incluso cuando se supone que todos están siguiendo el mismo método, aún
siguen persistiendo estas diferencias. Por otro lado, puede suceder también
que haya uno o dos operarios que claramente sean más lentos que los otros y
obtengan menor producción por esta causa. Evidentemente, no sería justo para
los operarios que se estudiase al hombre rápido y se presentasen los resultados


                                                                           59
Ingeniería de Métodos


de tal estudio como tiempo normal para el grupo. Asimismo, el estudio basado
en la producción de los operarios lentos puede dar como resultado un tiempo
normal amplio que se reflejaría en ganancias excesivamente altas para algunos
del grupo y en consecuencia, un alto costo de mano de obra para el producto.

       Por lo antes descrito, es necesario introducir una etapa en el estudio de
tiempos, que valore esta variación en la producción y ajuste los resultados a un
“ritmo normal”. El Ritmo Normal es la rata efectiva de ejecución de un
operario consciente, calificado y bien entrenado, cuando trabaja con un ritmo
que no es ni muy rápido ni muy lento, sino representativo del promedio y
prestando la consideración adecuada a los requerimientos físicos, mentales o
visuales de trabajo. Esta etapa del estudio es lo que se conoce como la
Calificación de la Velocidad.

       La Calificación debe hacerse conjuntamente con la medición de
tiempos. No pueden tratarse como dos actividades separadas, ya que a cada
tiempo medido corresponderá una velocidad de ejecución. Es decir, el tiempo
medido será alto o bajo dependiendo del ritmo de trabajo del operario
observado, pero la Calificación de Velocidad permite transformar ese tiempo
en el tardaría un operario normal para ejecutar la misma actividad, lo cual en
definitiva es lo que interesa para ser tomado como base o patrón de referencia.

      La expresión para el Tiempo Normal será entonces:

                                TN = TPS ∗ Cv
donde:

TN = Tiempo Normal.
TPS = Tiempo Promedio Seleccionado ( tiempo medido )
Cv = Calificación de Velocidad.

       La Calificación de Velocidad se expresa generalmente en porcentaje. La
Calificación de Velocidad para un operario que trabaja a ritmo normal es de
100%, un operario rápido por lo tanto obtendrá una Cv > 100% y un operario
lento obtendrá una Cv < 100%.

      Existen varios métodos para calificar la velocidad de actuación de un
operario. Los mismos difieren entre sí, ya que un factor considerado como
importante por uno de ellos puede ser completamente ignorado por los otros.



                                                                            60
Ingeniería de Métodos


Entre estos métodos tenemos:

         • Método Subjetivo: este método es bastante sencillo y consiste en
           que el analista juzga la rata de trabajo del operario, su ritmo y
           velocidad de movimientos y lo compara con su propio concepto
           de lo que debería ser el ritmo normal de ejecución de la
           operación.

         • Calificación de ejecución, como el método Westinghouse y el
           Westinghouse modificado.

         • Calificación Sintética, mediante Tiempos de Movimientos
           Básicos Sintéticos.

         • Calificación Objetiva.

      Cuando un grupo de movimientos no pueden ser evaluados
precisamente con los procedimientos ordinarios de estudio de tiempos con
cronómetro, se utilizan Los Tiempos de Movimientos Básicos Sintéticos
( TMBS ) que son un conjunto de tiempos estándares válidos asignados a
movimientos fundamentales que se obtienen como resultado de estudiar una
gran muestra de operaciones diversificadas con un dispositivo de medición de
tiempo, como una cámara de cine o de videograbación capaces de medir
lapsos muy pequeños. Los valores de tiempos son básicos en el sentido de que
refinamientos posteriores no solo son difíciles sino imprácticos.

      Un sistema TMBS permite analizar una operación manual o la parte
manual de una operación, en términos de los movimientos básicos requeridos
para ejecutarla y asigna a cada movimiento un valor de Tiempo Normal
previamente establecido. De tal forma que sumando los tiempos para los
movimientos individuales obtenemos el tiempo total de ejecución de la
operación.

      Los tipos de métodos a estudiar son:

      • Word Factor.
      • MTM ( Methods Time Measurement )
      • BMT ( Basic Motion Times )




                                                                         61
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos
Diagramas de Actividades Múltiples para Ingeniería de Métodos

Weitere ähnliche Inhalte

Was ist angesagt?

Ejercicios administracion-de-las-operaciones
Ejercicios administracion-de-las-operacionesEjercicios administracion-de-las-operaciones
Ejercicios administracion-de-las-operacionesmonicavargasapaza
 
Balanceo de línea de producción
Balanceo de línea de producciónBalanceo de línea de producción
Balanceo de línea de producciónadmonapuntes
 
Ejercicios de Ingeniería de Métodos
Ejercicios de Ingeniería de MétodosEjercicios de Ingeniería de Métodos
Ejercicios de Ingeniería de MétodosVanessa Verano
 
Distribución de plantas tema 3
Distribución de plantas tema 3Distribución de plantas tema 3
Distribución de plantas tema 3maria0217
 
Guia de ejercicios_-_capacidad_de_produccion
Guia de ejercicios_-_capacidad_de_produccionGuia de ejercicios_-_capacidad_de_produccion
Guia de ejercicios_-_capacidad_de_produccionDaniel Flores
 
1 metodologia-taguchi-u21
1 metodologia-taguchi-u211 metodologia-taguchi-u21
1 metodologia-taguchi-u21Alfredo Pagaza
 
Solucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libroSolucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libroDarkmono
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion linealJohana Rios Solano
 
Medicion del trabajo.tiempos suplementarios.fatiga
Medicion del trabajo.tiempos suplementarios.fatigaMedicion del trabajo.tiempos suplementarios.fatiga
Medicion del trabajo.tiempos suplementarios.fatigaingkarent84
 
Taller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoTaller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoSandra Liliana
 
Simulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con PromodelSimulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con PromodelAlvaro Gil
 
Diagrama Recorrido y Diagrama de Relaciones
Diagrama Recorrido y Diagrama de RelacionesDiagrama Recorrido y Diagrama de Relaciones
Diagrama Recorrido y Diagrama de RelacionesJoseangelOdor
 
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesEjercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesHéctor Antonio Barba Nanfuñay
 
Medicion del trabajo, muestreo del trabajo
Medicion del trabajo, muestreo del trabajoMedicion del trabajo, muestreo del trabajo
Medicion del trabajo, muestreo del trabajoBruno Soto Armenta
 

Was ist angesagt? (20)

Ejercicios administracion-de-las-operaciones
Ejercicios administracion-de-las-operacionesEjercicios administracion-de-las-operaciones
Ejercicios administracion-de-las-operaciones
 
Balanceo de línea de producción
Balanceo de línea de producciónBalanceo de línea de producción
Balanceo de línea de producción
 
Administración de Operaciones - Ejercicios Resueltos
Administración de Operaciones - Ejercicios ResueltosAdministración de Operaciones - Ejercicios Resueltos
Administración de Operaciones - Ejercicios Resueltos
 
Tipos de distribución de planta
Tipos de distribución de plantaTipos de distribución de planta
Tipos de distribución de planta
 
Ejercicios de Ingeniería de Métodos
Ejercicios de Ingeniería de MétodosEjercicios de Ingeniería de Métodos
Ejercicios de Ingeniería de Métodos
 
Distribución de plantas tema 3
Distribución de plantas tema 3Distribución de plantas tema 3
Distribución de plantas tema 3
 
Balance de lineas de produccion
Balance de lineas de produccionBalance de lineas de produccion
Balance de lineas de produccion
 
Balance de linea
Balance de lineaBalance de linea
Balance de linea
 
Guia de ejercicios_-_capacidad_de_produccion
Guia de ejercicios_-_capacidad_de_produccionGuia de ejercicios_-_capacidad_de_produccion
Guia de ejercicios_-_capacidad_de_produccion
 
1 metodologia-taguchi-u21
1 metodologia-taguchi-u211 metodologia-taguchi-u21
1 metodologia-taguchi-u21
 
Solucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libroSolucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libro
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion lineal
 
Medicion del trabajo.tiempos suplementarios.fatiga
Medicion del trabajo.tiempos suplementarios.fatigaMedicion del trabajo.tiempos suplementarios.fatiga
Medicion del trabajo.tiempos suplementarios.fatiga
 
Taller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoTaller p y np sandra liliana patiño
Taller p y np sandra liliana patiño
 
Simulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con PromodelSimulación: Teoría y aplicaciones con Promodel
Simulación: Teoría y aplicaciones con Promodel
 
Distribución de plantas
Distribución de plantasDistribución de plantas
Distribución de plantas
 
Diagrama Recorrido y Diagrama de Relaciones
Diagrama Recorrido y Diagrama de RelacionesDiagrama Recorrido y Diagrama de Relaciones
Diagrama Recorrido y Diagrama de Relaciones
 
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesEjercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
 
Programacion de metas y objetivos
Programacion de metas y objetivosProgramacion de metas y objetivos
Programacion de metas y objetivos
 
Medicion del trabajo, muestreo del trabajo
Medicion del trabajo, muestreo del trabajoMedicion del trabajo, muestreo del trabajo
Medicion del trabajo, muestreo del trabajo
 

Ähnlich wie Diagramas de Actividades Múltiples para Ingeniería de Métodos

Modelo general de costos para el problema de asignación de horarios.
Modelo general de costos para el problema de asignación de horarios.Modelo general de costos para el problema de asignación de horarios.
Modelo general de costos para el problema de asignación de horarios.José Rosendo
 
Separata de proyecciones tema i de vi digital
Separata de proyecciones  tema i de  vi digitalSeparata de proyecciones  tema i de  vi digital
Separata de proyecciones tema i de vi digitalAngel Tello
 
Diseños de investigación experimental en psicología.pdf
Diseños de investigación experimental en psicología.pdfDiseños de investigación experimental en psicología.pdf
Diseños de investigación experimental en psicología.pdfmaria799431
 
Aprender a investigar TAMAYO Y TAMAYO.pdf
Aprender a investigar TAMAYO Y TAMAYO.pdfAprender a investigar TAMAYO Y TAMAYO.pdf
Aprender a investigar TAMAYO Y TAMAYO.pdfssusera823082
 
El proyecto de investigacion autor tamayo
El proyecto de investigacion autor tamayoEl proyecto de investigacion autor tamayo
El proyecto de investigacion autor tamayoRodolfo Perez
 
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigación
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigaciónSerie aprender a_investigar,_módulo_5_el_proyecto_de_investigación
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigaciónSistemadeEstudiosMed
 
