SlideShare ist ein Scribd-Unternehmen logo
1 von 45
Asian Pharmaceuticals Pvt.
Ltd.
• Validation is the art of designing and practicing the designed steps alongside with the
documentation.
• Validation and quality assurance will go hand in hand, ensuring the through quality for
the products.
• Validation is a concept that has evolved in united states in 1978.
• Once the concept of being able to predict process performance to meet user
requirements evolved, FDA regulatory officials established that there was a legal
basis for requiring process validation.
• The cGMP regulations for finished pharmaceuticals, 21 CFR 210 and 211, were
promulgated to enforce the requirements of the act.
HISTORY OF VALIDATION
The concept of validation was first proposed by two FDA officials, Ted Byers and Bud
Loftus, in the mid 1970’s in order to improve the quality of pharmaceuticals.
It was proposed in direct response to several problems in the sterility of large volume
parenteral market. The first validation activities were focused on the processes involved in
making these products, but quickly spread to associated process of pharmaceutical.
WHO Definition
“The documented act of proving that any procedure, process, equipment, material, activity or
system actually leads to expected result.”
US FDA Definition
“Process validation is establishing documented evidence which provides a high degree of
assurance that a specified process will consistently produce a product meeting its pre-
determined specifications and quality characteristics.”
ICH Definition
“Process Validation is the means of ensuring and providing documentary evidence that
processes within their specified design parameters are capable of repeatedly and reliably
producing a finished product of the required quality.”
NEED OF PHARMACEUTICAL VALIDATION
There are several important reasons for validating a product and/or process.
• First, manufacturers are required by law to conform to cGMP regulations.
• Second, good business dictates that a manufacturer avoids the possibility of
rejected or recalled batches.
• Third, validation helps to ensure product uniformity, reproducibility, and quality.
Validation in itself does not improve processes but confirms that the processes have been
properly developed and are under control.
Assurance of Quality
Without validation, a process that is well understood and in a state the confidence, control
of quality of the product manufactured cannot be assured without validation.
Cost Reduction
Since each and every step in validation is monitored constantly there lesser rejects and
reworks which would lead to an effective cost reduction.
Government Regulation
Validation is considered to be an integral part of GMPs. Worldwide compliance with
validation requirements is necessary for obtaining approval to manufacture and to
introduce new products.
SCOPE OF VALIDATION
Pharmaceutical Validation is a vast area of work and it practically covers every aspect of
pharmaceutical processing activities, hence defining the Scope of Validation becomes a
really difficult task. However, a systematic look at the pharmaceutical operations will point
out at least the following areas for pharmaceutical validation;
1. Analytical
2. Instrument Calibration
3. Process Utility services
4. Raw materials
5. Packaging materials
6. Equipment
7. Facilities
8. Manufacturing operations
9. Product Design
10. Cleaning
11. Operators
IMPORTANCE OF VALIDATION
1. Assurance of quality.
2. Time bound.
3. Process optimisation.
4. Reduction of quality cost.
5. Nominal mix-ups, and bottle necks.
6. Minimal batch failures, improved efficiently and productivity.
7. Reduction in rejections.
8. Increased output.
9. Avoidance of capital expenditures.
10. Fewer complaints about process related failures.
11. Reduced testing in process and in finished goods.
12. More rapid and reliable start-up of new equipments.
13. Easier scale-up form development work.
14. Easier maintenance of equipment.
15. Improved employee awareness of processes.
16. More rapid automation.
17. Government regulation (Compliance with validation requirements is necessary for
obtaining approval to manufacture and to introduce new products).
PLANNING FOR VALIDATION
All validation activities should be planned. The key elements of a validation programme
should be clearly defined and documented in a validation master plan (VMP) or equivalent
documents.
•The VMP should be a summary document, which is brief, concise and clear.
•The VMP should contain data on at least the following:
1. Validation policy.
2. Organisational structure of validation activities.
3. Summary of facilities, systems, equipment and processes to be validated.
4. Documentation format: The format to be used for protocols and reports.
5. Planning and scheduling.
6. Change control.
7. Reference to existing document.
8. Incase of large projects, it may be necessary to create separate validation master plans.
VALIDATION SET UP
(To establish the desired attributes.)
•Include physical as well as chemical characteristics.
•Acceptance specifications for the product should be established inorder to attain uniformity
and consistently the desired product attributes, and the specifications should be derived from
testing and challenge of the system on sound statistical basis during the initial development
and production phases and continuing through subsequent routine production.
•The process and equipment should be selected to achieve the product specification. For
example; design engineers; production and quality assurance people may all be involved.
•The process should be defined with a great deal of specificity and each step of the process
should be challenged to determine its adequacy.
•These aspects are important inorder to assure products of uniform quality, purity and
performance.
Validation Team and Responsibilities
Department Designation Responsibility
Research and
development
(R&D)
Executive/Officer To coordinate the entire validation process by scheduling
meetings and discussions with production, quality control
and quality assurance. Preparation of preliminary
validation protocol, master formula record, monitoring
the process, compiling and analyzing data and test results
and preparing the final report. To review the preliminary
validation documents.
Quality
assurance
Officer To coordinate the entire validation process by scheduling
meetings and discussions with the team.
Preparation of validation protocol, monitoring the
process, compiling and analyzing data and test results and
preparing the final report. To review of validation
documents.
Production Officer To participate in performing the validation steps during
manufacturing processes. To assist in collection of data.
Quality
control
Officer To test and report the test results.
Quality
assurance
General manager
Quality assurance
To approve the process validation protocol and report. To
review of validation documents. To approve the process.
Four Major Advantages of Validation Namely
1) Assurance of Quality
Validation is an extension of the concepts of quality assurance since close control of the
process is necessary to assure product quality and it is not possible to control a process
properly without thorough knowledge of the capabilities of that process without validated
and controlled processes, it is impossible to produce quality products consistently. End
product testing, in the absence of validation, gives little assurance of quality for variety
reasons, among which are;
• Very limited sample size.
• The limited number of tests performed on a sample. For example, it is impractical to test
for all potential impurities or contaminants.
• The limited sensitivity of the test.
2) Process Optimization
The optimization of a process for maximum efficiency, while maintaining quality standards, is
a consequence of validation. Literal meaning of word to optimize is “To make as effective,
perfect or useful as possible”. The optimization of the facility, equipment, systems, and
processes results in a product that meets quality requirements at the lowest cost.
4) Safety
Validation can also result in increased operation safety. e.g.: gauges used on equipment that
designed to operate at certain temperature and pressures must be reliable i.e. they must be
calibrated.
3) Reduction of Quality Costs
Quality costs are divided into four categories. They are:
a. Preventive costs.
b. Appraisal costs. (estimate the value or cost)
c. Internal failure costs.
d. External failure costs.
e.g.: of internal failure costs: Any validated and controlled process will result in fewer
internal failures like a. Fewer rejects
b. Reworks
c. Re-tests
d. Re-inspection
Process validation makes it possible to do the job right the first time. Also, a
scientifically studied and controlled process makes it unlikely that defective products will be
dispatched to market thus no recalls or market complaints.
TYPES/METHODS OF VALIDATION
PROSPECTIVE VALIDATION
•This validation usually carried out prior to distribution either of a new product or a product
made under a revised manufacturing process.
•Performed on at least three successive production-sizes (Consecutive batches).
•The validation protocol is executed before the process is put into commercial use.
•During the product development phase, the production process should be categorized into
individual steps.
•Each step should be evaluated on the basis of experience or theoretical considerations to
determine the critical parameters that may affect the quality of the finished product.
•All equipment, production environment and the analytical testing methods to be used should
have been fully validated. Master batch documents can be prepared only after the critical
