SlideShare ist ein Scribd-Unternehmen logo
1 von 38
MATHS  MATHS  
PRESENTATIONPRESENTATION
GROUP MEMBERS : DRISHTI (1838)
VANDANA (1831)
DIMPY(1833)
 Operations with Matrices
 Properties of Matrix Operations
 The Inverse of a Matrix
MATRICES
 Matrix:
A=[ aij ]=
[
a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn
]m×n
∈ M m×n
(i, j)-th entry: aij
row: m
column: n
size: m×n
 i-th row vector
ri=[ai1 ai2 ⋯ ain ]
 j-th column vector
c j=
[
c1j
c2j
⋮
cmj
]
row matrix
column matrix
 Square matrix: m = n
 Diagonal matrix:
A=diag (d1 ,d2 ,⋯ ,dn) =
[
d1 0 … 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]∈M n×n
 Trace:
If A=[aij ]n×n
Then Tr ( A )=a11 +a22 +⋯+ann
Ex:
A=[1 2 3
4 5 6 ] =
[r1
r2
]
=[c1 c2 c3 ]
r1=[1 2 3 ], r2=[4 5 6 ]
c1=[1
4], c2=[2
5], c3=[3
6]
A=[1 2 3
4 5 6 ]
⇒
⇒
If A=[aij ]m×n , B=[bij ]m×n
 Equal matrix:
Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n
 Ex 1: (Equal matrix)
A=[1 2
3 4 ] B=[a b
c d ]
If A=B
Then a=1, b=2, c=3, d=4
 Matrix addition:
If A=[aij ]m×n , B=[bij ]m×n
Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n
 Ex 2: (Matrix addition)
[−1 2
0 1 ]+[ 1 3
−1 2 ]=[−1+1 2+3
0−1 1+2 ]=[0 5
−1 3 ]
[1
−3
−2]+
[−1
3
2 ]=
[1−1
−3+3
−2+2] =
[0
0
0]
 Matrix subtraction:
A−B=A+(−1)B
 Scalar multiplication:
If A=[aij ]m×n , c: scalar
 Ex 3: (Scalar multiplication and matrix subtraction)
A=
[1 2 4
−3 0 −1
2 1 2 ] B=
[2 0 0
1 −4 3
−1 3 2 ]
Find (a) 3A, (b) –B, (c) 3A – B
Then cA=[caij ]m×n
(a)
3A=3
[1 2 4
−3 0 −1
2 1 2 ]
(b)
−B=(−1)
[2 0 0
1 −4 3
−1 3 2 ]
(c)
3A−B=
[3 6 12
−9 0 −3
6 3 6 ]−
[2 0 0
1 −4 3
−1 3 2 ]
Sol:
=
[3 6 12
−9 0 −3
6 3 6 ]=
[
3(1) 3(2) 3(4)
3(−3) 3(0) 3(−1)
3(2) 3(1) 3(2) ]
=
[−2 0 0
−1 4 −3
1 −3 −2 ]
=
[ 1 6 12
−10 4 −6
7 0 4 ]
 Matrix multiplication:
If A=[aij ]m×n , B=[bij ]n× p
Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p
cij=∑
k=1
n
aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj
where
 Notes: (1) A+B = B+A, (2)AB≠BA
Size of AB
[
a11 a12 ⋯ a1n
⋮ ⋮ ⋮
ai1 ai2 ⋯ ain
⋮
an1
⋮
an2
⋯
⋮
ann
][
b11 ⋯ b1j ⋯ b1n
b21 ⋮ b2j ⋯ b2n
⋮ ⋮ ⋮ ⋮
bn1 ⋯ bnj ⋯ bnn
]=
[ci1 ci2 ⋯ cij ⋯ cin
]
A=
[−1 3
4 −2
5 0 ] B=[−3 2
−4 1 ]
 Ex 4: (Find AB)
Sol:
AB=
[
(−1)(−3)+(3)(−4) (−1)(2)+(3)(1)
(4)(−3)+(−2)(−4) (4)(2)+(−2)(1)
(5)(−3)+(0)(−4) (5)(2)+(0)(1) ]
=
[−9 1
−4 6
−15 10 ]
 Matrix form of a system of linear
equations:
{
a11 x1 +a12 x2+⋯+a1n xn =b1
a21 x1 +a22 x2+⋯+a2n xn =b2
⋮
am1 x1 +am2 x2+⋯+amn xn =bm
}=
=
=
A x b
m linear equations
Single matrix equation
Ax =b
m×nn×1 m×1[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
][
x1
x2
⋮
xn
]=
[
b1
b2
⋮
bm
]
⇓
 Partitioned matrices:
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[A11 A12
A21 A22
]
submatrix
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[
r1
r2
r3
]
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=[c1 c2 c3 c4 ]
 Three basic matrix operators:
(1) matrix addition
(2) scalar multiplication
(3) matrix multiplication
 Zero matrix: 0m×n
 Identity matrix of order n: I n
Then (1) A+B = B + A
(2) A + ( B + C ) = ( A + B ) + C
(3) ( cd ) A = c ( dA )
(4) 1A = A
(5) c( A+B ) = cA + cB
(6) ( c+d ) A = cA + dA
If A,B,C ∈M m×n , c,d :scalar
 Properties of matrix addition and scalar multiplication:
If A∈Mm×n , c :scalar
Then (1) A+0m×n =A
(2) A+(− A)=0m×n
(3) cA=0m×n ⇒ c= 0 or A= 0m× n
 Notes:
(1) 0m×n: the additive identity for the set of all m×n matrices
(2) –A: the additive inverse of A
 Properties of zero matrices:
If A=
[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
]∈M m×n
Then AT
=
[
a11 a21 ⋯ am1
a12 a22 ⋯ am2
⋮ ⋮ ⋮ ⋮
a1n a2n ⋯ amn
]∈ M n×m
 Transpose of a matrix :
Transpose is the interchange of rows and columns of a
given matrix.
A=[2
8] (b) A=
[1 2 3
4 5 6
7 8 9 ] (c
)
A=
[0 1
2 4
1 −1]
Sol: (a)
A=[2
8] ⇒ A
T
=[2 8 ]
(b)
A=
[1 2 3
4 5 6
7 8 9 ] ⇒ AT
=
[1 4 7
2 5 8
3 6 9 ](c
)
A=
[0 1
2 4
1 −1] ⇒ AT
=[0 2 1
1 4 −1]
(a)
 Ex 8: (Find the transpose of the following matrix)
(1) ( A
T
)
T
=A
(2 ) ( A+B)
T
=A
T
+B
T
(3) (cA)T
=c ( AT
)
(4 ) ( AB )
T
=B
T
A
T
 Properties of transposes
A square matrix A is symmetric if A = AT
 Ex:
If A=
[1 2 3
a 4 5
b c 6 ] is symmetric, find a, b, c?
A square matrix A is skew-symmetric if AT
= –A
 Skew-symmetric matrix:
Sol:
A=
[1 2 3
a 4 5
b c 6 ] AT
=
[1 a b
2 4 c
3 5 6 ] a= 2,b= 3,c= 5
A=A
T
⇒
 Symmetric matrix:
If A=
[0 1 2
a 0 3
b c 0 ] is a skew-symmetric, find a, b, c?