Agentes inteligentes inteligencia artificial
Agentes inteligentes  inteligencia artificialAgentes inteligentes  inteligencia artificial
Agentes inteligentes inteligencia artificialjlopez300
 
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdfFranciscoJavierOrteg46
 
5. el-proyecto-de-investigación-aprender-a-investigar-icfes
5. el-proyecto-de-investigación-aprender-a-investigar-icfes5. el-proyecto-de-investigación-aprender-a-investigar-icfes
5. el-proyecto-de-investigación-aprender-a-investigar-icfesFROILAN ALFONSO SARAVIA CAMA
 
Tarea1 u4 comptencias cd franco
Tarea1 u4 comptencias cd francoTarea1 u4 comptencias cd franco
Tarea1 u4 comptencias cd francoJesus Franco
 
Disenoestructuradoalgoritmos
DisenoestructuradoalgoritmosDisenoestructuradoalgoritmos
Disenoestructuradoalgoritmosarmando_franco
 
Proyecto de trabajo pgs madera
Proyecto de trabajo pgs maderaProyecto de trabajo pgs madera
Proyecto de trabajo pgs maderaluis3006
 
Manual gestion de proyectos
Manual gestion de proyectosManual gestion de proyectos
Manual gestion de proyectosRAMDELCOM
 
Proyecto aja Compactadora
Proyecto  aja CompactadoraProyecto  aja Compactadora
Proyecto aja CompactadoraJohan Muñoz
 

Ähnlich wie Diagramas de Actividades Múltiples para Ingeniería de Métodos (20)

Modelo general de costos para el problema de asignación de horarios.
Modelo general de costos para el problema de asignación de horarios.Modelo general de costos para el problema de asignación de horarios.
Modelo general de costos para el problema de asignación de horarios.
 
Antologia de metodos numericos isc
Antologia de metodos numericos iscAntologia de metodos numericos isc
Antologia de metodos numericos isc
 
Tabla de contenido y resumen
Tabla de contenido y resumenTabla de contenido y resumen
Tabla de contenido y resumen
 
Separata de proyecciones tema i de vi digital
Separata de proyecciones  tema i de  vi digitalSeparata de proyecciones  tema i de  vi digital
Separata de proyecciones tema i de vi digital
 
Diseños de investigación experimental en psicología.pdf
Diseños de investigación experimental en psicología.pdfDiseños de investigación experimental en psicología.pdf
Diseños de investigación experimental en psicología.pdf
 
Aprender a investigar TAMAYO Y TAMAYO.pdf
Aprender a investigar TAMAYO Y TAMAYO.pdfAprender a investigar TAMAYO Y TAMAYO.pdf
Aprender a investigar TAMAYO Y TAMAYO.pdf
 
El proyecto de investigacion autor tamayo
El proyecto de investigacion autor tamayoEl proyecto de investigacion autor tamayo
El proyecto de investigacion autor tamayo
 
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigación
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigaciónSerie aprender a_investigar,_módulo_5_el_proyecto_de_investigación
Serie aprender a_investigar,_módulo_5_el_proyecto_de_investigación
 
Agentes inteligentes inteligencia artificial
Agentes inteligentes  inteligencia artificialAgentes inteligentes  inteligencia artificial
Agentes inteligentes inteligencia artificial
 
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf
385321913-Apuntes-Optimizacio-n-Ferrer-Munoz-pdf.pdf
 
Trabajo idmi
Trabajo idmiTrabajo idmi
Trabajo idmi
 
5. el-proyecto-de-investigación-aprender-a-investigar-icfes
5. el-proyecto-de-investigación-aprender-a-investigar-icfes5. el-proyecto-de-investigación-aprender-a-investigar-icfes
5. el-proyecto-de-investigación-aprender-a-investigar-icfes
 
Tarea1 u4 comptencias cd franco
Tarea1 u4 comptencias cd francoTarea1 u4 comptencias cd franco
Tarea1 u4 comptencias cd franco
 
Libro logica
Libro logicaLibro logica
Libro logica
 
Disenoestructuradoalgoritmos
DisenoestructuradoalgoritmosDisenoestructuradoalgoritmos
Disenoestructuradoalgoritmos
 
Disenoestructuradoalgoritmos
DisenoestructuradoalgoritmosDisenoestructuradoalgoritmos
Disenoestructuradoalgoritmos
 
Aa i modulo 5
Aa i modulo 5Aa i modulo 5
Aa i modulo 5
 
Proyecto de trabajo pgs madera
Proyecto de trabajo pgs maderaProyecto de trabajo pgs madera
Proyecto de trabajo pgs madera
 
Manual gestion de proyectos
Manual gestion de proyectosManual gestion de proyectos
Manual gestion de proyectos
 
Proyecto aja Compactadora
Proyecto  aja CompactadoraProyecto  aja Compactadora
Proyecto aja Compactadora
 

Kürzlich hochgeladen

Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfMaritza438836
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Gonella
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfBITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfsolidalilaalvaradoro
 
Descripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraDescripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraJose Sanchez
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Carol Andrea Eraso Guerrero
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FJulio Lozano
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxprograma PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxCram Monzon
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdflizcortes48
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entornoday561sol
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 

Kürzlich hochgeladen (20)

Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Acuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptxAcuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptx
 
Unidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIUUnidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIU
 
Acuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptxAcuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptx
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdfBITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
BITÁCORA DE ESTUDIO DE PROBLEMÁTICA. TUTORÍA V. PDF 2 UNIDAD.pdf
 
Descripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldaduraDescripción del Proceso de corte y soldadura
Descripción del Proceso de corte y soldadura
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docxprograma PLAN ANUAL TUTORIA 3° SEC-2024.docx
programa PLAN ANUAL TUTORIA 3° SEC-2024.docx
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdf
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entorno
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 