parameters of the process have been identified and machine settings, component
specifications and environmental conditions have been determined.
•Using this defined process a series of batches should be produced.
•It is generally considered acceptable that three consecutive batches/runs within the finally
agreed parameters, giving product of the desired quality would constitute a proper validation
of the process.
• Some considerations should be exercised when selecting the process validation strategy.
Amongst these should be the use of different lots of active raw materials and major excipients,
batches produced on different shifts, the use of different equipment and facilities dedicated for
commercial production, operating range of the critical processes, and a thorough analysis of
the process data in case of Requalification and Revalidation.
•During the processing of the validation batches, extensive sampling and testing should be
performed on the product at various stages, and should be documented comprehensively.
Detailed testing should also be done on the final product in its package.
•Upon completion of the review, recommendations should be made on the extent of
monitoring and the inprocess controls necessary for routine production.
•These should be incorporated into the Batch manufacturing and packaging record or into
appropriate standard operating procedures.
•Limits, frequencies and action to be taken in the event of the limits being exceeded should
be specified.
CONCURRENT VALIDATION
•It is similar to prospective, except the operating firm will sell the product during the
qualification runs, to the public at its market price, and also similar to retrospective
validation.
• This validation involves in-process monitoring of critical processing steps and product
testing. This helps to generate and documented evidence to show that the production process
is in a state of control.
RETROSPECTIVE VALIDATION
•It is defined as the established documented evidence that a system does what it purports to
do on the review and analysis of historical information.
•Retrospective validation is only acceptable for well established processes and will be
inappropriate where there have been recent changes in the composition of the product,
operating procedures or equipment.
For retrospective validation, generally data from ten to thirty consecutive batches should be
examined to access process consistency, but fewer batches may be examined if justified.
Some of the essential elements for Retrospective Validation
Batches manufactured for a defined period (minimum of 10 last consecutive batches).
Number of lots released per year.
• Batch size/strength/manufacturer/year/period.
• Master manufacturing/packaging documents.
• Current specifications for active materials/finished products.
• List of process deviations, corrective actions and changes to manufacturing documents.
• Data for stability testing for several batches.
REVALIDATION
Re-validation provides the evidence that changes in a process and/or the process environment
that are introduced do not adversely affect process characteristics and product quality.
Revalidation becomes necessary in certain situations. Some of the changes that require
validation are as follows:
• Changes in raw materials (physical properties such as density, viscosity, particle size
distribution and moisture etc that may affect the process or product).
• Changes in the source of active raw material manufacturer.
• Changes in packaging material (primary container/closure system)
• Changes in the process (e.g., mixing time, drying temperatures and batch size)
• Changes in the equipment (e.g., addition of automatic detection system). Changes of
equipment which involve the replacement of equipment on a “like for like” basis would not
normally require revalidation except that this new equipment must be qualified.
• Changes in the plant/facility.
A decision not to perform revalidation studies must be fully justified and documented.
BASIC CONCEPT OF PROCESS VALIDATION
•It is the most important and recognized parameters of cGMPs.
•Quality system (QS) regulation.
•Standardization of the validation documents that must be submitted with the submission file
for marketing authorization.
•Assist manufacturers in understanding quality management system (QMS) requirements.
THE BASIC PRINCIPLE FOR VALIDATION MAY BE STATED AS FOLLOWS:
1. Installation Qualification (IQ)
2. Operational Qualification (OQ)
3. Performance Qualification (PQ)
4. Re-Qualification
IQ CONSIDERATIONS ARE:
1. Equipment design features (i.e. material of construction clean ability, etc.)
2. Installation conditions (wiring, utility, functionality, etc.)
3. Calibration, preventative maintenance, cleaning schedules.
4. Safety features.
5. Supplier documentation, prints, drawings and manuals.
6. Software documented.
7. Spare parts list.
8. Environmental conditions (such as clean room requirements, temperature, and humidity).
OQ CONSIDERATIONS INCLUDE:
1. Process control limits (time, temperature, pressure, line speed, setup conditions, etc.)
2. Software parameters.
3. Raw material specifications
4. Process operating procedures.
5. Material handling requirements.
6. Process change control.
7. Training.
8. Short term stability and capability of the process, (latitude studies or control charts).
9. Potential failure modes, action levels and worst-case conditions.
10. The use of statistically valid techniques such as screening experiments to optimize the
process can be used during this phase.
PQ CONSIDERATIONS INCLUDE:
1. Actual product and process parameters and procedures established in OQ.
2. Acceptability of the product.
3. Assurance of process capability as established in OQ.
4. Process repeatability, long term process stability.
RE – QUALIFICATION
Modification to, or relocation of equipment should follow satisfactory review and
authorization of the documented change proposal through the change control procedure.
This formal review should include consideration of re-qualification of the equipment.
Minor changes or changes having no direct impact on final or in-process product quality
should be handled through the documentation system of the preventive maintenance
program.
PREREQUISITE OF PROCESS VALIDATION
1. Process Development Designee shall review the product development report, data
from pilot scale, scale up batch and proposed master formula document of product
intended for manufacturing.
2. Process Development Designee shall review/ensure the availability analytical method
transfer report to the plant and plant preparedness for conducting validation testing and
routine testing; function shall co-ordinate with QC/QA in this regards.
3. Process Development Designee shall prepare commercial/exhibit batch production and
control records which include the operational limits and overall strategy for process
control based on development report.
4. The Process Validation is performed after the facility, utility, and equipment, and
laboratory test methods have been validated and released fir process validation activities.
Where compendia method is used only limited analytical method validation shall be
conducted.
5. All raw material and packaging material specification shall be from approved vendors
and shall be approved by quality control.
6. All the equipment and instrument to be utilized are calibrated and preventive
maintenance programs are in place.
7. Relevant SOPs are in place and training is completed on equipment, operation,
manufacturing instruction and sampling strategy.
8. Key process steps and process variables are identified and their operating ranges have
been established.
9. All the master formula, manufacturing instruction, packaging instruction, testing
procedure and specification shall be approved before execution of process validation
batches.
10.The cleaning of the area and equipment has been completed prior to the initiation
of process validation.
11.The validation team and operational team shall be trained from process engineer.
STRATEGY FOR INDUSTRIAL PROCESS VALIDATION OF SOLID
DOSAGE FORMS
The strategy selected for process validation should be simple and straightforward. The
following five points gives strategy for process validation.
1. The use of different lots of raw materials should be included. i.e., active drug substance
and major excipients.
2. Batches should be run in succession and on different days and shifts (the latter
condition, if appropriate).
3. Batches should be manufactured in the equipment and facilities designated for eventual
commercial production.
4. Critical process variables should be set within their operating ranges and should not
exceed their upper and lower control limits during process operation. Output responses
should be well within finished product specifications.
5. Failure to meet the requirements of the Validation protocol with respect to process input
and output control should be subjected to process requalification and subsequent
revalidation.
REASON FOR PROCESS VALIDATION
The possible reason of performing process validation may include:
1. New product or existing products as per SUPAC (Scale-Up and Post-Approval
Changes) changes.
2. Change in site of manufacturing.
3. Change in batch size.
4. Change in equipment.
5. Change in process existing products.
6. Change in composition or components.
7. Change in the critical control parameters.
8. Change in vendor of API or critical excipient.
9. Change in specification on input material.
10. Abnormal trends in quality parameters of product through review during Annual
Product Review (APR).
11. Trend of Out of Specification (OOS) or Out of Trend (OOT) in consecutive batches.
BENEFITS OF PROCESS VALIDATION