Note:
AAT
is symmetric
Pf: (AAT
)T
=( AT
)T
AT
=AAT
AA∴
T
is symmetric
Sol:
A=
[0 1 2
a 0 3
b c 0 ] −AT
=
[0 −a −b
−1 0 −c
−2 −3 0 ]
A=−A
T
a=−1,b=−2,c=−3⇒
 Ex:
ab = ba (Commutative law for multiplication)
(1)If m≠ p, then AB is defined ,BA is undefined .
(3)If m=p=n,then AB∈M m×m ,BA∈ M m×m
(2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the
same)
(Sizes are the same, but matrices are not equal)
 Real number:
 Matrix:
AB≠BA
m×nn× p
Three
situations:
A=[1 3
2 −1] B=[2 −1
0 2 ]
Sol:
AB=[1 3
2 −1 ][2 −1
0 2 ]=[2 5
4 −4 ]
 Note: AB≠BA
BA=[2 −1
0 2 ][1 3
2 −1]=[0 7
4 −2 ]
 Ex 4:
Sow that AB and BA are not equal for the matrices.
and
(Cancellation is not
valid)
ac=bc, c≠0
⇒ a=b (Cancellation law)
 Matrix:
AC=BC C ≠0
(1) If C is invertible, then A = B
 Real number:
A≠B(2) If C is not invertible, then
26
/61
A=[1 3
0 1 ], B=[2 4
2 3 ], C=[ 1 −2
−1 2 ]
Sol:
AC=[1 3
0 1 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
So AC=BC
But A≠B
BC=[2 4
2 3 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
 Ex 5: (An example in which cancellation is not valid)
Show that AC=BC
Elementary Linear Algebra: Section 2.2, p.65
A∈M n×n
If there exists a matrix B∈ M n× n such that AB=BA=In ,