Diagramas de Actividades Múltiples para Ingeniería de Métodos

  • 1. UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO CARRERA INGENIERÍA INDUSTRIAL ING. THAIS J. LINARES LANDINO
  • 2. Ingeniería de Métodos UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADEMICO ÁREA: INGENIERÍA CARRERA: INGENIERÍA INDUSTRIAL. PROBLEMARIO INGENIERÍA DE MÉTODOS ASIGNATURA: INGENIERÍA DE MÉTODOS Código: 206 U.C.: 4 Ingeniería Industrial CARRERA: Código: 280 SEMESTRE: VI PRELACIONES: Investigación de Operaciones I ( Cod. 315 ) Inferencia Estadística ( Cod. 738 ) REQUISITOS: Ninguno Ing. Thais Linares Landino. AUTOR: COMITÉ TÉCNICO: Dra. Egleé de Rojas
  • 3. Ingeniería de Métodos INDICE Introducción…………………………………………………………….... 4 Orientaciones para el uso del Problemario ……………………………... 6 Capítulo I: Diagramas de Actividades Múltiples Síntesis Teórica……………………………………………………. 7 Problemas Resueltos ………………………………………………. 9 Caso 1: Diagrama Hombre-Máquina …………………………… 9 Caso 2: Diagrama de Cuadrilla …………………………………. 14 Caso 3: Atención Sincronizada …………………………………. 17 Caso 4: Atención al azar ………………………………………... 19 Caso 5: Combinaciones de Servicio Sincrónico y al azar ……… 21 Problemas Propuestos ……………………………………………... 23 Respuesta a los Problemas Propuestos ……………………………. 26 Capítulo II: Balance de líneas de Producción Síntesis Teórica……………………………………………………. 33 Problemas Resueltos ……………………………………………….. 34 Caso 1: Para un solo producto ………………………………….. 34 Caso 2: Para Productos Mezclados ……………………………... 37 Problemas Propuestos ……………………………………………... 41 Respuesta a los Problemas Propuestos ……………………………. 45 Capítulo III: Normalización y Cronometrado Síntesis Teórica…………………………………………………….. 49 Problemas Resueltos ……………………………………………….. 50 Problemas Propuestos ……………………………………………... 55 Respuesta a los Problemas Propuestos ……………………………. 58 Capítulo IV: El Tiempo Normal Síntesis Teórica……………………………………………………. 59 Problemas Resueltos ………………………………………………. 62 Caso 1: Método Subjetivo ……………………………………… 62 Caso 2: Calificación de Ejecución ……………………………… 63 Caso 3: Calificación Sintética ………………………………….. 64
  • 4. Ingeniería de Métodos Caso 4: Calificación Objetiva ………………………………….. 65 Caso 5: Word Factor ……………………………………………. 67 Caso 6: MTM …………………………………………………… 69 Caso 7: BMT …………………………………………………… 70 Problemas Propuestos ……………………………………………... 71 Respuesta a los Problemas Propuestos ……………………………. 75 Capítulo V: El Tiempo Estándar Síntesis Teórica……………………………………………………. 76 Problemas Resueltos ……………………………………………….. 77 Problemas Propuestos ……………………………………………... 79 Respuesta a los Problemas Propuestos ……………………………. 82 Bibliografía ……………………………………………………………… 83 Anexos Cuadernillo de Tablas
  • 5. Ingeniería de Métodos Introducción La Ingeniería de Métodos proporciona al estudiante de Ingeniería Industrial un grupo de herramientas de análisis cuyo objetivo es la incorporación de mejoras a un proceso dado. Los términos análisis de operaciones, simplificación del trabajo e ingeniería de métodos se utilizan frecuentemente como sinónimos. En la mayor parte de los casos se refieren a técnicas para aumentar la producción por unidad de tiempo y en consecuencia, reducir el costo por unidad. Por lo tanto, el objetivo de la Ingeniería de Métodos es eliminar todo elemento u operación innecesarios y obtener el más rápido y mejor método para realizar aquellas operaciones que han sido determinadas como imprescindibles. En 1932, el termino “Ingeniería de Métodos” fue definido y utilizado por H. B. Maynard y sus asociados, quedando expresado con las siguientes palabras: " Es la técnica que somete cada operación de una determinada parte del trabajo a un delicado análisis para eliminar toda operación innecesaria y encontrar el método más rápido para realizar toda operación necesaria; abarca la normalización del equipo, métodos y condiciones de trabajo; entrena al operario a seguir el método normalizado; realizado todo lo precedente (y no antes), determina por medio de mediciones muy precisas, el número de horas tipo en las cuales un operario, trabajando con actividad normal, puede realizar el trabajo; por último (aunque no necesariamente), establece en general un plan para compensación del trabajo, que estimule al operario a obtener o sobrepasar la actividad normal " La Ingeniería de Métodos se refiere no solamente al establecimiento del método en sí mismo, sino también a la estandarización o normalización de todos los aspectos de cada tarea. El ingeniero industrial tiene a su disposición una amplia variedad de técnicas analíticas, que pueden ser usadas individualmente o en combinación, dependiendo de la profundidad deseada de análisis. La clave de la aplicación afortunada de cada técnica de Ingeniería de Métodos radica en el desarrollo de la actividad interrogativa; estas técnicas son herramientas con los cuales el analista puede investigar sistemáticamente y analizar cada aspecto del proceso. 4
  • 6. Ingeniería de Métodos El presente problemario pretende dar al estudiante de Ingeniería de Métodos de la Carrera de Ingeniería Industrial de la Universidad Nacional Abierta, una serie de problemas típicos de la asignatura, con el fin de que sea utilizado como material complementario del texto: Ingeniería de Métodos, Calidad, Productividad del Ing. Fernando Burgos, Universidad de Carabobo, II edición y/o de la bibliografía recomendada en el Plan de Curso, el cual es imprescindible para el uso de este problemario. Se desarrollan sólo los objetivos evaluables de forma presencial mediante prueba escrita a excepción del 1 por tratarse de un objetivo cuyo contenido es netamente teórico. Al principio de cada capitulo se da un breve resumen teórico con la idea de ubicar al estudiante en el contenido, luego se desarrollan ejemplos resueltos, para finalizar con un grupo de ejercicios propuestos cuya solución se muestra al final de cada capítulo, de esta manera se ejercitan los conocimientos adquiridos durante el estudio de cada objetivo y así enfrentar con mayores posibilidades de éxito las oportunidades de evaluación. 5
  • 7. Ingeniería de Métodos Orientaciones para el uso del Problemario Los contenidos cubiertos por este problemario son los correspondientes a los objetivos 4, 5, 6, 8 y 9 del Plan de Curso de la asignatura Ingeniería de Métodos (206). Se desarrollan sólo los objetivos evaluables de forma presencial mediante prueba escrita a excepción del 1 por tratarse de un objetivo cuyo contenido es netamente teórico. El estudiante debe prepararse suficientemente en la teoría de los contenidos correspondiente a los objetivos evaluables en su libro texto Ingeniería de Métodos, Calidad, Productividad del Ing. Fernando Burgos, Universidad de Carabobo, II edición y/o en la bibliografía recomendada. Una vez que se sienta preparado hará uso de este problemario. Para la facilidad de relacionar los Capítulos del problemario, con su Plan de Curso, éstos mantienen el título de las unidades que contienen los objetivos. Además, cada Capítulo cuenta con la información relativa al Objetivo que se evalúa y su ubicación en el libro texto. Cada Capítulo cuenta con una síntesis teórica del tema a tratar, luego una serie de problemas resueltos y explicados paso a paso y posteriormente encontrará una serie de problemas propuestos cuyos resultados están al final del Capítulo, esto con el fin de obtener una autoevaluación. Para la resolución de algunos problemas el estudiante necesitará el uso de tablas, que están contenidas en el texto, ahora bien, en el momento de las pruebas, el Supervisor de Pruebas le entregará el Cuadernillo de Tablas, donde se encuentran resumidas las mismas. Con la finalidad de que se familiarice con el uso de este cuadernillo, el mismo lo encontrara en el anexo. 6
  • 8. Ingeniería de Métodos Capitulo I: Diagramas de Actividades Múltiples El estudiante encontrará la teoría de esta unidad, en el Capitulo V del texto de Burgos y en el Capitulo 6 del Niebel , que corresponde al Objetivo n° 4 del Plan de Curso: “ Analizar sistemas de actividades Múltiples, mediante el uso de los diagramas respectivos y los modelos cuantitativos para la asignación de máquinas.” Síntesis Teórica: Los diagramas de procesos con actividades múltiples presentan gráficamente el tiempo coordinado de trabajo y paro de dos o más hombres, dos o más máquinas o cualquier combinación de hombres y máquinas; por esta razón, el diagrama de actividades múltiples es llamado, a veces “diagrama hombre-máquina”. Un diagrama de actividades múltiples consiste en rayas dibujadas sobre una escala de tiempo para representar la relación entre el tiempo de trabajo y el de paro. Con el uso de un diagrama de actividades múltiples, el analista puede reordenar el ciclo de trabajo del hombre o de máquina o de ambos, y entonces desarrollar una combinación de actividades más efectivas. A veces es posible incluir la realización de trabajo adicional durante el ciclo de la máquina o eliminar el tiempo de mano de obra adicional incluida en una operación, realizada previamente, fuera del ciclo de la máquina. Los diagramas de actividades múltiples estudiados son: 7
  • 9. Ingeniería de Métodos • Diagrama Hombre-Máquina: Se emplea para estudiar, analizar y mejorar sólo una estación de trabajo a la vez. Este diagrama indica la relación exacta en tiempo entre el ciclo de trabajo de la persona y el ciclo de operaciones de su máquina. Actualmente, muchas máquinas- herramientas están completamente automatizadas, como el torno automático para tornillos, o son sólo parcialmente automáticas, como el torno revolver. En la operación de estos tipos de instalaciones el operario frecuentemente permanece inactivo durante una parte del ciclo. La utilización de este tiempo de inactividad puede aumentar la retribución del operario y mejorar la eficiencia de la producción. • Diagrama de Cuadrilla: Es la representación gráfica, sobre una escala de tiempo, de las actividades realizadas por un grupo de personas que persiguen un fin común, como lo es la ejecución de una tarea. Aunque el diagrama de proceso hombre-máquina se puede usar para determinar el número de máquinas a asignar a un operario, tal número puede ser calculado frecuentemente en mucho menor tiempo mediante el desarrollo de un modelo matemático. Los tipos de relaciones entre hombre y máquina pueden ser: • De atención sincronizada: es el caso ideal, donde tanto el trabajador como la máquina que atiende estén ocupados durante todo el ciclo y se puede saber con certeza cuándo la máquina va a requerir de los servicios o atención del operario y cuánto tiempo va a tardar el operario sirviendo a dicha máquina. • De atención al azar: se refiere a los casos en que no se sabe cuándo haya que atender una máquina, o cuánto tiempo se necesitará para hacerlo. Los valores medios generalmente se conocen o se pueden determinar; con estos promedios las leyes de probabilidades sirven para determinar el número de máquinas a asignar a un operario. • De combinaciones de servicio sincrónico y al azar: son quizás el tipo más común de relaciones entre hombres y máquinas. En este caso, el tiempo de atención es constante, pero el tiempo muerto de máquina es aleatorio. 8