1. Consistent through output.
2. Reduction in rejections and reworks.
3. Reduction in utility cost.
4. Avoidance of capital expenditures.
5. Fewer complaints about process related failure.
6. Reduced testing in process and finished goods.
7. More rapid and accurate investigations into process deviation.
8. More rapid and reliable start-up of new equipment.
9. Easier scale-up from development work.
10. Easier maintenance of equipment.
11. Improve employee awareness of processes.
12. More rapid automation.
STAGES OF PROCESS VALIDATION
Stage 1 – Process Design
It covers all activities relating to product research and development, formulation,
pilot batch studies, scale-up studies, transfer of technology to commercial scale batches,
establishing stability conditions, storage and handling of in-process and finished dosage
forms, equipment qualification, installation qualification, master production documents,
operational qualification, process capability.
Stage 2 – Process Qualification
It confirms that all established limits of the Critical Process Parameters are valid and
that satisfactory products can be produced even under “worst case” conditions.
Stage 3 – Continued Process Verification
The validation maintenance stage requires frequent review of all process related
documents, including validation audit reports to assure that there have been no changes,
deviations, failures, modifications to the production process, and that all SOPs have been
followed, including change control procedures.
VALIDATION PROTOCOL
1. Objectives, scope of coverage of the validation study.
2. Validation team membership, their qualifications and responsibilities.
3. Type of validation: prospective, concurrent, retrospective, re-validation.
4. Number and selection of batches to be on the validation study.
5. A list of all equipment to be used; their normal and worst case operating parameters.
6. Outcome of IQ, OQ for critical equipment.
7. Requirements for calibration of all measuring devices.
8. Critical process parameters and their respective tolerances.
9. Process variables and attributes with probable risk and prevention shall be captured.
10.Description of the processing steps: copy of the master documents for the product.
11. Sampling points, stages of sampling, methods of sampling, sampling plans.
12. Statistical tools to be used in the analysis of data.
13. Training requirements for the processing operators.
14. Validated test methods to be used in in process testing and for the finished product.
15. Specifications for raw and packaging materials and test methods.
16. Forms and charts to be used for documenting results.
17. Format for presentation of results, documenting conclusions and for approval of
study results.
VALIDATION REPORT
A written report should be available after completion of the validation. If found acceptable, it
should be approved and authorized (signed and dated). The report should include at least the
following:
1. Title and objective of study.
2. Reference to protocol.
3. Details of material.
4. Equipment.
5. Programmes and cycles used.
6. Details of procedures and test methods.
7. Results (compared with acceptance criteria).
8. Recommendations on the limit and criteria to be applied on future basis.
ANALYTICAL METHOD VALIDATION
LIST OF CONTENTS
1. Objective
2. Published guidance
3. Types of analytical method to be validated
4. Considerations prior to method validation
5. Typical analytical performance
6. Characteristics used in method validation
7. Revalidation
8. Possible questions
PUBLISHED GUIDANCES
• ICH-Q2A “Text on Validation of Analytical Procedure:(1994)
• ICH-Q2B “Validation of Analytical Procedures: Methodology: (1995)
• CDER “Reviewer Guidance: Validation of Chromatographic Method” (1994)
• CDER “Submitting Samples and Analytical Data for Method Validations” (1987)
• CDER Draft “Analytical Procedures and Method Validation” (2000)
• CDER “Bioanalytical Method Validation for Human Studies” (1999)
• USP<1225> “Validation of Compendial Methods” (current revision)
TYPES OF ANALYTICAL PROCEDURES TO BE VALIDATED
• Identification tests.
• Quantitative tests for impurities' content.
• Limit tests for the control of impurities.
• Quantitative tests of the active moiety in samples of drug.
• substance or drug product or other selected component(s) in the drug product.
CONSIDERATION PRIOR TO METHOD VALIDATION
• Suitability of Instrument
Status of Qualification and Calibration
• Suitability of Materials
Status of Reference Standards, Reagents, etc.
• Suitability of Analyst
Status of Training and Qualification Records
• Suitability of Documentation
Written analytical procedure and proper approved protocol with pre-established
acceptance criteria.
EXAMPLES OF METHODS THAT REQUIRE VALIDATION DOCUMENTATION
• CHROMATOGRAPHIC METHODS
• SPECTROPHOTOMETRIC METHODS
• CAPILLARY ELECTROPHORESIS METHODS
• PARTICLE SIZE ANALYSIS METHODS
• DISSOLUTION METHODS
• TITRATION METHODS
• AUTOMATED ANALYTICAL METHODS
ANALYTICAL METHOD VALIDATION
Validation of an analytical method is the process by which it is established, by laboratory
studies, that the performance characteristics of the method meet the requirements for the
intended analytical applications.
TYPICALANALYTICAL PERFORMANCE CHARACTERISTICS USED IN
METHOD VALIDATION
• Specificity (Selectivity)
• Linearity
• Range
• Accuracy
• Precision
• Detection Limit
• Quantitation Limit
• Robustness
• System Suitability Testing
SPECIFICITY
Specificity is the ability to assess unequivocally the analyte in presence of components which may
be expected to be present.
DETERMINATION
• Identification tests
• Assay and impurity test(s)
a. Impurities are available
b. Impurities are not available
LINEARITY
Linearity of an analytical procedure is its ability (within a given range) to obtain test results which
are directly proportional to the concentration (amount) of analyte in the sample.
DETERMINATION
Linearity should be evaluated by visual inspection of a plot of signals as a function of
analyte concentration or content.
NOTE
For the establishment of linearity, a minimum of five concentrations is recommended.
RANGE
Range of an analytical procedure is the interval between the upper and lower concentration
(amounts) of analyte in the sample (including these concentrations) for which it has been
demonstrated that the analytical procedure has a suitable level of precision, accuracy and
linearity.
DETERMINATION
The specified range is normally derived from linearity studies and depends on the intended
application of the procedure.
ACCURACY
Accuracy of an analytical method is the closeness of test results obtained by that method to the
true value.
DETERMINATION
Accuracy should be established across the specified range of the analytical procedure.
ASSAY
a. Drug Substance
b. Drug Product
IMPURITIES (QUANTITATION)
NOTE
Accuracy should be assessed using a minimum of 9 determinations over a minimum of 3
concentration levels covering the specified range (i.e., three concentrations and three
replicates of each).
PRECISION
Precision of an analytical method is the degree of agreement among individual test results when
the method is applied repeatedly to multiple samplings of a homogenous sample.
DETERMINATION
A sufficient number of aliquots of a homogeneous sample are assayed to be able to calculate
statistically valid estimates of standard deviation or relative standard deviation.
• Repeatability
• Intermediate precision
• Reproducibilty
DETECTION LIMIT
Detection limit of an individual analytical procedure is the lowest amount of analyte in a sample
which can be detected but not necessarily quantitated, under the stated experimental conditions.
DETERMINATION
Several approaches for determining the detection limit are possible, depending on whether the
procedure is a non-instrumental or instrumental.
• Based on visual examination
• Based on signal to noise ratio
QUANTITATION LIMIT
Quantitation limit of an individual analytical procedure is the lowest amount of analyte in a
sample which can be quantitatively determined with suitable precision and accuracy.
DETERMINATION
Several approaches for determining the detection limit are possible, depending on whether the
procedure is a non-instrumental or instrumental.
• Based on visual examination
• Based on signal to noise ratio
RUGGEDNESS
Ruggedness of an analytical method is the degree of reproducibility of test results obtained by
the analysis of the same samples under a variety of conditions, such as different laboratories
different analyst, different instruments, different lots of reagent, different elapsed assay times,
different assay temperatures, different days, etc.
ROBUSTNESS
Robustness of an analytical procedure is a measure of its capacity to remain unaffected by
small, but deliberate variations in method parameters and provides an indication of its
reliability during normal usage.
DETERMINATION
The evaluation of robustness should be considered during the development phase and depends
on the type of procedure under study.
SYSTEM SUITABILITY TESTING
System suitability testing is an integral part of many analytical procedures. The tests are based
on the concept that the equipment, electronics, analytical operations and samples to be
analyzed constitute an integral system that can be evaluated as such.
Recommended Validation Characteristics of the Various Types of Tests
REVALIDATION MAY BE NECESSARY IN THE FOLLOWING CIRCUMSTANCES:
• changes in the synthesis of the drug substance;
• changes in the composition of the finished product;
• changes in the analytical procedure;
The degree of revalidation required depends on the nature of the changes. Certain other
changes may require validation as well.
VALIDATION BY DHIRAJ SHRESTHA