Note:
A matrix that does not have an inverse is called
noninvertible (or singular).
Consider
Then (1) A is invertible (or nonsingular)
(2) B is the inverse of A
 Inverse matrix:
If B and C are both inverses of the matrix A, then B = C.
Pf: AB=I
C (AB)=CI
(CA)B=C
IB=C
B=C
Consequently, the inverse of a matrix is unique.

Notes:(1) The inverse of A is denoted by A
−1
(2) AA
−1
=A
−1
A=I
 Thm 2.7: (The inverse of a matrix is unique)
[A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1
]
 Ex 2: (Find the inverse of the matrix)
A=[ 1 4
−1 −3 ]
Sol:
AX=I
[ 1 4
−1 −3 ][x11 x12
x21 x22
]=[1 0
0 1 ]
[ x11+4x21 x12+4x22
−x11−3x21 −x12−3x22
]=[1 0
0 1 ]
 Find the inverse of a matrix by Gauss-Jordan
Elimination:
(1)⇒[ 1 4 ⋮ 1
−1 −3 ⋮ 0 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −3
0 1 ⋮ 1 ]
(2)⇒[1 4 ⋮ 0
−1 −3 ⋮ 1 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −4
0 1 ⋮ 1 ]
⇒ x11=−3, x21=1
⇒ x12=−4, x22=1
X=A−1
=
[x11 x12
x21 x22
]=[−3 −4
1 1 ] ( AX=I=AA-1
)
Thus
⇒
x11 + 4x21 1
−x11 − 3x21 0
(1)
x12 + 4x22 0
−x12 − 3x22 1
(2)
⃗r12
(1)
,r
21
(−4)
[1 0 ⋮ −3 −4
0 1 ⋮ 1 1 ]¿ A I I A−1
¿¿¿
If A can’t be row reduced to I, then A is singular.
 Note:
A=
[1 −1 0
1 0 −1
−6 2 3 ]
⃗R2−R1
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
−6 2 3 ⋮ 0 0 1]
Sol:
[A ⋮ I ] =
[1 −1 0
1 0 −1
−6 2 3
⋮
⋮
⋮
1 0 0
0 1 0
0 0 1 ]
⃗R3+6R1
[1 −1 0
0 1 −1
0 −4 3
⋮
⋮
⋮
1 0 0
−1 1 0
6 0 1 ]
⃗−R3
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 −1 ⋮ 2 4 1 ]
 Ex 3: (Find the inverse of the following matrix)
⃗R2+R3
[1 −1 0 ⋮ 1 0 0
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2
[1 0 0 ⋮ −2 −3 −1
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −1 −4 −1 ]
So the matrix A is invertible, and its inverse is
A−1
=
[−2 −3 −1
−3 −3 −1
−2 −4 −1 ]
= [I ⋮ A−1
]
 Check:
AA−1
=A−1
A=I
(1) A
0
=I
(2) A
k
=AA⋯A⏟
k factors
(k> 0)
(3) Ar
⋅As
=Ar+s
r,s:integers
( A
r
)
s
=A
rs
(4) D=
[
d1 0 ⋯ 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]⇒ Dk
=
[
d1
k
0 ⋯ 0
0 d2
k
⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ dn
k ]
 Power of a square matrix:
If A is an invertible matrix, k is a positive integer, and c is a scalar
not equal to zero, then
(1) A
−1
is invertible and ( A
−1
)
−1
=A
(2) Ak
is invertible and ( Ak
)−1
=A−1
A−1
⋯A−1
⏟
k factors
=( A−1
)k
=A−k
(3) c A is invertible and (cA)−1
=
1
c
A−1
,c≠0
(4)A
T
is invertible and ( A
T
)
−1
=(A
−1
)
T
 Thm 2.8 : (Properties of inverse matrices)
 Thm 2.9: (The inverse of a product)
If A and B are invertible matrices of size n, then AB is invertible and
(AB)
−1
=B
−1
A
−1
If AB is invertible, then its inverse is unique.
So (AB)−1
=B−1
A−1
Pf:
(AB)(B−1
A−1
)=A( BB−1
) A−1
=A(I )A−1
=( AI) A−1
=AA−1
=I
(B
−1
A
−1
)( AB)=B
−1
( A
−1
A)B=B
−1
(I )B=B
−1
( IB)=B
−1
B=I