  • 10. Ingeniería de Métodos Problemas Resueltos: Caso 1 : Diagrama Hombre – Máquina En una empresa metalmecánica, se desea determinar si un operario puede atender una o dos máquinas. Se dispone de los siguientes datos de tiempos: Actividad Tiempo (min.) Cargar máquina 3 Descargar máquina 3 Maquinado 5 Ir de una máquina a otra 0,5 En cada ciclo de máquina se elabora una pieza. El costo de la mano de obra es de 600 Bs./hr , el costo de la máquina parada es de 800 Bs./hr y el de la máquina funcionando es de 950 Bs./hr. Sobre la base de esta información determine cuál es la asignación óptima. Solución: Dado que el problema en cuestión es determinar el número óptimo de máquinas que puede manejar el operario, debemos realizar el análisis económico y escoger el que proporcione el menor costo. Para esto debemos hacer el estudio para las dos alternativas: Alternativa 1 ⇒ 1 operario – 1 máquina. Alternativa 2 ⇒ 1 operario - 2 máquinas. • Paso 1: Se realiza el diagrama Hombre – Máquina para la alternativa 1. Para esto debe seleccionarse la escala adecuada, de manera que la representación se disponga en forma bien proporcionada. En este caso la escala seleccionada es 1 división = 0,5 min. Una vez seleccionada la escala, se procede a empezar a realizar el gráfico. Al lado izquierdo se indican las operaciones y los tiempos correspondientes al operario. El tiempo de trabajo del operario se representa en color negro y el tiempo de ocio en color blanco. Al lado derecho se representan las operaciones y los tiempos correspondientes a la máquina. De igual forma el color negro representa el tiempo de 9
  • 11. Ingeniería de Métodos trabajo, el color blanco el tiempo de ocio y una línea punteada representa los tiempos de preparación de la máquina, indicando así que no esta inactiva pero tampoco se está efectuando trabajo de producción. Al pie del diagrama se indica el tiempo de trabajo ( Activo ) y el tiempo de ocio, tanto para el operario como para la máquina. El tiempo productivo más el tiempo inactivo del operario, tiene que ser igual a la suma de los tiempos respectivos de su máquina. En la Fig. 1 se representa el Diagrama Hombre – Máquina para esta alternativa. • Paso 2 : Una vez realizado el diagrama de la alternativa 1, se procede en forma similar a realizar el Diagrama Hombre – Máquina para la alternativa 2. El sitio más lógico para considerar posibles mejoras es en la porción de inactividad del ciclo del operario. En la Fig. 2 se representa el Diagrama Hombre – Máquina para esta alternativa. • Paso 3 : Debe tenerse cuidado en no dejarse engañar con lo que parezca ser una cantidad apreciable de tiempo de ocio del operario. En muchos casos es más conveniente o económico que un operario esté inactivo durante una parte sustancial del ciclo, a que lo esté un costoso equipo. Con el objeto de estar seguro de que la propuesta es la mejor, debe realizarse el análisis económico de las dos alternativas: Alternativa 1: 1 operario – 1 máquina. Tiempo del ciclo = 11 min. Tiempo de máquina funcionando = 5 min. Tiempo de máquina parada = 6 min. Costo Total = Costo de Mano de Obra + Costo de Maquinado. 1hr 11min 1ciclo CMO = 600 Bs / hr ∗ ∗ ∗ = 110 Bs./pieza 60 min ciclo pieza 1hr 5 min . 1ciclo CM = 950 Bs / hr.máq ∗ ∗ 1máq ∗ ∗ 60 min ciclo pieza 6 min 1ciclo + 800 Bs / hr.máq ∗ 1máq ∗ ∗ = 159,20 Bs / pieza ciclo pieza Entonces, el Costo Total1 = 110Bs/pieza + 159,20 Bs/pieza = 269,20 Bs./pieza 10
  • 13. Ingeniería de Métodos Alternativa 2 : 1 operario – 2 máquinas. Tiempo del ciclo = 13 min. Tiempo de máquina funcionando = 5 min. Tiempo de máquina parada = 8 min. Piezas producidas por ciclo = 2 piezas. Costo Total = Costo de Mano de Obra + Costo de Maquinado. 1hr 13 min 1ciclo CMO = 600 Bs / hr ∗ ∗ ∗ = 65 Bs./pieza 60 min ciclo 2 pieza 1hr 5 min . 1ciclo CM = 950 Bs / hr.máq ∗ ∗ 2máq ∗ ∗ 60 min ciclo 2 pieza 8 min 1ciclo + 800 Bs / hr.máq ∗ 2máq ∗ ∗ = 185,90 Bs / pieza ciclo 2 pieza Entonces, el Costo Total Alternativa 2 : CT2 = 65 Bs/pieza + 185,90 Bs/pieza = 250,90 Bs./pieza • Paso 4: Se comparan los costos de las alternativas y se escoge la de menor costo. En este caso la alternativa 2 proporciona un menor costo ⇒ Conviene asignar 2 máquinas al operario. 12
  • 15. Ingeniería de Métodos Caso 2 : Diagrama de Cuadrilla Miguel, Guillermo, Marcos y Víctor, trabajan en el departamento de juguetes de la tienda “Chamitos”. El trabajo que ellos realizan consiste en buscar cajas con juguetes en el depósito, envolverlas y atarlas. Posteriormente estas cajas se trasladan a un camión para llevarlas a diversos sitios del país. El método empleado actualmente para llevar a cabo esta tarea es el siguiente: Miguel va al depósito, busca 3 cajas y las trae hasta el sitio donde se encuentra Guillermo, quien las envuelve y se las pasa a Marcos. Marcos ata las cajas con un cordel. Víctor toma las cajas atadas, las lleva y coloca en el camión y regresa al sitio donde esta Marcos. Los tiempos de ejecución de cada una de estas actividades son los siguientes: ACTIVIDAD TIEMPO (min) Tomar 3 cajas y llevarlas al puesto de Guillermo 1.0 Envolver las cajas 2.0 Trasladar 3 cajas al puesto de Marcos 1.0 Atar las 3 cajas 2.0 Llevar y cargar 3 cajas al camión 2.5 Desplazarse sin cajas 1.0 Analice las actividades de estos cuatro operarios utilizando el diagrama de cuadrillas. Indique el rendimiento de cada operario.( Se considera el paquete de 3 cajas como una unidad procesada ). Solución: • Paso 1 : Se realiza el diagrama de cuadrilla ( Fig. 3 ). En la primera columna “ N° ”, sirve para asignar a cada actividad un número. En la columna “ Descripción ” se describe la actividad realizada. Para esto a cada actividad imputable a un determinado operario se le asigna un número distinto, el cual se repetirá tantas veces como lo requiera el tiempo total consumido por la actividad en concordancia con la escala seleccionada en la columna que corresponde al operario. A cada operario se le asigna una columna ( de la A a la L ) y cada cuadro o división, corresponde a la escala de tiempo. 14
  • 16. Ingeniería de Métodos En nuestro caso las actividades a realizar serán: 1. Tomar 3 cajas y llevarlas a Guillermo 2. Regresar a depósito 3. Envolver 3 cajas 4. Trasladar 3 cajas a Marcos. 5. Regresar al sitio de Guillermo. 6. Atar 3 cajas. 7. Llevar y cargar 3 cajas al camión. 8. Regresar al sitio de Marcos. 9. Demora. La columna A representa a Miguel; la B a Guillermo y la C a Marcos y D a Victor. La escala de tiempo será cada división representa 0,5 minuto. • Paso 2: Se determina el tiempo del ciclo. Para esto se empieza el ciclo en el momento que comienza a realizar su actividad el último operario hasta que se encuentre la repitencia de las actividades. Entonces, en nuestro caso el tiempo del ciclo será: 8 divisiones * 0,5 min./división = 4 min. • Paso 3: Se calcula el número de pasos por unidad ( en cada ciclo se procesa una unidad ) 4operarios ∗ 8div. 1ciclo ∗ = 32 pasos./ unidad ciclo unidad • Paso 4: Se calcula el rendimiento de cada operario: RA = 8/8 = 100 % RB = 8/8 = 100 % RC = 4/8 = 50 % RD = 7/8 = 87,5 % 15
  • 18. Ingeniería de Métodos Caso 3: Atención sincronizada. En función a costos, determine cuántas máquinas pueden ser asignadas a un operario que maneja una cepilladora, si se dispone de los siguientes datos: - Tiempo de carga y descarga de cada máquina = 8 min. - Tiempo de maquinado automático = 15 min. - Tiempo de ir de una máquina a otra = 48 segundos. - Costo de la maquina = 1200 Bs./ hr. - Salario del operador = 1000 Bs. / hr. Se elaboran 8 horas diarias y 5 días a la semana. Solución: Según los datos de problema, tenemos: Tiempo de servicio por máquina ⇒ O = 8 min. Tiempo de desplazamiento por máquina ⇒ d = 48 seg./60 = 0,8 min. Tiempo de maquinado ⇒ M = 15 min. • Paso 1: Se calcula el número de máquinas que podrá manejar un operario: M + O 15 + 8 N= = = 2,6maq. d + O 0,8 + 8 Como el resultado no es un número entero, habrá 2 alternativas : asignar 2 máquinas (N1) ó asignar 3 máquinas (N2). En el caso de asignar 2 máquinas el operario estará manejando menos facilidades físicas de las que él es capaz de operar, por lo tanto permanecerá en ocio durante parte de su ciclo. Pero si se le asignan 3 máquinas se estará superando la capacidad de atención que tiene el operario, en este caso serán las máquinas las que permanecerán en ocio al no poder ser atendidas cuando lo requieran. Entonces, el criterio que prevalece para la decisión será el económico. 17
  • 19. Ingeniería de Métodos • Paso 2: Se realiza el análisis económico para N1. En este caso el ciclo del sistema estará determinado por el tiempo del ciclo de la máquina ( M + O ), ya que el operario tendrá un cierto tiempo de ocio. Entonces el Costo Total Unitario será: Costo de mano de obra + Costo de las máquinas CTU N 1 = , entonces N1 K1 ( M + O) + K 2 N1 ( M + O) CTU N 1 = , donde K1 es el salario del operador y N1 K2 es el costo de la máquina. Sustituyendo, tenemos entonces que: 1000(23 / 60) + 1200 * 2 * (23 / 60) CTU N1 = = 651,67 Bs / Pza. 2 • Paso 3: Se realiza el análisis económico para N2 . En este caso el ciclo del sistema estará determinado por el tiempo del ciclo del operario N2(d + O), ya que las máquinas tendrán cierto tiempo de ocio. Entonces, el costo total unitario para este caso viene dado por: K1 N 2 (d + O) + K 2 N 2 (d + O) 2 CTU N 2 = = (d + O)( K1 + K 2 N 2 ) , sustituyendo N2 8,8 CTU N 2 = ∗ (1000 + 1200 ∗ 3) = 674,67 Bs/Pza. 60 • Paso 4 : Se comparan los costos y el número de máquinas a asignar dependerá de la alternativa más económica. Por lo tanto el arreglo que proporciona el mínimo costo, en este caso, es el de asignarle 2 máquinas al operario. 18