Weitere ähnliche Inhalte

Was ist angesagt?

Auditing in Solid Oral Dosage Form Production Department
Auditing in Solid Oral Dosage Form Production DepartmentAuditing in Solid Oral Dosage Form Production Department
Auditing in Solid Oral Dosage Form Production DepartmentSANJAY KUMAR PUROHIT
 
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTER
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTERQUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTER
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTERUshaKhanal3
 
Vendor qualification
Vendor qualificationVendor qualification
Vendor qualificationShihabPatel
 
Validation of utility system (water system)
Validation of utility system (water system)Validation of utility system (water system)
Validation of utility system (water system)ShameerAbid
 
Pharmaceutical principles of QA, GMP and QC
Pharmaceutical principles of QA, GMP and QCPharmaceutical principles of QA, GMP and QC
Pharmaceutical principles of QA, GMP and QCDominic Parry
 
Deviation and root cause analysis in Pharma
Deviation and root cause analysis in PharmaDeviation and root cause analysis in Pharma
Deviation and root cause analysis in PharmaSubhash Sanghani
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validationAtul Adhikari
 
cGMP Guidelines according to USFDA
cGMP Guidelines according to USFDAcGMP Guidelines according to USFDA
cGMP Guidelines according to USFDAMANIKANDAN V
 
Good documentation practice
Good documentation practiceGood documentation practice
Good documentation practicePharmaceutical
 
Processs validation
Processs validationProcesss validation
Processs validationavinashmane
 
Qualification of tablet compression (machine) & Capsule filling machine
Qualification of tablet compression (machine) & Capsule filling machineQualification of tablet compression (machine) & Capsule filling machine
Qualification of tablet compression (machine) & Capsule filling machineYash Menghani
 
Validation of equipment copy
Validation of equipment   copyValidation of equipment   copy
Validation of equipment copysneha chavan
 
Process validation and its types
Process validation and its typesProcess validation and its types
Process validation and its typesAnjali9410
 
Qualification of manufacturing equipment.
Qualification of manufacturing equipment.Qualification of manufacturing equipment.
Qualification of manufacturing equipment.KhushbooKunkulol
 
QUALIFICATION OF MANUFACTURING EQUIPMENTS
QUALIFICATION OF MANUFACTURING EQUIPMENTSQUALIFICATION OF MANUFACTURING EQUIPMENTS
QUALIFICATION OF MANUFACTURING EQUIPMENTSANKUSH JADHAV
 
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptx
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptxqualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptx
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptxBhumiSuratiya
 

Was ist angesagt? (20)

Auditing in Solid Oral Dosage Form Production Department
Auditing in Solid Oral Dosage Form Production DepartmentAuditing in Solid Oral Dosage Form Production Department
Auditing in Solid Oral Dosage Form Production Department
 
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTER
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTERQUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTER
QUALIFICATION OF TAP DENSITY TESTER & DISINTEGRATION TESTER
 
Cleaning validation
Cleaning validationCleaning validation
Cleaning validation
 
Vendor qualification
Vendor qualificationVendor qualification
Vendor qualification
 
Validation of utility system (water system)
Validation of utility system (water system)Validation of utility system (water system)
Validation of utility system (water system)
 
Deviation QA
Deviation QADeviation QA
Deviation QA
 
Pharmaceutical principles of QA, GMP and QC
Pharmaceutical principles of QA, GMP and QCPharmaceutical principles of QA, GMP and QC
Pharmaceutical principles of QA, GMP and QC
 
Deviation and root cause analysis in Pharma
Deviation and root cause analysis in PharmaDeviation and root cause analysis in Pharma
Deviation and root cause analysis in Pharma
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validation
 
cGMP Guidelines according to USFDA
cGMP Guidelines according to USFDAcGMP Guidelines according to USFDA
cGMP Guidelines according to USFDA
 
Good documentation practice
Good documentation practiceGood documentation practice
Good documentation practice
 
Processs validation
Processs validationProcesss validation
Processs validation
 
Qualification of tablet compression (machine) & Capsule filling machine
Qualification of tablet compression (machine) & Capsule filling machineQualification of tablet compression (machine) & Capsule filling machine
Qualification of tablet compression (machine) & Capsule filling machine
 
Validation of equipment copy
Validation of equipment   copyValidation of equipment   copy
Validation of equipment copy
 
Process validation and its types
Process validation and its typesProcess validation and its types
Process validation and its types
 
Qualification of manufacturing equipment.
Qualification of manufacturing equipment.Qualification of manufacturing equipment.
Qualification of manufacturing equipment.
 