Note:
(A1 A2 A3⋯An )
−1
=An
−1
⋯A3
−1
A2
−1
A1
−1
 Thm 2.10 (Cancellation properties)
If C is an invertible matrix, then the following properties hold:
(1) If AC=BC, then A=B (Right cancellation property)
(2) If CA=CB, then A=B (Left cancellation property)
Pf:
AC=BC
(AC )C−1
=(BC)C−1
A(CC−1
)=B(CC−1
)
AI=BI
A=B
(C is invertible, so C
-1
exists)

Note:If C is not invertible, then cancellation is not valid.
 Thm 2.11: (Systems of equations with unique solutions)
If A is an invertible matrix, then the system of linear equations
Ax = b has a unique solution given by
x=A
−1
b
Pf:
( A is nonsingular)
Ax=b
A−1
Ax=A−1
b
Ix=A−1
b
x=A−1
b
This solution is unique.
If x1 and x2 were two solutions of equation Ax=b .
then Ax1 =b=Ax2
⇒ x1=x2 (Left cancellation property)

Weitere ähnliche Inhalte

Was ist angesagt?

Matrix Operations
Matrix OperationsMatrix Operations
Matrix OperationsRon Eick
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - MathematicsDrishti Bhalla
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, AMIR HASSAN
 
Set Theory
Set TheorySet Theory
Set Theoryitutor
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matricesholmsted
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinantsindu thakur
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessKhan Tanjeel Ahmed
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operationsPankaj Das
 

Was ist angesagt? (20)

the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
Set Theory
Set TheorySet Theory
Set Theory
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Matrices
MatricesMatrices
Matrices
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Relations in Discrete Math
Relations in Discrete MathRelations in Discrete Math
Relations in Discrete Math
 
Determinants
DeterminantsDeterminants
Determinants
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operations
 
matrices basic operation.ppt
matrices basic operation.pptmatrices basic operation.ppt
matrices basic operation.ppt
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
Introduction to matices
Introduction to maticesIntroduction to matices
Introduction to matices
 