  • 20. Ingeniería de Métodos Caso 4: Atención al azar Al realizar un análisis de métodos, se observó que las máquinas, en promedio operaban el 40 % del tiempo sin requerir atención y el promedio o probabilidad de que no estén funcionando ( esté parada ) y requieran atención del operario es del 60 %, usted decide hacer la comparación asignando al operario que maneja varios taladros automáticos, la posibilidad de que trabaje con 3 ó 4 máquinas solamente. Para esto, debe determinar la proporción mínima de tiempo de maquinado perdido por día de trabajo de 8 horas, para la posibilidad de asignarle al operador 3 ó 4 taladros. Solución: Probabilidad que la máquina este funcionando ⇒ p = 0,40 Probabilidad que la máquina no este funcionando ⇒ q = 0,60 • Paso 1: Utilizando la distribución binomial, para n = 3, encontramos las probabilidades de que las máquinas estén paradas. ( p + q ) 3 = p 3 + 3 p 2 q + 3 pq 2 + q 3 = (0,40) 3 + 3(0,40) 2 (0,60) + 3(0,40)(0,60) 2 + (0,60) 3 = 0,064 + 0,288 + 0,432 + 0,216 Ordenando tenemos: Nº máq. paradas Probabilidad Hr. máq. pérdidas en 8 hr/día 0 0,064 0 1 0,288 0 2 0,432 (1)(0,432)8 = 3,456 3 0,216 (2)(0,216)8 = 3,456 6,912 • Paso 2: Calculamos las horas máquinas totales disponibles: 8 horas x 3 taladros = 24 horas-máq. 19
  • 21. Ingeniería de Métodos • Paso 3: Dividiendo el total de horas máquinas pérdidas por día entre las horas máquinas disponibles por día, tendremos la proporción de tiempo de maquinado para los 3 taladros que se pierde: 6,912hr − maq. = 0,288 ≅ 28,8% 24hr − maq. • Paso 4 : Se repite el paso 1 pero utilizando la distribución binomial para n = 4. ( p + q ) 4 = p 4 + 4 p 3 q + 6 p 2 q 2 + 4 pq 3 + q 4 = (0,40) 4 + 4(0,40) 3 (0,60) + 6(0,40) 2 (0,60) 2 + 4(0,40)(0,60) 3 + (0,60) 4 = 0,0256 + 0,1536 + 0,3456 + 0,3456 + 0,1296 Ordenando tenemos: Nº máq. paradas Probabilidad Hr. máq. pérdidas en 8 hr/día 0 0,0256 0 1 0,1536 0 2 0,3456 (1)(0,3456)8 = 2,7648 3 0,3456 (2)(0,3456)8 = 2,7648 4 0,1296 (3)(0,1296)8 = 3,1104 8,6400 • Paso 5: Calculamos las horas máquinas totales disponibles, para 4 taladros: 8 horas x 4 taladros = 32 horas-máq. • Paso 6: Dividiendo el total de horas máquinas pérdidas por día entre las horas máquinas disponibles por día, tendremos la proporción de tiempo de maquinado para los 4 taladros que se pierde: 8,64hr − maq. ≅ 27% 32hr − maq. • Paso 7: Se determina la asignación de máquinas que dé el menor tiempo perdido. En este caso el que proporciona menor tiempo perdido es asignando 4 taladros. 20
  • 22. Ingeniería de Métodos Caso 5: Combinaciones de Servicio Sincrónico y al Azar Seis máquinas automáticas actualmente en operación, requieren ser preparadas periódicamente, a fin de producir una nueva parte. Dichas máquinas necesitan atención a intervalos aleatorios ( Poisson ). El tiempo que tardan los operarios en atenderlas es una variable aleatoria exponencialmente distribuida. Sí cada máquina opera en promedio por 70 horas y luego requiere un promedio de atención de 30 horas-hombre, ¿ Cuántos operarios deberían asignarse para atender el grupo de máquinas ? Cada operario gana 1500 Bs./h y cada máquina elabora un producto que representa un ingreso de 4500 Bs. por hora de producción. Solución: Número de máquinas ⇒ m = 6 Tiempo promedio de operación (funciona sin requerir al operador)⇒Ti= 70 hr. Tiempo promedio de servicio ⇒ Ts = 30 hr-hombre • Paso 1: Calculamos el Factor de Utilización ( X ), tomando como base una base una hora : Ts 30 X = = = 0,30 Ts + Ti 30 + 70 • Paso 2: Determinamos la expresión del Número promedio de máquinas en operación ( Li ) : Li = m F( 1 - X ) ⇒ 6 F( 1 - 0,30 ) ⇒ Li = 4,2 F • Paso 3: Utilizando las Tablas de Peck y Hazelwood, podemos encontrar los valores de ( Eficiencia del sistema ) para diferentes valores de C ( Número de operarios ). Con estos valores calculamos: o El valor de Li (sustituyendo la ecuación del Paso 2) ⇒ Li = 4,2 F o El Ingreso ⇒ I = 4500 ∗ Li o Costo de mano de obra ⇒ CMO = 1500 ∗ C o Ingreso Neto ⇒ IN = I - CMO 21
  • 23. Ingeniería de Métodos Entonces buscamos en la Tabla de Peck y Hazelwood los valores de F, en la columna correspondiente a la población 6, con el valor de X igual a 0,3. y se construye el siguiendo cuadro: C 1 2 3 4 F 0,513 0,880 0,978 0,997 Li 2,155 3,696 4,108 4,187 I 9697,5 16632 18486 18841,5 CMO 1500 3000 4500 6000 Ingreso Neto 8197,5 13632 13986 12841,5 (Bs./h) • Paso 4: Se escoge la alternativa que proporcione el mayor Ingreso Neto. En este caso es 13986 Bs./ h., por consiguiente, por lo tanto la alternativa a escoger es la de asignarse 3 operarios. 22
  • 24. Ingeniería de Métodos Problemas Propuestos: 1.- En una determinada empresa se realiza el trabajo de procesar lotes de artículos a través de una cepilladora automática; dicha cepilladora es cargada y descargada por un solo operario; los tiempos correspondientes al procesamiento de una pieza son los siguientes: Actividad Tiempo ( 0,01 min. ) Cargar Máquina 30 Cepillado Automático 80 Descargar Cepilladora 30 Quitar Rebabas 60 En cada ciclo realizado por la maquina, se elabora una pieza y se trabaja durante 8 ½ horas por día. El estudio de costos realizado arrojo lo siguiente: El costo de la máquina funcionando es de 320 Bs./hora y parada es de 240 Bs./hora. El operario tiene un sueldo de 12.500 Bs./semana. (se trabaja de Lunes a Viernes) En función de los datos suministrados: a) Diseñe un método mejorado, elaborando el diagrama hombre- máquina para el método actual y para el diseñado por Ud. b) Realice, basándose en la producción diaria y el costo por pieza producida, comparación entre los dos métodos ( actual y propuesto). 2.- Determinar el número óptimo de operarios que deben asignarse a 5 máquinas. El tiempo de servicio es una variable aleatoria, exponencialmente distribuida y el número de máquinas que requiere servicio en un momento dado, es una variable aleatoria, que sigue la distribución de poisson. En promedio cada máquina funciona en forma continua e independiente durante el 70% del tiempo. Cada máquina produce 6 unidades de producto por hora efectiva de operación. Al operario se le paga 50 Bs./h y cada máquina cuesta 90 Bs./h. 3.- En una empresa ensambladora ocurren interrupciones aleatorias en el proceso productivo, durante la jornada de trabajo diaria de 8 horas. Actualmente un operario está encargado de atender 4 máquinas. Por estudio de muestreo de trabajo realizados, se sabe que, en promedio, cada máquina opera el 70% del tiempo sin requerir atención. El tiempo de atención prestada por el 23
  • 25. Ingeniería de Métodos operario a intervalos regulares es, en promedio, 30%. Calcule qué proporción de tiempo de máquina perdido proporcionará este arreglo. 4.- En una empresa textil, se le han asignado 7 telares a un operario. Por estudios de tiempo y registros históricos se ha determinado que cada máquina requiere en promedio 1 minuto de servicio por cada 8 minutos transcurridos. Se considera que el operador se desplaza desde un punto medio común a todas las máquinas. a) Determine el valor promedio de interferencia por máquina. b) Determine el porcentaje inevitable de ocio del operario, inherente a la asignación realizada. Interprete el significado de ambos valores. 5.- Tres operarios ensamblan un componente eléctrico al realizar las operaciones siguientes: OPERARIO OPERACION TIEMPO (min.) PRECEDENCIA A 1 3 __ 2 4 1 3 1 __ B 4 3 3 5 5 1 6 1 4 C 7 2 2,5 y 6 8 2 7 Use la herramienta de análisis adecuada para el método actual y proponer un método mejor. 6.- A través de la jornada de trabajo diario de 8 horas en una empresa envasadora de alimentos, ocurren interrupciones aleatorias en el proceso productivo. Actualmente, un operario se encarga de atender 3 máquinas. Por estudios realizados se sabe que en promedio cada máquina opera el 65% del tiempo sin requerir atención. El tiempo de atención prestada por el operario, a intervalos regulares es en promedio 35%. ¿ Qué proporción de tiempo de máquina perdido proporcionará este arreglo ? 24
  • 26. Ingeniería de Métodos 7.- Se desea procesar 1980 artículos en una fresadora semi-automática. Un solo operario puede cargar y descargar dicha fresadora. Disponemos de los siguientes tiempos: ACTIVIDAD TIEMPO (MIN) Cargar material en fresadora 1 Fresado automático 4 Descargar producto 1 Inspeccionar 1 En la determinación de los costos, se acostumbra añadir un 10% al tiempo de ciclo para cubrir imprevistos. El operario gana 80 Bs./h en jornadas de trabajo normal y 95 Bs./h en tiempo extra. La fábrica trabaja 8 horas por día, pudiendo trabajar hasta 6 horas diarias de sobretiempo. La hora-máquina se estima en 90 Bs. Se puede disponer de 2 fresadoras para cumplir con este pedido, el cual debe estar listo a más tardar en 15 días. El tiempo para ir de una máquina a otra se puede considerar despreciable. Determine el tiempo y costo de fabricación. ¿ Cuál es el arreglo más favorable desde el punto de vista económico? 8.- Establecer la cantidad de máquinas semiautomáticas que pueden ser asignadas a un operario, si conocemos que para la elaboración de las piezas se requiere de las siguientes secuencias de actividades: Actividad Tiempo ( min.) Carga y descarga máquina 4 Maquinado 5 Ir de una máquina a otra 0,7 El costo del maquinado es de 590 Bs./ hr. El costo del operario es de 3120,50 Bs./ hr. en jornada regular. En función a costos, seleccione la mejor alternativa . 25