Computer system validations
Computer system validationsComputer system validations
Computer system validations
 
QUALIFICATION OF MANUFACTURING EQUIPMENTS
QUALIFICATION OF MANUFACTURING EQUIPMENTSQUALIFICATION OF MANUFACTURING EQUIPMENTS
QUALIFICATION OF MANUFACTURING EQUIPMENTS
 
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptx
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptxqualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptx
qualification of instrument(UV & FTIR) BY Bhumi Suratiya, M.Pharm sem 2.pptx
 
Out of specifications
Out of specificationsOut of specifications
Out of specifications
 

Ähnlich wie VALIDATION BY DHIRAJ SHRESTHA

Pharmaceutical validation.pptx
Pharmaceutical validation.pptxPharmaceutical validation.pptx
Pharmaceutical validation.pptxArpithaNandakumar1
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validationMadhavMady3
 
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptx
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptxPharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptx
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptxMariaSaifee
 
calibration-and-validation
calibration-and-validationcalibration-and-validation
calibration-and-validationSUJITHA MARY
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validationMineeta Mahra
 
Seminar on validation by ranjeet singh
Seminar on validation by ranjeet singhSeminar on validation by ranjeet singh
Seminar on validation by ranjeet singhRanjeet Singh
 
Notes for the subject 'Pharmaceutical Validation'
Notes for the subject 'Pharmaceutical Validation' Notes for the subject 'Pharmaceutical Validation'
Notes for the subject 'Pharmaceutical Validation' Sanathoiba Singha
 
Validation overview short.pptx
Validation overview short.pptxValidation overview short.pptx
Validation overview short.pptxJitulAdhikary1
 
Validation overview short.pptx
Validation overview short.pptxValidation overview short.pptx
Validation overview short.pptxJitulAdhikary1
 
Pharmaceutical Qualification & Validation
Pharmaceutical Qualification & ValidationPharmaceutical Qualification & Validation
Pharmaceutical Qualification & ValidationPharmaceutical
 
Pharmaceutical validation
Pharmaceutical  validationPharmaceutical  validation
Pharmaceutical validationPavisara
 
Introduction to Validation
Introduction to Validation Introduction to Validation
Introduction to Validation Masarrat Khan
 
PHARMACEUTICAL VALIDATION
 PHARMACEUTICAL  VALIDATION PHARMACEUTICAL  VALIDATION
PHARMACEUTICAL VALIDATIONSACHIN C P
 
Pharmaceutical validation , Types of validation
Pharmaceutical validation , Types of validationPharmaceutical validation , Types of validation
Pharmaceutical validation , Types of validationthekhajaaneesahmed78
 

Ähnlich wie VALIDATION BY DHIRAJ SHRESTHA (20)

Pharmaceutical validation
Pharmaceutical validation Pharmaceutical validation
Pharmaceutical validation
 
Pharmaceutical validation.pptx
Pharmaceutical validation.pptxPharmaceutical validation.pptx
Pharmaceutical validation.pptx
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validation
 
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptx
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptxPharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptx
Pharmaceutical Validation ( As per M.Pharm 1st sem Syllabus).pptx
 
calibration-and-validation
calibration-and-validationcalibration-and-validation
calibration-and-validation
 
Pharmaceutical validation
Pharmaceutical validationPharmaceutical validation
Pharmaceutical validation
 
Seminar on validation by ranjeet singh
Seminar on validation by ranjeet singhSeminar on validation by ranjeet singh
Seminar on validation by ranjeet singh
 
Notes for the subject 'Pharmaceutical Validation'
Notes for the subject 'Pharmaceutical Validation' Notes for the subject 'Pharmaceutical Validation'
Notes for the subject 'Pharmaceutical Validation'
 
Introduction to validation
Introduction to validationIntroduction to validation
Introduction to validation
 
Validation overview short.pptx
Validation overview short.pptxValidation overview short.pptx
Validation overview short.pptx
 
Validation overview short.pptx
Validation overview short.pptxValidation overview short.pptx
Validation overview short.pptx
 
Validation
ValidationValidation
Validation
 
Validation (1).pptx
Validation (1).pptxValidation (1).pptx
Validation (1).pptx
 
Pharmaceutical Qualification & Validation
Pharmaceutical Qualification & ValidationPharmaceutical Qualification & Validation
Pharmaceutical Qualification & Validation
 
concept of validation
concept of validationconcept of validation
concept of validation
 
Pharmaceutical validation
Pharmaceutical  validationPharmaceutical  validation
Pharmaceutical validation
 
Introduction to Validation
Introduction to Validation Introduction to Validation
Introduction to Validation
 
PHARMACEUTICAL VALIDATION
 PHARMACEUTICAL  VALIDATION PHARMACEUTICAL  VALIDATION
PHARMACEUTICAL VALIDATION
 
Pharmaceutical validation , Types of validation
Pharmaceutical validation , Types of validationPharmaceutical validation , Types of validation
Pharmaceutical validation , Types of validation
 
Validation
ValidationValidation
Validation
 

Kürzlich hochgeladen

Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...narwatsonia7
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknownarwatsonia7
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformKweku Zurek
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Gabriel Guevara MD
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Call Girl Nagpur Sia 7001305949 Independent Escort Service Nagpur
Call Girl Nagpur Sia 7001305949 Independent Escort Service NagpurCall Girl Nagpur Sia 7001305949 Independent Escort Service Nagpur
Call Girl Nagpur Sia 7001305949 Independent Escort Service NagpurRiya Pathan
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Timevijaych2041
 

Kürzlich hochgeladen (20)

Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy Platform
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
Call Girl Nagpur Sia 7001305949 Independent Escort Service Nagpur
Call Girl Nagpur Sia 7001305949 Independent Escort Service NagpurCall Girl Nagpur Sia 7001305949 Independent Escort Service Nagpur
Call Girl Nagpur Sia 7001305949 Independent Escort Service Nagpur
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
 

