SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Veröffentlicht am
Que faire quand vous avez du mal à trier et prioriser des informations ? La solution s'appelle Machine Learning. Le principe est simple : faire faire les apprentissages à une application pour qu'elle puisse classer, categoriser ou caracteriser différentes informations, sans les connaître initialement. Cela s'applique au spam, aux traductions ou même à la qualité de code. Le Machine Learning est parfois difficile à prendre en main avec de gros projets, alors nous verrons comment en faire sur des données plus modestes, et plus accessibles.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Loggen Sie sich ein, um Kommentare anzuzeigen.