  • 27. Ingeniería de Métodos Respuesta Problemas Propuestos: 1.- a) Diagrama Hombre-Máquina método Actual , ver Fig. 4 Diagrama Hombre-Máquina método Propuesto, ver Fig. 5 b) Método Piezas por día Costo por pieza Actual 255 20,10 Propuesto 365 13,53 2.- Conviene asignar 2 operarios para atender las 5 máquinas 3.- La proporción de tiempo de máquina perdido es de 11,003 %. 4.- a) El valor promedio de interferencia por máquina es de 9,10 % b) El porcentaje de ocio inevitables es de 20,5 % c) En promedio por cada 100 minutos transcurridos, cada uno de los 7 telares permanecerá ocioso 9,10 minutos debido a la interferencia de máquinas y el operario tendrá un tiempo de ocio de 20,5 minutos. 5.- Diagrama de Cuadrilla método Actual, ver Fig. 6 Diagrama de Cuadrilla método Propuesto, ver Fig. 7. 6.- La proporción de tiempo de máquina perdido es de 10,83 % 7.- Diagrama Hombre-Máquina 1operario, 1máquina + sobre tiempo, ver Fig 8 Diagrama Hombre-Máquina 1 operario,2 máquina ver Fig. 9 Alternativa Costo por pieza 1operario+1máq.+ sobre tiempo 193,50 Bs. 1operario + 2 máq. 143,00 Bs. La segunda alternativa ( 1 operario y 2 máquinas ) es el más conveniente, ya que es el que tiene asociado el menor costo unitario. El tiempo necesario para fabricar las 1600 piezas es de 18 días 8.- La mejor alternativa es asignar 2 máquinas. 26
  • 34. Ingeniería de Métodos Capitulo II: Balance de Líneas de Producción El estudiante encontrará la teoría de estea Unidad en el Capitulo VI del texto de Burgos y en el Capitulo 6 del Niebel , que corresponde al Objetivo n° 5 del Plan de Curso: “Resolver problemas de balance de líneas de ensamblaje de producción de una empresa, con el fin de optimizar el proceso de producción industrial de la misma.” Síntesis Teórica: Se puede distinguir dos tipos de líneas de producción, “ Líneas de Fabricación “ y “ Líneas de Ensamble ”. Las líneas de fabricación se caracterizan por la formación o procesamiento de partes. En una línea de fabricación las operaciones realizadas en las áreas de trabajo pueden ser por ejemplo: taladrando, torneando, etc. Las líneas de ensamblaje se caracterizan por la adición de partes para obtener un ensamble total. Una definición de línea de ensamble sería: “ es una serie de estaciones de trabajo colocadas en forma sucesiva. En cada una de ellas se realiza trabajo sobre el producto, bien sea añadiendo partes o complementando operaciones de ensamblaje ” La rata de producción de la línea viene determinada por el tiempo del ciclo y a su vez el tiempo del ciclo será igual al tiempo de operación mayor de los correspondientes a las estaciones de trabajo. Es decir, el tiempo del ciclo de la línea es igual al tiempo de operación de la estación de trabajo cuello de botella. 33
  • 35. Ingeniería de Métodos El problema de balance de una línea de ensamble puede resolverse utilizando técnicas analíticas que tienen como finalidad asignar todas las unidades de trabajo a una serie de estaciones de trabajo a fin de que cada estación no realice sino el trabajo que permite el tiempo de ocio total mínimo. Para la aplicación de los modelos analíticos hemos considerado dos tipos de líneas de ensamble: • En la que se produce un solo tipo de producto • En la que se producen diferentes variedades de un mismo producto o “productos mezclados” Problemas Resueltos: Caso 1: Para un solo producto. La Kia de Venezuela, utiliza un sistema flexible de producción controlado por robots para armar los carros que vende. En la operación de ensamblaje se deben completar las tareas especificas a continuación: Tarea Tiempo ( seg. ) Tarea (s) Precedente A 12 ---- B 22 ---- C 19 A D 47 A E 14 C F 12 C G 29 B H 07 E I 21 F,G J 22 D,H,I K 34 I L 20 J,K 34
  • 36. Ingeniería de Métodos Sobre la base de la información anterior: a) Construya el diagrama de precedencias para esta operación. b) Balancee de la manera más eficiente las tareas en la línea de montaje para obtener 360 unidades por día de trabajo de 6 horas productivas. c) ¿ Cuál es la eficiencia del balance ? Solución: a) Diagrama de Precedencias: 12 19 14 7 A C E H 14 21 22 20 F I J L 22 14 B G 14 14 K D b) Balance de Línea: • Paso 1 : Se calculan las posiciones ponderadas para cada unidad, como recordará las posiciones ponderadas pueden interpretarse como el tiempo que se perdería si no se realiza la unidad de trabajo considerada, por ello son iguales a las sumas de los tiempos de ejecución de la unidad en cuestión y de aquellas unidades a las cuales debe preceder dicha unidad. 35
  • 37. Ingeniería de Métodos Elemento Tiempo (seg.) Posición Ponderada ( tarea) A 12 12+19+14+7+12+21+47+22+34+20 = 208 B 22 22+29+21+22+34+20 = 148 C 19 19+14+12+7+21+22+34+20 = 149 D 47 47+22+20 = 89 E 14 14+7+22+20 = 63 F 12 12+21+22+34+20 = 109 G 29 29+21+22+34+20 = 126 H 07 7+22+20 = 49 I 21 21+22+34+20 = 97 J 22 22+20 = 42 K 34 34+20 = 54 L 20 20 • Paso 2: Se ordenan las posiciones ponderadas de mayor a menor: Elemento (Tarea) Posición Ponderada A 208 C 149 B 148 G 126 F 109 I 97 D 89 E 63 K 54 H 49 J 42 L 20 • Paso 3: Se determina el tiempo del ciclo 6 horas 60 min ∗ = 1 min./unid.= 60 seg./unid. 360 unidades horas • Paso 4: Se realiza la asignación a estaciones de Trabajo: para esto debe tenerse presente que el tiempo de operación de trabajo no puede ser mayor que el tiempo del ciclo, en este caso no puede ser mayor que 60 36
  • 38. Ingeniería de Métodos seg. La asignación de las unidades de trabajo se hace dando prioridad a aquellas unidades de trabajo con las mayores posiciones ponderadas. Las reglas de asignación las encontrará en las Pág. 173 de su libro texto. Estación Elementos Precedencia Tiempo de la Tiempo Acumulado Asignados Inmediata tarea (seg.) (seg.) A --- 12 12 I B --- 22 34 C A 19 53 G B 29 29 II F C 12 41 E C 14 55 III D A 47 47 I F,G 21 21 IV H E 7 28 J D,H,I 22 50 V K I 34 34 L J,K 20 54 c) La Eficiencia del Balance ( EB ) viene dado por EB = ∑t x100 , donde Tiempo de ciclo x n° de estaciones ∑ t = 259 seg 4,32 min.; Tiempo del ciclo = 1 min.; n° de estaciones = 5 entonces: 4,32 EB = ∗ 100 = 86,4 % 1∗ 5 Caso 2 : Productos Mezclados En una fábrica de secadores de pelo se desea realizar un balance mezclado de la línea de producción. La planta produce tres modelos : A, B y C. Se trabaja 8 horas diarias con un receso de 35 min. La naturaleza del producto no permite previsión de inventario entre las estaciones de trabajo. El plan de producción diario es el siguiente: 37
  • 39. Ingeniería de Métodos MODELO Nº unid. Requeridas Operaciones que Lleva A 12 Todas B 6 No lleva 2 ni 4 C 4 No lleva 1 ni 2 Los tiempos de ejecución y restricciones de precedencia son : ELEMENTO TIEMPO ( MIN. ) PRECEDENCIA 1 4 --- 2 6 --- 3 4 1 4 7 2 5 6 3, 4 6 5 5 7 6 5 8 4 6, 7 Sobre la base de la información anterior: a) Construya el diagrama de precedencias. b) Balancee la línea de producción. c) Formule posibles secuencias para llevar a cabo la programación. Solución: a) Diagrama de precedencia: 4 4 4 1 3 6 1 4 8 5 6 7 6 2 4 7 38
  • 40. Ingeniería de Métodos b) Balance de Línea: • Paso 1: Se construye un cuadro en el cual se indica el tiempo total consumido por día para la realización de cada elemento o unidad de trabajo. La suma de estos tiempos representará el tiempo total necesario para cubrir la producción diaria. Unidades a producir por Tiempo Tiempo día y por modelo Total Total Elemento (min.) A B C Unidades (min.) 1 4 12 6 --- 18 72 2 6 12 --- --- 12 72 3 4 12 6 4 22 88 4 7 12 --- 4 16 112 5 6 12 6 4 22 132 6 5 12 6 4 22 110 7 6 12 6 4 22 132 8 4 12 6 4 22 88 806 • Paso2: Se determina el número mínimo de estaciones de trabajo necesarias para cumplir con la producción programada por jornada. Para esto se divide el tiempo total por día entre el tiempo efectivo disponible por jornada de trabajo. ( como el número obtenido no es entero, se aproxima al inmediato superior) 806 Número mínimo de estaciones de trabajo : = 1,81 ≅ 2 445 El número mínimo de estaciones de trabajo será 2 y el tiempo por estación es 806/ 2 = 403 min. • Paso 3: Se realiza entonces la asignación de los elementos de trabajo a las diferentes estaciones de trabajo (Para esto puede utilizarse el método heurístico de Kilbridge y Wester o el de Posiciones Ponderadas) 39
  • 41. Ingeniería de Métodos Asignación a estaciones de trabajo: ( Posiciones Ponderadas ) Estación Elemento Tiempo Total Tiempo asignado Asignado (min.) estación (min.) 1 72 2 72 I 3 88 344 4 112 5 132 II 6 110 374 7 132 III 8 88 88 • Paso 4: Se determinan los tiempos que tarda cada unidad de cada uno de los modelos en cada estación ( según la asignación de elementos de trabajo a las estaciones ) Tiempos de operación en cada estación: Estación Tiempo de operación por modelo ( min. ) A B C I 21 8 11 II 17 17 17 III 4 4 4 c ) Formulación de posibles secuencias: Se determina la secuencia a seguir para la programación del ensamblaje de los diferentes modelos. Para ello se calcula la proporción en que debe producirse cada modelo, de acuerdo con el programa de producción. Esto se hace sacando el Máximo Común Divisor ( MCD ) de las cantidades a producir de cada modelo, en nuestro caso será: 40
  • 42. Ingeniería de Métodos MCD de 12, 6 y 4 es 2 Luego, las proporciones correspondientes a cada modelo serán: Modelo A = 12/ 2 = 6 ; Modelo B = 6/ 2 = 3; Modelo C = 4/ 2 = 2 Finalmente, algunas posibles secuencias son: AAABBBAAACC ; AAABCCAABBA ; AABBCAABCAA Problemas Propuestos: 1.- En una fábrica de neveras se quiere hacer un balance mezclado de la línea de producción. La planta produce cuatro modelos: ordinaria, estándar, de lujo y superior. Se trabajan 8 horas diarias con un receso de 30 min. El plan de producción es el siguiente: MODELO Nº UND. REQUERIDAS OPERACIONES QUE LLEVA Ordinaria 20 No lleva ni la 2 ni la 3 Estándar 30 No lleva la 1 De lujo 10 No lleva la 2 Superior 5 Todas El diagrama de precedencias es el siguiente: 6 7 6 5 1 4 5 6 8 7 2 3 41
  • 43. Ingeniería de Métodos Se pide: Balancear la línea y formular posibles secuencias para hacer la programación diaria. (no haga la programación) 2.- Una operación de ensamblaje, esta conformada por 8 elementos, los tiempos de ejecución tomados con cronómetro se muestran en la siguiente tabla, al igual que las restricciones de precedencia: ELEMENTO TIEMPO ( MIN. ) PRECEDENCIA 1 5 --- 2 6 1 3 7 1 4 8 2,3 5 6 4 6 9 4 7 7 5,6 8 6 7 Sobre la base de la información anterior: a) Construya el diagrama de precedencias. b) Balancee la línea de producción para obtener 35 unidades por día de trabajo de 8 horas. 3.- Una operación de ensamblaje está compuesta por 10 elementos, cuyos tiempos de ejecución y restricciones de precedencia son los siguientes: ELEMENTO TIEMPO ( min. ) PRECEDENCIA 1 8 --- 2 2 1 3 5 2 4 7 1 5 3 4 6 1 4 7 5 5,6 8 7 3,7 9 4 7 10 5 8,9 42