VALIDATION BY DHIRAJ SHRESTHA

  • 2. • Validation is the art of designing and practicing the designed steps alongside with the documentation. • Validation and quality assurance will go hand in hand, ensuring the through quality for the products. • Validation is a concept that has evolved in united states in 1978. • Once the concept of being able to predict process performance to meet user requirements evolved, FDA regulatory officials established that there was a legal basis for requiring process validation. • The cGMP regulations for finished pharmaceuticals, 21 CFR 210 and 211, were promulgated to enforce the requirements of the act. HISTORY OF VALIDATION The concept of validation was first proposed by two FDA officials, Ted Byers and Bud Loftus, in the mid 1970’s in order to improve the quality of pharmaceuticals. It was proposed in direct response to several problems in the sterility of large volume parenteral market. The first validation activities were focused on the processes involved in making these products, but quickly spread to associated process of pharmaceutical.
  • 3. WHO Definition “The documented act of proving that any procedure, process, equipment, material, activity or system actually leads to expected result.” US FDA Definition “Process validation is establishing documented evidence which provides a high degree of assurance that a specified process will consistently produce a product meeting its pre- determined specifications and quality characteristics.” ICH Definition “Process Validation is the means of ensuring and providing documentary evidence that processes within their specified design parameters are capable of repeatedly and reliably producing a finished product of the required quality.”
  • 4. NEED OF PHARMACEUTICAL VALIDATION There are several important reasons for validating a product and/or process. • First, manufacturers are required by law to conform to cGMP regulations. • Second, good business dictates that a manufacturer avoids the possibility of rejected or recalled batches. • Third, validation helps to ensure product uniformity, reproducibility, and quality. Validation in itself does not improve processes but confirms that the processes have been properly developed and are under control. Assurance of Quality Without validation, a process that is well understood and in a state the confidence, control of quality of the product manufactured cannot be assured without validation.
  • 5. Cost Reduction Since each and every step in validation is monitored constantly there lesser rejects and reworks which would lead to an effective cost reduction. Government Regulation Validation is considered to be an integral part of GMPs. Worldwide compliance with validation requirements is necessary for obtaining approval to manufacture and to introduce new products.
  • 6. SCOPE OF VALIDATION Pharmaceutical Validation is a vast area of work and it practically covers every aspect of pharmaceutical processing activities, hence defining the Scope of Validation becomes a really difficult task. However, a systematic look at the pharmaceutical operations will point out at least the following areas for pharmaceutical validation; 1. Analytical 2. Instrument Calibration 3. Process Utility services 4. Raw materials 5. Packaging materials 6. Equipment 7. Facilities 8. Manufacturing operations 9. Product Design 10. Cleaning 11. Operators
  • 7. IMPORTANCE OF VALIDATION 1. Assurance of quality. 2. Time bound. 3. Process optimisation. 4. Reduction of quality cost. 5. Nominal mix-ups, and bottle necks. 6. Minimal batch failures, improved efficiently and productivity. 7. Reduction in rejections. 8. Increased output. 9. Avoidance of capital expenditures. 10. Fewer complaints about process related failures. 11. Reduced testing in process and in finished goods. 12. More rapid and reliable start-up of new equipments. 13. Easier scale-up form development work. 14. Easier maintenance of equipment. 15. Improved employee awareness of processes. 16. More rapid automation. 17. Government regulation (Compliance with validation requirements is necessary for obtaining approval to manufacture and to introduce new products).
  • 8. PLANNING FOR VALIDATION All validation activities should be planned. The key elements of a validation programme should be clearly defined and documented in a validation master plan (VMP) or equivalent documents. •The VMP should be a summary document, which is brief, concise and clear. •The VMP should contain data on at least the following: 1. Validation policy. 2. Organisational structure of validation activities. 3. Summary of facilities, systems, equipment and processes to be validated. 4. Documentation format: The format to be used for protocols and reports. 5. Planning and scheduling. 6. Change control. 7. Reference to existing document. 8. Incase of large projects, it may be necessary to create separate validation master plans.
  • 9. VALIDATION SET UP (To establish the desired attributes.) •Include physical as well as chemical characteristics. •Acceptance specifications for the product should be established inorder to attain uniformity and consistently the desired product attributes, and the specifications should be derived from testing and challenge of the system on sound statistical basis during the initial development and production phases and continuing through subsequent routine production. •The process and equipment should be selected to achieve the product specification. For example; design engineers; production and quality assurance people may all be involved. •The process should be defined with a great deal of specificity and each step of the process should be challenged to determine its adequacy. •These aspects are important inorder to assure products of uniform quality, purity and performance.
  • 10. Validation Team and Responsibilities Department Designation Responsibility Research and development (R&D) Executive/Officer To coordinate the entire validation process by scheduling meetings and discussions with production, quality control and quality assurance. Preparation of preliminary validation protocol, master formula record, monitoring the process, compiling and analyzing data and test results and preparing the final report. To review the preliminary validation documents. Quality assurance Officer To coordinate the entire validation process by scheduling meetings and discussions with the team. Preparation of validation protocol, monitoring the process, compiling and analyzing data and test results and preparing the final report. To review of validation documents. Production Officer To participate in performing the validation steps during manufacturing processes. To assist in collection of data. Quality control Officer To test and report the test results. Quality assurance General manager Quality assurance To approve the process validation protocol and report. To review of validation documents. To approve the process.
  • 11. Four Major Advantages of Validation Namely 1) Assurance of Quality Validation is an extension of the concepts of quality assurance since close control of the process is necessary to assure product quality and it is not possible to control a process properly without thorough knowledge of the capabilities of that process without validated and controlled processes, it is impossible to produce quality products consistently. End product testing, in the absence of validation, gives little assurance of quality for variety reasons, among which are; • Very limited sample size. • The limited number of tests performed on a sample. For example, it is impractical to test for all potential impurities or contaminants. • The limited sensitivity of the test.
  • 12. 2) Process Optimization The optimization of a process for maximum efficiency, while maintaining quality standards, is a consequence of validation. Literal meaning of word to optimize is “To make as effective, perfect or useful as possible”. The optimization of the facility, equipment, systems, and processes results in a product that meets quality requirements at the lowest cost. 4) Safety Validation can also result in increased operation safety. e.g.: gauges used on equipment that designed to operate at certain temperature and pressures must be reliable i.e. they must be calibrated.
  • 13. 3) Reduction of Quality Costs Quality costs are divided into four categories. They are: a. Preventive costs. b. Appraisal costs. (estimate the value or cost) c. Internal failure costs. d. External failure costs. e.g.: of internal failure costs: Any validated and controlled process will result in fewer internal failures like a. Fewer rejects b. Reworks c. Re-tests d. Re-inspection Process validation makes it possible to do the job right the first time. Also, a scientifically studied and controlled process makes it unlikely that defective products will be dispatched to market thus no recalls or market complaints.
  • 14. TYPES/METHODS OF VALIDATION PROSPECTIVE VALIDATION •This validation usually carried out prior to distribution either of a new product or a product made under a revised manufacturing process. •Performed on at least three successive production-sizes (Consecutive batches). •The validation protocol is executed before the process is put into commercial use. •During the product development phase, the production process should be categorized into individual steps. •Each step should be evaluated on the basis of experience or theoretical considerations to determine the critical parameters that may affect the quality of the finished product. •All equipment, production environment and the analytical testing methods to be used should have been fully validated. Master batch documents can be prepared only after the critical parameters of the process have been identified and machine settings, component specifications and environmental conditions have been determined. •Using this defined process a series of batches should be produced.