Ähnlich wie Matrices - Mathematics

GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)shamimakamili
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSRai University
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdfeyebolloptics
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfFACTOPEDIA4
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths NoteChek Wei Tan
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integralKamel Attar
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 

Ähnlich wie Matrices - Mathematics (20)

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Lemh104
Lemh104Lemh104
Lemh104
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrices
MatricesMatrices
Matrices
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 
Determinants
DeterminantsDeterminants
Determinants
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdf
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdf
 
Matrix
MatrixMatrix
Matrix
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 

Mehr von Drishti Bhalla

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures Drishti Bhalla
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & NetworkingDrishti Bhalla
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsDrishti Bhalla
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsDrishti Bhalla
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - JavaDrishti Bhalla
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringDrishti Bhalla
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRMDrishti Bhalla
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instructionDrishti Bhalla
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4Drishti Bhalla
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System ThreatsDrishti Bhalla
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software EngineeringDrishti Bhalla
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsDrishti Bhalla
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationDrishti Bhalla
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management SystemDrishti Bhalla
 

Mehr von Drishti Bhalla (15)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
 

Kürzlich hochgeladen

Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 

Kürzlich hochgeladen (20)

Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 

Matrices - Mathematics

  • 1. MATHS  MATHS   PRESENTATIONPRESENTATION GROUP MEMBERS : DRISHTI (1838) VANDANA (1831) DIMPY(1833)
  • 2.  Operations with Matrices  Properties of Matrix Operations  The Inverse of a Matrix MATRICES
  • 3.  Matrix: A=[ aij ]= [ a11 a12 a13 ⋯ a1n a21 a22 a23 ⋯ a2n a31 a32 a33 ⋯ a3n ⋮ ⋮ ⋮ ⋮ am1 am2 am3 ⋯ amn ]m×n ∈ M m×n (i, j)-th entry: aij row: m column: n size: m×n
  • 4.  i-th row vector ri=[ai1 ai2 ⋯ ain ]  j-th column vector c j= [ c1j c2j ⋮ cmj ] row matrix column matrix  Square matrix: m = n