  • 44. Ingeniería de Métodos Se pide: a ) Construir el diagrama de precedencias. b ) Balancear la línea para obtener 30 unidades por día de trabajo de 8 horas. 4.- En la fábrica donde Ud. hace pasantías se debe realizar un balance de la línea de producción; la empresa fábrica en este sector los siguientes tipos o modelos de aire acondicionado denominados así: para uso A, para uso B y tipo estándar E. En esta empresa se trabaja 8 horas/día con tiempo para almorzar de 45 minutos. La naturaleza del producto no permite previsión de inventario entre las estaciones de trabajo. Contando con el siguiente plan de producción diaria y el diagrama de precedencias: PLAN DE PRODUCCIÓN Modelo Nº de Unidades Operaciones Tipo A 8 No lleva la 9 Tipo B 6 No lleva la 1 Estándar E 8 Las lleva todas DIAGRAMA DE PRECEDENCIAS 7 7 6 1 5 8 6 5 4 5 3 4 7 10 8 5 6 2 6 9 Se le solicita llevar a cabo este balance de línea de producción y también, formular posibles secuencias que permitan hacer la programación diaria, sin hacer la programación. 43
  • 45. Ingeniería de Métodos 5.- Una empresa produce tres modelos de neveras clasificados como tipos A, B y C. La empresa trabaja durante 8 horas con un receso de 30 min. Modelo Nº de Unidades Operaciones A 20 Todas B 15 Menos 7 y 8 E 5 Menos 4, 5 y 6 El diagrama de precedencias se muestra a continuación: 3 2 2 6 5 5 4 1 1 6 9 10 4 7 7 3 9 2 5 8 Los tiempos están expresados en minutos. Balancee la línea de producción, formule los secuencias posibles para una programación diaria. ( No realice la programación ) 6.- - Una operación de ensamblaje está integrada por 10 elementos. Los tiempos de ejecución y restricciones de precedencia de estos elementos, se indican a continuación: ELEMENTO TIEMPO (MIN) PRECEDENCIA 1 6 -- 2 5 1 3 3 1 4 4 2 5 5 3 6 7 4,5 7 3 6 8 6 6 9 5 7,8 10 5 9 44
  • 46. Ingeniería de Métodos Se pide: a.- Construir el diagrama de precedencias. b.- Balancear la línea para obtener 30 unidades por día de trabajo de 8 horas. c.- ¿ Cuál es la eficiencia del balance? 7.- Se necesita implantar una operación de submontaje, en una línea de ensamblaje para añadir un componente que puede producir 90 unidades durante un turno normal de 8 horas. Las operaciones han sido diseñadas para tres actividades con los tiempos que se muestran a continuación: Operación Actividad Tiempo Estándar ( min. ) A Montaje Mecánico 15 B Cableado Eléctrico 20 C Prueba 6 Sobre la base de esta información: a.- ¿ Cuántas estaciones de trabajo ( en paralelo ) se requerirán para cada actividad ? b.- Suponiendo que los trabajadores de cada estación no pueden ser utilizados para otras actividades en la planta ¿cuál es el porcentaje apropiado de tiempo ocioso para esta operación de subensamblaje ? Respuesta Problemas Propuestos: 1.- Tiempo total para cubrir la producción diaria = 1588 min. N° mínimo de estaciones = 4 ⇒ Tiempo de estación = 397 min. Posible balance: Estación Elementos Asignados Tiempo estación I 1,2,4 340 II 3,5 286 III 6,7 364 IV 8,9 312 V 10,11 286 45
  • 47. Ingeniería de Métodos Proporciones a producir: E = 3; L = 4; S = 6 Posibles secuencias ⇒ EEELLLSSSSSS ; EELLESSSLLSSS 2.- a) 6 6 2 5 5 8 7 6 1 4 7 8 7 8 3 6 b) Tiempo del ciclo = 14 min./und. Posible asignación: Estación Elementos Asignados Tiempo estación I 1,3 12 II 2,4 14 III 5,6 14 IV 7,8 13 3.- a) 3 6 5 2 3 8 7 7 1 10 4 5 5 4 5 7 5 3 9 6 46
  • 48. Ingeniería de Métodos b) Tiempo del ciclo = 12 min./und. Posible asignación: Estación Elementos Asignados Tiempo estación I 1,4 12 II 5,6,2 11 III 7,3 10 IV 8,9 10 V 10 7 4.- Tiempo total para cubrir la producción diaria = 1208 min. N° mínimo de estaciones = 3 ⇒ Tiempo de estación = 403 min. Posible balance: Estación Elementos Asignados Tiempo estación I 1,2 288 II 3,4,5 396 III 6,7,8 330 IV 9,10 194 Proporciones a producir: A = 4; B = 3; E = 4 Posibles secuencias ⇒ AAAABBBEEEE ; AABBBAAEEEE 5.- Tiempo total para cubrir la producción diaria = 1580 min. N° mínimo de estaciones = 4 ⇒ Tiempo de estación = 395 min. Posible balance: Estación Elementos Asignados Tiempo estación I 1,2 320 II 3,4,6 385 III 5,8 365 IV 7,9 300 V 10 160 Proporciones a producir: A = 4; B = 3; C = 1 Posibles secuencias ⇒ AAAABBBC ; AABBABAC 47
  • 49. Ingeniería de Métodos 6.- a) 5 4 3 2 4 7 6 7 5 5 1 6 9 10 3 5 6 3 5 8 b) Tiempo del ciclo = 16 min./und. Posible asignación: Estación Elementos Asignados Tiempo estación I 1,2,3 14 II 4,5,6 16 III 8,7,9 14 IV 10 5 c) Para este balance la EB = 76,6 % 7.- a) 3 estaciones para A, 4 estaciones para B y 1 estación para B. b) 3,91% 48
  • 50. Ingeniería de Métodos Capítulo III: Normalización y Cronometrado El estudiante encontrará la teoría de esta Unidad en el Capitulo VII del texto de Burgos que corresponde al Objetivo n° 6 del Plan de Curso: “Determinar el número de ciclos y el tiempo de ejecución de una operación, mediante los métodos continuo e intermitente de cronometrado.” Para la resolución de los problemas de este Capítulo, es necesario el uso de Tablas de la Distribución de t Student y de la Distribución Normal. Recuerde que en el momento de la evaluación presencial, estas tablas se encuentran en el cuadernillo que le será entregado por el supervisor de la prueba. Síntesis Teórica: La búsqueda de un nuevo método originara la formulación de una serie de alternativas que constituyen posibles soluciones al problema planteado; pero entre ellas habrá una que con base en las variables seleccionadas, las restricciones impuestas y los criterios de evaluación escogidos, que será más ventajosa que las otras y será la que se convertirá en el método propuesto. Este método propuesto deberá luego ser Normalizado para finalmente proceder a medir su tiempo de ejecución. Normalizar significa establecer una norma, un patrón. El Tiempo Estándar, de acuerdo con su definición, debe corresponder a un método y equipo dados, bajo condiciones de trabajo específicas y el Estudio de Tiempos en concordancia con ello estará referido al trabajo realizado bajo las condiciones que prevalecen en el momento de realizar dicho estudio. Si esas condiciones cambian, habrá que hacer modificaciones al tiempo establecido. 49
  • 51. Ingeniería de Métodos El Estudio de Tiempos se define como una técnica para establecer un Tiempo Estándar para realizar una tarea dada. Esta técnica se basa en la medición del contenido de trabajo del método prescrito, permitiendo las debidas Tolerancias por fatiga, demoras inevitables y necesidades personales. El objetivo del Estudio de Tiempos no es determinar cuánto tarda un trabajo, sino cuánto debería tardar. Una vez que tenemos registrada toda la información general y la referente al método normalizado de trabajo, la siguiente fase consiste en hacer la medición del tiempo de operación. A esta tarea se le llama cronometraje. En el momento de realizar el cronometraje, los sucesivos tiempos de un mismo elemento del ciclo de trabajo, resultan variables por una serie de causas. Por lo tanto, para establecer un tiempo que sea justo, es preciso tomar varios tiempos y actuaciones, para cada elemento, de tal manera que se facilite la oportunidad de que se presenten, durante el cronometraje, las pequeñas variaciones difíciles de registrar. La garantía del valor medio del tiempo correspondiente a un elemento establecido por cronometraje, aumenta cuando crece el número de datos obtenidos. Problemas Resueltos: 1.- En un estudio de tiempos con cronómetro se requiere saber si el número de observaciones realizadas son suficientes, para un nivel de confianza de 90% y una precisión de ± 5%. Se han registrado 10 ciclos cuyos tiempos en 0,01 minutos se dan a continuación: 10, 11, 12, 10, 12, 11, 09, 07, 10, 07 Si deben hacerse observaciones adicionales, calcule cuántas son necesarias para obtener la precisión deseada. Solución: Según los datos del problema, tenemos que: Intervalo de Confianza ⇒ C = 0,90 ; Precisión del estudio ⇒ K = 0,05 N° de ciclos de la operación ⇒ M = 10 50
  • 52. Ingeniería de Métodos • Paso 1: Se determina la Desviación Estándar de la muestra ( S ): S= ∑x 2 − (∑ x ) 2 / M M −1 en nuestro caso: S= ( 1009 − (99 ) / M 2 ) = 1,79 x 10- 2 9 • Paso 2: Se calcula el intervalo de Confianza Im provisto por esta muestra: I m tc ∗ S 2 ∗ tc ∗ S = ⇒ Im = 2 M M donde tc , se obtiene de la Tabla de Probabilidades para la Distribución “t” con C y M –1 grados de libertad ( Tabla 5 del Cuadernillo de Tabla ) : t0,90;9 = 1,833 Entonces : 2 * 1,833 * 1,79 x10 −2 Im = = 0,0208 10 • Paso 3: Comparamos el valor de I m con I , para esto calculamos el valor de I en base a la media muestral: _ _ I 99 −2 = K ∗ x, siendo x = 10 = 9,9 x10 min . 2 Luego, -2 I = 2 * 0,050 * 99x10 = 0,0099 Sí I m ≤ I ⇒ La muestra de observaciones satisface los requerimientos de muestreo. Sí I m > I ⇒ Se necesitan observaciones adicionales. 51
  • 53. Ingeniería de Métodos Por consiguiente, como I m > I el número de observaciones no es suficiente, se necesitan observaciones adicionales. • Paso 4 : Se calcula el número total de observaciones. a partir de: 2 4 tc ∗ S 2 I = tc∗ S ⇒N= 2 N I2 Entonces , 4(1,833) 2 ∗ (0,0179) 2 N= = 44 Observaciones. (0,0099) 2 Las observaciones adicionales que tendremos que hacer son N – M , es decir 44 – 10 = 34 ⇒ Por lo tanto, es necesario realizar 34 observaciones adicionales. 2.- Sobre la base de una estimación preliminar, la desviación estándar de una actividad es 10 segundos ¿ Cuántas observaciones deben hacerse en el estudio de tiempos para tener 90% de confianza de que la media muestral esté dentro de 2 segundos (± 2) del valor de población real ? Observe que en este caso se manejan medias muestrales ( x ) en lugar de proporciones muéstrales. Las medias y proporciones muestrales generalmente siguen una distribución normal. Solución: Según los datos del problema, tenemos que: Precisión ⇒ e = 2 ; Desviación Estándar ⇒ S = 10 • Paso 1: Se determina el valor de z en la tabla Área bajo la curva Normal Tipificada de z ( Tabla 6 del Cuadernillo de Tablas ) z = 1,64 52