  • 15. •It is generally considered acceptable that three consecutive batches/runs within the finally agreed parameters, giving product of the desired quality would constitute a proper validation of the process. • Some considerations should be exercised when selecting the process validation strategy. Amongst these should be the use of different lots of active raw materials and major excipients, batches produced on different shifts, the use of different equipment and facilities dedicated for commercial production, operating range of the critical processes, and a thorough analysis of the process data in case of Requalification and Revalidation. •During the processing of the validation batches, extensive sampling and testing should be performed on the product at various stages, and should be documented comprehensively. Detailed testing should also be done on the final product in its package. •Upon completion of the review, recommendations should be made on the extent of monitoring and the inprocess controls necessary for routine production.
  • 16. •These should be incorporated into the Batch manufacturing and packaging record or into appropriate standard operating procedures. •Limits, frequencies and action to be taken in the event of the limits being exceeded should be specified. CONCURRENT VALIDATION •It is similar to prospective, except the operating firm will sell the product during the qualification runs, to the public at its market price, and also similar to retrospective validation. • This validation involves in-process monitoring of critical processing steps and product testing. This helps to generate and documented evidence to show that the production process is in a state of control.
  • 17. RETROSPECTIVE VALIDATION •It is defined as the established documented evidence that a system does what it purports to do on the review and analysis of historical information. •Retrospective validation is only acceptable for well established processes and will be inappropriate where there have been recent changes in the composition of the product, operating procedures or equipment. For retrospective validation, generally data from ten to thirty consecutive batches should be examined to access process consistency, but fewer batches may be examined if justified. Some of the essential elements for Retrospective Validation Batches manufactured for a defined period (minimum of 10 last consecutive batches). Number of lots released per year. • Batch size/strength/manufacturer/year/period. • Master manufacturing/packaging documents. • Current specifications for active materials/finished products. • List of process deviations, corrective actions and changes to manufacturing documents. • Data for stability testing for several batches.
  • 18. REVALIDATION Re-validation provides the evidence that changes in a process and/or the process environment that are introduced do not adversely affect process characteristics and product quality. Revalidation becomes necessary in certain situations. Some of the changes that require validation are as follows: • Changes in raw materials (physical properties such as density, viscosity, particle size distribution and moisture etc that may affect the process or product). • Changes in the source of active raw material manufacturer. • Changes in packaging material (primary container/closure system) • Changes in the process (e.g., mixing time, drying temperatures and batch size) • Changes in the equipment (e.g., addition of automatic detection system). Changes of equipment which involve the replacement of equipment on a “like for like” basis would not normally require revalidation except that this new equipment must be qualified. • Changes in the plant/facility. A decision not to perform revalidation studies must be fully justified and documented.
  • 19. BASIC CONCEPT OF PROCESS VALIDATION •It is the most important and recognized parameters of cGMPs. •Quality system (QS) regulation. •Standardization of the validation documents that must be submitted with the submission file for marketing authorization. •Assist manufacturers in understanding quality management system (QMS) requirements. THE BASIC PRINCIPLE FOR VALIDATION MAY BE STATED AS FOLLOWS: 1. Installation Qualification (IQ) 2. Operational Qualification (OQ) 3. Performance Qualification (PQ) 4. Re-Qualification
  • 20. IQ CONSIDERATIONS ARE: 1. Equipment design features (i.e. material of construction clean ability, etc.) 2. Installation conditions (wiring, utility, functionality, etc.) 3. Calibration, preventative maintenance, cleaning schedules. 4. Safety features. 5. Supplier documentation, prints, drawings and manuals. 6. Software documented. 7. Spare parts list. 8. Environmental conditions (such as clean room requirements, temperature, and humidity).
  • 21. OQ CONSIDERATIONS INCLUDE: 1. Process control limits (time, temperature, pressure, line speed, setup conditions, etc.) 2. Software parameters. 3. Raw material specifications 4. Process operating procedures. 5. Material handling requirements. 6. Process change control. 7. Training. 8. Short term stability and capability of the process, (latitude studies or control charts). 9. Potential failure modes, action levels and worst-case conditions. 10. The use of statistically valid techniques such as screening experiments to optimize the process can be used during this phase.
  • 22. PQ CONSIDERATIONS INCLUDE: 1. Actual product and process parameters and procedures established in OQ. 2. Acceptability of the product. 3. Assurance of process capability as established in OQ. 4. Process repeatability, long term process stability. RE – QUALIFICATION Modification to, or relocation of equipment should follow satisfactory review and authorization of the documented change proposal through the change control procedure. This formal review should include consideration of re-qualification of the equipment. Minor changes or changes having no direct impact on final or in-process product quality should be handled through the documentation system of the preventive maintenance program.
  • 23. PREREQUISITE OF PROCESS VALIDATION 1. Process Development Designee shall review the product development report, data from pilot scale, scale up batch and proposed master formula document of product intended for manufacturing. 2. Process Development Designee shall review/ensure the availability analytical method transfer report to the plant and plant preparedness for conducting validation testing and routine testing; function shall co-ordinate with QC/QA in this regards. 3. Process Development Designee shall prepare commercial/exhibit batch production and control records which include the operational limits and overall strategy for process control based on development report. 4. The Process Validation is performed after the facility, utility, and equipment, and laboratory test methods have been validated and released fir process validation activities. Where compendia method is used only limited analytical method validation shall be conducted. 5. All raw material and packaging material specification shall be from approved vendors and shall be approved by quality control.
  • 24. 6. All the equipment and instrument to be utilized are calibrated and preventive maintenance programs are in place. 7. Relevant SOPs are in place and training is completed on equipment, operation, manufacturing instruction and sampling strategy. 8. Key process steps and process variables are identified and their operating ranges have been established. 9. All the master formula, manufacturing instruction, packaging instruction, testing procedure and specification shall be approved before execution of process validation batches. 10.The cleaning of the area and equipment has been completed prior to the initiation of process validation. 11.The validation team and operational team shall be trained from process engineer.
  • 25. STRATEGY FOR INDUSTRIAL PROCESS VALIDATION OF SOLID DOSAGE FORMS The strategy selected for process validation should be simple and straightforward. The following five points gives strategy for process validation. 1. The use of different lots of raw materials should be included. i.e., active drug substance and major excipients. 2. Batches should be run in succession and on different days and shifts (the latter condition, if appropriate). 3. Batches should be manufactured in the equipment and facilities designated for eventual commercial production. 4. Critical process variables should be set within their operating ranges and should not exceed their upper and lower control limits during process operation. Output responses should be well within finished product specifications. 5. Failure to meet the requirements of the Validation protocol with respect to process input and output control should be subjected to process requalification and subsequent revalidation.
  • 26. REASON FOR PROCESS VALIDATION The possible reason of performing process validation may include: 1. New product or existing products as per SUPAC (Scale-Up and Post-Approval Changes) changes. 2. Change in site of manufacturing. 3. Change in batch size. 4. Change in equipment. 5. Change in process existing products. 6. Change in composition or components. 7. Change in the critical control parameters. 8. Change in vendor of API or critical excipient. 9. Change in specification on input material. 10. Abnormal trends in quality parameters of product through review during Annual Product Review (APR). 11. Trend of Out of Specification (OOS) or Out of Trend (OOT) in consecutive batches.