  • 5.  Diagonal matrix: A=diag (d1 ,d2 ,⋯ ,dn) = [ d1 0 … 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]∈M n×n  Trace: If A=[aij ]n×n Then Tr ( A )=a11 +a22 +⋯+ann
  • 6. Ex: A=[1 2 3 4 5 6 ] = [r1 r2 ] =[c1 c2 c3 ] r1=[1 2 3 ], r2=[4 5 6 ] c1=[1 4], c2=[2 5], c3=[3 6] A=[1 2 3 4 5 6 ] ⇒ ⇒
  • 7. If A=[aij ]m×n , B=[bij ]m×n  Equal matrix: Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n  Ex 1: (Equal matrix) A=[1 2 3 4 ] B=[a b c d ] If A=B Then a=1, b=2, c=3, d=4
  • 8.  Matrix addition: If A=[aij ]m×n , B=[bij ]m×n Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n  Ex 2: (Matrix addition) [−1 2 0 1 ]+[ 1 3 −1 2 ]=[−1+1 2+3 0−1 1+2 ]=[0 5 −1 3 ] [1 −3 −2]+ [−1 3 2 ]= [1−1 −3+3 −2+2] = [0 0 0]
  • 9.  Matrix subtraction: A−B=A+(−1)B  Scalar multiplication: If A=[aij ]m×n , c: scalar  Ex 3: (Scalar multiplication and matrix subtraction) A= [1 2 4 −3 0 −1 2 1 2 ] B= [2 0 0 1 −4 3 −1 3 2 ] Find (a) 3A, (b) –B, (c) 3A – B Then cA=[caij ]m×n
  • 10. (a) 3A=3 [1 2 4 −3 0 −1 2 1 2 ] (b) −B=(−1) [2 0 0 1 −4 3 −1 3 2 ] (c) 3A−B= [3 6 12 −9 0 −3 6 3 6 ]− [2 0 0 1 −4 3 −1 3 2 ] Sol: = [3 6 12 −9 0 −3 6 3 6 ]= [ 3(1) 3(2) 3(4) 3(−3) 3(0) 3(−1) 3(2) 3(1) 3(2) ] = [−2 0 0 −1 4 −3 1 −3 −2 ] = [ 1 6 12 −10 4 −6 7 0 4 ]
  • 11.  Matrix multiplication: If A=[aij ]m×n , B=[bij ]n× p Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p cij=∑ k=1 n aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj where  Notes: (1) A+B = B+A, (2)AB≠BA Size of AB [ a11 a12 ⋯ a1n ⋮ ⋮ ⋮ ai1 ai2 ⋯ ain ⋮ an1 ⋮ an2 ⋯ ⋮ ann ][ b11 ⋯ b1j ⋯ b1n b21 ⋮ b2j ⋯ b2n ⋮ ⋮ ⋮ ⋮ bn1 ⋯ bnj ⋯ bnn ]= [ci1 ci2 ⋯ cij ⋯ cin ]
  • 12. A= [−1 3 4 −2 5 0 ] B=[−3 2 −4 1 ]  Ex 4: (Find AB) Sol: AB= [ (−1)(−3)+(3)(−4) (−1)(2)+(3)(1) (4)(−3)+(−2)(−4) (4)(2)+(−2)(1) (5)(−3)+(0)(−4) (5)(2)+(0)(1) ] = [−9 1 −4 6 −15 10 ]
  • 13.  Matrix form of a system of linear equations: { a11 x1 +a12 x2+⋯+a1n xn =b1 a21 x1 +a22 x2+⋯+a2n xn =b2 ⋮ am1 x1 +am2 x2+⋯+amn xn =bm }= = = A x b m linear equations Single matrix equation Ax =b m×nn×1 m×1[ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ][ x1 x2 ⋮ xn ]= [ b1 b2 ⋮ bm ] ⇓
  • 14.  Partitioned matrices: A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [A11 A12 A21 A22 ] submatrix A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [ r1 r2 r3 ] A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]=[c1 c2 c3 c4 ]
  • 15.  Three basic matrix operators: (1) matrix addition (2) scalar multiplication (3) matrix multiplication  Zero matrix: 0m×n  Identity matrix of order n: I n
  • 16. Then (1) A+B = B + A (2) A + ( B + C ) = ( A + B ) + C (3) ( cd ) A = c ( dA ) (4) 1A = A (5) c( A+B ) = cA + cB (6) ( c+d ) A = cA + dA If A,B,C ∈M m×n , c,d :scalar  Properties of matrix addition and scalar multiplication:
  • 17. If A∈Mm×n , c :scalar Then (1) A+0m×n =A (2) A+(− A)=0m×n (3) cA=0m×n ⇒ c= 0 or A= 0m× n  Notes: (1) 0m×n: the additive identity for the set of all m×n matrices (2) –A: the additive inverse of A  Properties of zero matrices:
  • 18. If A= [ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ]∈M m×n Then AT = [ a11 a21 ⋯ am1 a12 a22 ⋯ am2 ⋮ ⋮ ⋮ ⋮ a1n a2n ⋯ amn ]∈ M n×m  Transpose of a matrix : Transpose is the interchange of rows and columns of a given matrix.
  • 19. A=[2 8] (b) A= [1 2 3 4 5 6 7 8 9 ] (c ) A= [0 1 2 4 1 −1] Sol: (a) A=[2 8] ⇒ A T =[2 8 ] (b) A= [1 2 3 4 5 6 7 8 9 ] ⇒ AT = [1 4 7 2 5 8 3 6 9 ](c ) A= [0 1 2 4 1 −1] ⇒ AT =[0 2 1 1 4 −1] (a)  Ex 8: (Find the transpose of the following matrix)
  • 20. (1) ( A T ) T =A (2 ) ( A+B) T =A T +B T (3) (cA)T =c ( AT ) (4 ) ( AB ) T =B T A T  Properties of transposes
  • 21. A square matrix A is symmetric if A = AT  Ex: If A= [1 2 3 a 4 5 b c 6 ] is symmetric, find a, b, c? A square matrix A is skew-symmetric if AT = –A  Skew-symmetric matrix: Sol: A= [1 2 3 a 4 5 b c 6 ] AT = [1 a b 2 4 c 3 5 6 ] a= 2,b= 3,c= 5 A=A T ⇒  Symmetric matrix:
  • 22. If A= [0 1 2 a 0 3 b c 0 ] is a skew-symmetric, find a, b, c?  Note: AAT is symmetric Pf: (AAT )T =( AT )T AT =AAT AA∴ T is symmetric Sol: A= [0 1 2 a 0 3 b c 0 ] −AT = [0 −a −b −1 0 −c −2 −3 0 ] A=−A T a=−1,b=−2,c=−3⇒  Ex:
  • 23. ab = ba (Commutative law for multiplication) (1)If m≠ p, then AB is defined ,BA is undefined . (3)If m=p=n,then AB∈M m×m ,BA∈ M m×m (2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the same) (Sizes are the same, but matrices are not equal)  Real number:  Matrix: AB≠BA m×nn× p Three situations:
  • 24. A=[1 3 2 −1] B=[2 −1 0 2 ] Sol: AB=[1 3 2 −1 ][2 −1 0 2 ]=[2 5 4 −4 ]  Note: AB≠BA BA=[2 −1 0 2 ][1 3 2 −1]=[0 7 4 −2 ]  Ex 4: Sow that AB and BA are not equal for the matrices. and
  • 25. (Cancellation is not valid) ac=bc, c≠0 ⇒ a=b (Cancellation law)  Matrix: AC=BC C ≠0 (1) If C is invertible, then A = B  Real number: A≠B(2) If C is not invertible, then
  • 26. 26 /61 A=[1 3 0 1 ], B=[2 4 2 3 ], C=[ 1 −2 −1 2 ] Sol: AC=[1 3 0 1 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ] So AC=BC But A≠B BC=[2 4 2 3 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ]  Ex 5: (An example in which cancellation is not valid) Show that AC=BC Elementary Linear Algebra: Section 2.2, p.65
  • 27. A∈M n×n If there exists a matrix B∈ M n× n such that AB=BA=In ,  Note: A matrix that does not have an inverse is called noninvertible (or singular). Consider Then (1) A is invertible (or nonsingular) (2) B is the inverse of A  Inverse matrix:
  • 28. If B and C are both inverses of the matrix A, then B = C. Pf: AB=I C (AB)=CI (CA)B=C IB=C B=C Consequently, the inverse of a matrix is unique.  Notes:(1) The inverse of A is denoted by A −1 (2) AA −1 =A −1 A=I  Thm 2.7: (The inverse of a matrix is unique)
  • 29. [A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1 ]  Ex 2: (Find the inverse of the matrix) A=[ 1 4 −1 −3 ] Sol: AX=I [ 1 4 −1 −3 ][x11 x12 x21 x22 ]=[1 0 0 1 ] [ x11+4x21 x12+4x22 −x11−3x21 −x12−3x22 ]=[1 0 0 1 ]  Find the inverse of a matrix by Gauss-Jordan Elimination:
  • 30. (1)⇒[ 1 4 ⋮ 1 −1 −3 ⋮ 0 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −3 0 1 ⋮ 1 ] (2)⇒[1 4 ⋮ 0 −1 −3 ⋮ 1 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −4 0 1 ⋮ 1 ] ⇒ x11=−3, x21=1 ⇒ x12=−4, x22=1 X=A−1 = [x11 x12 x21 x22 ]=[−3 −4 1 1 ] ( AX=I=AA-1 ) Thus ⇒ x11 + 4x21 1 −x11 − 3x21 0 (1) x12 + 4x22 0 −x12 − 3x22 1 (2)
  • 31. ⃗r12 (1) ,r 21 (−4) [1 0 ⋮ −3 −4 0 1 ⋮ 1 1 ]¿ A I I A−1 ¿¿¿ If A can’t be row reduced to I, then A is singular.  Note:
  • 32. A= [1 −1 0 1 0 −1 −6 2 3 ] ⃗R2−R1 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 −6 2 3 ⋮ 0 0 1] Sol: [A ⋮ I ] = [1 −1 0 1 0 −1 −6 2 3 ⋮ ⋮ ⋮ 1 0 0 0 1 0 0 0 1 ] ⃗R3+6R1 [1 −1 0 0 1 −1 0 −4 3 ⋮ ⋮ ⋮ 1 0 0 −1 1 0 6 0 1 ] ⃗−R3 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 −1 ⋮ 2 4 1 ]  Ex 3: (Find the inverse of the following matrix)
  • 33. ⃗R2+R3 [1 −1 0 ⋮ 1 0 0 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2 [1 0 0 ⋮ −2 −3 −1 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −1 −4 −1 ] So the matrix A is invertible, and its inverse is A−1 = [−2 −3 −1 −3 −3 −1 −2 −4 −1 ] = [I ⋮ A−1 ]  Check: AA−1 =A−1 A=I
  • 34. (1) A 0 =I (2) A k =AA⋯A⏟ k factors (k> 0) (3) Ar ⋅As =Ar+s r,s:integers ( A r ) s =A rs (4) D= [ d1 0 ⋯ 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]⇒ Dk = [ d1 k 0 ⋯ 0 0 d2 k ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ dn k ]  Power of a square matrix:
  • 35. If A is an invertible matrix, k is a positive integer, and c is a scalar not equal to zero, then (1) A −1 is invertible and ( A −1 ) −1 =A (2) Ak is invertible and ( Ak )−1 =A−1 A−1 ⋯A−1 ⏟ k factors =( A−1 )k =A−k (3) c A is invertible and (cA)−1 = 1 c A−1 ,c≠0 (4)A T is invertible and ( A T ) −1 =(A −1 ) T  Thm 2.8 : (Properties of inverse matrices)
  • 36.  Thm 2.9: (The inverse of a product) If A and B are invertible matrices of size n, then AB is invertible and (AB) −1 =B −1 A −1 If AB is invertible, then its inverse is unique. So (AB)−1 =B−1 A−1 Pf: (AB)(B−1 A−1 )=A( BB−1 ) A−1 =A(I )A−1 =( AI) A−1 =AA−1 =I (B −1 A −1 )( AB)=B −1 ( A −1 A)B=B −1 (I )B=B −1 ( IB)=B −1 B=I  Note: (A1 A2 A3⋯An ) −1 =An −1 ⋯A3 −1 A2 −1 A1 −1
  • 37.  Thm 2.10 (Cancellation properties) If C is an invertible matrix, then the following properties hold: (1) If AC=BC, then A=B (Right cancellation property) (2) If CA=CB, then A=B (Left cancellation property) Pf: AC=BC (AC )C−1 =(BC)C−1 A(CC−1 )=B(CC−1 ) AI=BI A=B (C is invertible, so C -1 exists)  Note:If C is not invertible, then cancellation is not valid.
  • 38.  Thm 2.11: (Systems of equations with unique solutions) If A is an invertible matrix, then the system of linear equations Ax = b has a unique solution given by x=A −1 b Pf: ( A is nonsingular) Ax=b A−1 Ax=A−1 b Ix=A−1 b x=A−1 b This solution is unique. If x1 and x2 were two solutions of equation Ax=b . then Ax1 =b=Ax2 ⇒ x1=x2 (Left cancellation property)