  • 54. Ingeniería de Métodos • Paso 2: Con los datos se calcula el valor de n: z∗S ⎞ 2 ⇒ n=⎛ S e = z ∗ Sx = z∗ ⎜ ⎟ , n ⎝ e ⎠ Sustituyendo ⎛ 1,64 ∗ 10 ⎞ 2 n=⎜ ⎟ ≅ 68 observaciones ⎝ 2 ⎠ 3.- Determine el tiempo promedio seleccionado de la siguiente operación ( tiempo expresado en 0,01 min. ): ELEMENTOS CICLO I II III IV T L T L T L T L 1 18 28 33 43 2 48 58 64 75 A 3 80 89 94 04 4 15 25 35 45 5 51 71/61 61/51 86 6 91 01 06 16 7 21 32 37 48 8 53 63 69 80 09 Elementos extraños: A 04 Solución: • Paso1: Se completa el formato de Estudio de Tiempo, para esto se resta la columna Ln+1 de la columna Ln. Se calculan los valores de X 53
  • 55. Ingeniería de Métodos ELEMENTOS CICLO I II III IV T L T L T L T L 1 18 18 10 28 05 33 10 43 2 05 48 10 58 06 64 11 75 A 3 05 80 09 89 05 94 10 04 4 06 15 10 25 10 35 10 45 5 06 51 10 71/61 06 61/51 15 86 6 05 91 10 01 05 06 10 16 7 05 21 11 32 05 37 11 48 8 05 53 10 63 06 69 11 80 ∑ 37 80 38 73 n 7 8 7 7 X 5,287 10 5,429 10,429 Elementos extraños: A 09 05 04 • Paso 2: Calcula el Tiempo Promedio Seleccionado que será la ∑ X Para esto se deben descartar los valores que caen fuera del rango de aceptación Ciclo I II III IV ∑t 37 80 38 73 n 7 8 7 7 __ 5,287 10 5,429 10,429 X __ • Paso 3: Se calcula el Tiempo Promedio Seleccionado que será la ∑X __ TPS = ∑ X = 5,287 + 10 + 5,429 + 10,429 = 31,15 min./ciclo. 54
  • 56. Ingeniería de Métodos Problemas Propuestos: 1.- En un estudio de tiempos con cronómetro se requiere saber si el número de observaciones realizadas son suficientes, para un nivel de confianza de 99% y una precisión de ± 10%. Se han registrado 15 ciclos cuyos tiempos en centésimas de minutos se dan a continuación: 20, 22, 21, 19, 20, 22, 23, 19, 22, 19, 20, 19, 21, 20, 22 ¿Se requieren hacer observaciones adicionales para obtener la precisión deseada ?, ¿ cuántas son necesarias ? 2.- Determine el tiempo promedio seleccionado de la siguiente operación ( tiempo expresado en 0,01 min. ): ELEMENTOS CICLO I II III IV T L T L T L T L 1 13 23 28 38 2 43 53 59 A70 3 83 92 98 08 4 14 24 29 39 5 44 54 64 74 6 79 94/84 84/79 04 7 09 19 24 33 8 39 49 --- 59 9 64 73 78 88 10 93 03 08 22 Elementos extraños: 78 A 70 55
  • 57. Ingeniería de Métodos 3.- Un analista de estudios de tiempos desea determinar el ciclo de tiempo necesario, para una operación de ensamblaje dentro de ± 0,05 minutos, con un nivel de confianza de 96%. Si la desviación estándar del ciclo de tiempo (σ ) es 0,11 minutos. ¿ Cuántas observaciones se requieren ? 4.- Realizando estudios de tiempo en una línea de producción, se tomó una operación en particular que proporcionó una desviación estándar igual a 15 segundos. ¿ Cuántas observaciones deben hacerse en el estudio si se desea obtener 90% de confianza de que la media muestral esté dentro de ± 7 segundos del valor de población real? 5.- Determine el tiempo promedio seleccionado para la siguiente operación ( tiempos en centésimas de minutos ) ELEMENTOS I II III IV CICLO T L T L T L T L 1 14 24 30 38 2 48 57 63 71 3 81 91 96 03 4 12 27 --- 60 5 70 79 85 93 6 02 18/08 08/02 30 7 39 49 59 67 8 76 85 94 02 9 12 21 27 35 10 45 55 61 68 6.- En la siguiente tabla se muestran los resultados de un estudio de tiempos con cronómetro de una cierta operación. Se requiere saber si el número de observaciones realizadas es suficiente o cuantas observaciones adicionales deben hacerse para un nivel de confianza de 90 % y un intervalo de confianza de 0,12 minutos. ( Los tiempos se dan en centésimas de minuto ) 56
  • 58. Ingeniería de Métodos Ciclos 1 2 3 4 5 6 7 8 Elementos I 11 14 12 11 13 10 12 11 II 13 14 16 14 17 13 15 14 III 12 13 15 13 16 12 14 16 7 .- Un analista desea desarrollar un costo estándar de mano de obra, para una actividad manual de arreglo de carpetas. Los elementos son los siguientes: 1) recoger las tarjetas; 2) arreglarlas y 3) archivarlas. Para el elemento 2, la desviación estándar es calculada en σ = 2,55. Para determinar el tiempo de arreglo con una seguridad dentro de ± 0,7 minutos con 95,5% de confianza. ¿ Qué tan grande debe ser la muestra tomada ? 8.- Los resultados de un Estudio de Tiempos con cronómetro de cierta operación, se muestra a continuación: CICLO ELEMENTOS I II III 1 15 18 17 2 13 17 13 3 11 16 16 4 14 15 15 5 13 17 13 6 15 16 16 7 13 15 14 Los tiempos se expresan en centésimas de minutos. Se requiere saber si el número de observaciones realizadas es suficiente, para un nivel de confianza de 95% y una precisión de ± 10%. 57
  • 59. Ingeniería de Métodos Respuesta a los Problemas Propuestos: 1.- No. Ninguna observación adicional. 2.- 0,3027 min./ciclo 3.- 20 Observaciones. 4.- 13 Observaciones. 5.- 0,327 min./ciclo. 6.- El número de observaciones realizadas son suficientes. 7.- 53 Observaciones. 8.- Las observaciones realizadas son suficientes. 58
  • 60. Ingeniería de Métodos Capitulo IV: EL Tiempo Normal El estudiante encontrará la teoría de esta Unidad en el Capitulo VII del texto de Burgos que corresponde al Objetivo n° 8 del Plan de Curso: “Estimar el tiempo normal de ejecución de una operación, mediante el uso de técnicas de calificaciones de velocidad, la aplicación de Tiempos de Movimientos Básicos Sintéticos y la construcción de Fórmulas de tiempo.” Para la resolución de los problemas de este Capítulo, es necesario el uso de Tablas de tiempos de movimientos contenidas en Cuadernillo de Tablas del anexo. Recuerde que en el momento de la evaluación presencial, este cuadernillo será entregado por el Supervisor de la prueba. Síntesis Teórica: Al registrar las lecturas elementales en el curso de un estudio de tiempos, debe dirigirse la atención, especialmente, hacia el nivel de actividad que el operario está empleando. Es decir, ¿ se está ejecutando el trabajo rápidamente ? o ¿ el operario está tomando, deliberadamente, más tiempo que el que necesita para hacer este trabajo ?. Cuando varios operarios están ejecutando un mismo trabajo, su producción raramente es la misma. En general, hay un operario que regularmente produce más que los otros del grupo. Su superioridad puede deberse, en parte, a que utiliza un método mejor para hacer el trabajo, pero incluso cuando se supone que todos están siguiendo el mismo método, aún siguen persistiendo estas diferencias. Por otro lado, puede suceder también que haya uno o dos operarios que claramente sean más lentos que los otros y obtengan menor producción por esta causa. Evidentemente, no sería justo para los operarios que se estudiase al hombre rápido y se presentasen los resultados 59
  • 61. Ingeniería de Métodos de tal estudio como tiempo normal para el grupo. Asimismo, el estudio basado en la producción de los operarios lentos puede dar como resultado un tiempo normal amplio que se reflejaría en ganancias excesivamente altas para algunos del grupo y en consecuencia, un alto costo de mano de obra para el producto. Por lo antes descrito, es necesario introducir una etapa en el estudio de tiempos, que valore esta variación en la producción y ajuste los resultados a un “ritmo normal”. El Ritmo Normal es la rata efectiva de ejecución de un operario consciente, calificado y bien entrenado, cuando trabaja con un ritmo que no es ni muy rápido ni muy lento, sino representativo del promedio y prestando la consideración adecuada a los requerimientos físicos, mentales o visuales de trabajo. Esta etapa del estudio es lo que se conoce como la Calificación de la Velocidad. La Calificación debe hacerse conjuntamente con la medición de tiempos. No pueden tratarse como dos actividades separadas, ya que a cada tiempo medido corresponderá una velocidad de ejecución. Es decir, el tiempo medido será alto o bajo dependiendo del ritmo de trabajo del operario observado, pero la Calificación de Velocidad permite transformar ese tiempo en el tardaría un operario normal para ejecutar la misma actividad, lo cual en definitiva es lo que interesa para ser tomado como base o patrón de referencia. La expresión para el Tiempo Normal será entonces: TN = TPS ∗ Cv donde: TN = Tiempo Normal. TPS = Tiempo Promedio Seleccionado ( tiempo medido ) Cv = Calificación de Velocidad. La Calificación de Velocidad se expresa generalmente en porcentaje. La Calificación de Velocidad para un operario que trabaja a ritmo normal es de 100%, un operario rápido por lo tanto obtendrá una Cv > 100% y un operario lento obtendrá una Cv < 100%. Existen varios métodos para calificar la velocidad de actuación de un operario. Los mismos difieren entre sí, ya que un factor considerado como importante por uno de ellos puede ser completamente ignorado por los otros. 60
  • 62. Ingeniería de Métodos Entre estos métodos tenemos: • Método Subjetivo: este método es bastante sencillo y consiste en que el analista juzga la rata de trabajo del operario, su ritmo y velocidad de movimientos y lo compara con su propio concepto de lo que debería ser el ritmo normal de ejecución de la operación. • Calificación de ejecución, como el método Westinghouse y el Westinghouse modificado. • Calificación Sintética, mediante Tiempos de Movimientos Básicos Sintéticos. • Calificación Objetiva. Cuando un grupo de movimientos no pueden ser evaluados precisamente con los procedimientos ordinarios de estudio de tiempos con cronómetro, se utilizan Los Tiempos de Movimientos Básicos Sintéticos ( TMBS ) que son un conjunto de tiempos estándares válidos asignados a movimientos fundamentales que se obtienen como resultado de estudiar una gran muestra de operaciones diversificadas con un dispositivo de medición de tiempo, como una cámara de cine o de videograbación capaces de medir lapsos muy pequeños. Los valores de tiempos son básicos en el sentido de que refinamientos posteriores no solo son difíciles sino imprácticos. Un sistema TMBS permite analizar una operación manual o la parte manual de una operación, en términos de los movimientos básicos requeridos para ejecutarla y asigna a cada movimiento un valor de Tiempo Normal previamente establecido. De tal forma que sumando los tiempos para los movimientos individuales obtenemos el tiempo total de ejecución de la operación. Los tipos de métodos a estudiar son: • Word Factor. • MTM ( Methods Time Measurement ) • BMT ( Basic Motion Times ) 61