  • 27. BENEFITS OF PROCESS VALIDATION 1. Consistent through output. 2. Reduction in rejections and reworks. 3. Reduction in utility cost. 4. Avoidance of capital expenditures. 5. Fewer complaints about process related failure. 6. Reduced testing in process and finished goods. 7. More rapid and accurate investigations into process deviation. 8. More rapid and reliable start-up of new equipment. 9. Easier scale-up from development work. 10. Easier maintenance of equipment. 11. Improve employee awareness of processes. 12. More rapid automation.
  • 28. STAGES OF PROCESS VALIDATION Stage 1 – Process Design It covers all activities relating to product research and development, formulation, pilot batch studies, scale-up studies, transfer of technology to commercial scale batches, establishing stability conditions, storage and handling of in-process and finished dosage forms, equipment qualification, installation qualification, master production documents, operational qualification, process capability. Stage 2 – Process Qualification It confirms that all established limits of the Critical Process Parameters are valid and that satisfactory products can be produced even under “worst case” conditions. Stage 3 – Continued Process Verification The validation maintenance stage requires frequent review of all process related documents, including validation audit reports to assure that there have been no changes, deviations, failures, modifications to the production process, and that all SOPs have been followed, including change control procedures.
  • 29. VALIDATION PROTOCOL 1. Objectives, scope of coverage of the validation study. 2. Validation team membership, their qualifications and responsibilities. 3. Type of validation: prospective, concurrent, retrospective, re-validation. 4. Number and selection of batches to be on the validation study. 5. A list of all equipment to be used; their normal and worst case operating parameters. 6. Outcome of IQ, OQ for critical equipment. 7. Requirements for calibration of all measuring devices. 8. Critical process parameters and their respective tolerances. 9. Process variables and attributes with probable risk and prevention shall be captured. 10.Description of the processing steps: copy of the master documents for the product.
  • 30. 11. Sampling points, stages of sampling, methods of sampling, sampling plans. 12. Statistical tools to be used in the analysis of data. 13. Training requirements for the processing operators. 14. Validated test methods to be used in in process testing and for the finished product. 15. Specifications for raw and packaging materials and test methods. 16. Forms and charts to be used for documenting results. 17. Format for presentation of results, documenting conclusions and for approval of study results.
  • 31. VALIDATION REPORT A written report should be available after completion of the validation. If found acceptable, it should be approved and authorized (signed and dated). The report should include at least the following: 1. Title and objective of study. 2. Reference to protocol. 3. Details of material. 4. Equipment. 5. Programmes and cycles used. 6. Details of procedures and test methods. 7. Results (compared with acceptance criteria). 8. Recommendations on the limit and criteria to be applied on future basis.
  • 32. ANALYTICAL METHOD VALIDATION LIST OF CONTENTS 1. Objective 2. Published guidance 3. Types of analytical method to be validated 4. Considerations prior to method validation 5. Typical analytical performance 6. Characteristics used in method validation 7. Revalidation 8. Possible questions
  • 33. PUBLISHED GUIDANCES • ICH-Q2A “Text on Validation of Analytical Procedure:(1994) • ICH-Q2B “Validation of Analytical Procedures: Methodology: (1995) • CDER “Reviewer Guidance: Validation of Chromatographic Method” (1994) • CDER “Submitting Samples and Analytical Data for Method Validations” (1987) • CDER Draft “Analytical Procedures and Method Validation” (2000) • CDER “Bioanalytical Method Validation for Human Studies” (1999) • USP<1225> “Validation of Compendial Methods” (current revision)
  • 34. TYPES OF ANALYTICAL PROCEDURES TO BE VALIDATED • Identification tests. • Quantitative tests for impurities' content. • Limit tests for the control of impurities. • Quantitative tests of the active moiety in samples of drug. • substance or drug product or other selected component(s) in the drug product.
  • 35. CONSIDERATION PRIOR TO METHOD VALIDATION • Suitability of Instrument Status of Qualification and Calibration • Suitability of Materials Status of Reference Standards, Reagents, etc. • Suitability of Analyst Status of Training and Qualification Records • Suitability of Documentation Written analytical procedure and proper approved protocol with pre-established acceptance criteria.
  • 36. EXAMPLES OF METHODS THAT REQUIRE VALIDATION DOCUMENTATION • CHROMATOGRAPHIC METHODS • SPECTROPHOTOMETRIC METHODS • CAPILLARY ELECTROPHORESIS METHODS • PARTICLE SIZE ANALYSIS METHODS • DISSOLUTION METHODS • TITRATION METHODS • AUTOMATED ANALYTICAL METHODS
  • 37. ANALYTICAL METHOD VALIDATION Validation of an analytical method is the process by which it is established, by laboratory studies, that the performance characteristics of the method meet the requirements for the intended analytical applications. TYPICALANALYTICAL PERFORMANCE CHARACTERISTICS USED IN METHOD VALIDATION • Specificity (Selectivity) • Linearity • Range • Accuracy • Precision • Detection Limit • Quantitation Limit • Robustness • System Suitability Testing
  • 38. SPECIFICITY Specificity is the ability to assess unequivocally the analyte in presence of components which may be expected to be present. DETERMINATION • Identification tests • Assay and impurity test(s) a. Impurities are available b. Impurities are not available LINEARITY Linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample. DETERMINATION Linearity should be evaluated by visual inspection of a plot of signals as a function of analyte concentration or content. NOTE For the establishment of linearity, a minimum of five concentrations is recommended.
  • 39. RANGE Range of an analytical procedure is the interval between the upper and lower concentration (amounts) of analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity. DETERMINATION The specified range is normally derived from linearity studies and depends on the intended application of the procedure. ACCURACY Accuracy of an analytical method is the closeness of test results obtained by that method to the true value. DETERMINATION Accuracy should be established across the specified range of the analytical procedure. ASSAY a. Drug Substance b. Drug Product IMPURITIES (QUANTITATION) NOTE Accuracy should be assessed using a minimum of 9 determinations over a minimum of 3 concentration levels covering the specified range (i.e., three concentrations and three replicates of each).
  • 40. PRECISION Precision of an analytical method is the degree of agreement among individual test results when the method is applied repeatedly to multiple samplings of a homogenous sample. DETERMINATION A sufficient number of aliquots of a homogeneous sample are assayed to be able to calculate statistically valid estimates of standard deviation or relative standard deviation. • Repeatability • Intermediate precision • Reproducibilty DETECTION LIMIT Detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated, under the stated experimental conditions. DETERMINATION Several approaches for determining the detection limit are possible, depending on whether the procedure is a non-instrumental or instrumental. • Based on visual examination • Based on signal to noise ratio
  • 41. QUANTITATION LIMIT Quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy. DETERMINATION Several approaches for determining the detection limit are possible, depending on whether the procedure is a non-instrumental or instrumental. • Based on visual examination • Based on signal to noise ratio
  • 42. RUGGEDNESS Ruggedness of an analytical method is the degree of reproducibility of test results obtained by the analysis of the same samples under a variety of conditions, such as different laboratories different analyst, different instruments, different lots of reagent, different elapsed assay times, different assay temperatures, different days, etc. ROBUSTNESS Robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage. DETERMINATION The evaluation of robustness should be considered during the development phase and depends on the type of procedure under study.
  • 43. SYSTEM SUITABILITY TESTING System suitability testing is an integral part of many analytical procedures. The tests are based on the concept that the equipment, electronics, analytical operations and samples to be analyzed constitute an integral system that can be evaluated as such. Recommended Validation Characteristics of the Various Types of Tests
  • 44. REVALIDATION MAY BE NECESSARY IN THE FOLLOWING CIRCUMSTANCES: • changes in the synthesis of the drug substance; • changes in the composition of the finished product; • changes in the analytical procedure; The degree of revalidation required depends on the nature of the changes. Certain other changes may require validation as well.