1. CALCULO Y DISEÑO DEL ACONDICIONAMIENTO DE AIRE POR
ENFRIAMIENTO DE AGUA PARA UN CONJUNTO DE OFICINAS
ALEXANDER SCARPETTA RODRIGUEZ
HENRY ZUÑIGA RINCON
Ulimsidad Autlnoma de Occill.nt,
SECCION BIBLIOTECA
021479
IgJ l~~¡~~,,~lil .
CORPORACION UNVERSITARIA AUTONOMA DE OCCIDENTE
DMSION DE INGENIERIAS
PROGRAMA DE INGENIERIA MECANICA
SANTIAGO DE CALI
1998
2. CALCULO Y DISEÑO DEL ACONDICIONAMIENTO DE AIRE POR
ENFRIAMIENTO DE AGUA PARA UN CONJUNTO DE OFICINAS
ALEXANDER SCARPETTA RODRIGUEZ
HENRY ZUÑIGA RINCON
Trabajo de grado para optar al titulo de
Ingeniero Mecánico
Director
LUIS ALFONSO HIDALGO
Ingeniero Mecánico
CORPORACION UNVERSITARIA AUTONOMA DE OCCIDENTE
DMSION DE INGENIERIAS
PROGRAMA DE INGENIERIA MECANICA
SANTIAGO DE CALI
1.886
3. I
Gq-:¡. Cfo
'3 :z ese....
eLe> j
NOTA DE ACEPTACION
Santiago de Call, Mayo de 1996
Aprobado por el comité de grado en
cumplimiento de los requisitos exigidos por la
Corporación Universitaria Autónoma de
Occidente para optar al Trtulo de Ingeniero
Mecánico.
Presidente del Jurado
~
1I
4. D
>..,.
o
v
AGRADECIMIENTOS
Los autores expresan sus agradecimientos a :
RODRIGO DAVILA, por su esfuerzo y oportunos consejos para la
culminación de este trabajo.
LUIS ALFONSO HIDALGO, por su aporte y confianza depositada.
Todos aquellos maestros por sus conocimietos transmitidos durante toda la
carrera.
A Dios ya la Virgen Maria por ser nuestra guia constante en la vida.
lIi
5. DEDICATORIA
Dedico esta tesis a:
Mi familia; Justo, Anita, Monica, Ana Milena y Juan Pablo; por el apoyo
incondicional, y el aliento a la hora de los problemas.
Mi campanero de Tesis por la colaboracion 11 dedicación" y aportes hechos
a nuestro trabajo.
Henry Zunlga Rincon
Iv
6. DEDICATORIA
Dedico esta tesis a:
Mis padres; Alejandro y Rosalba , a mi hermano y abuelos que con su
amor, colaboración y apoyo hicieron realidad este titulo.
A mi novia Maria Elena y a sus Padres, por su carlno y motlvacion durante
la realización de este trabajo.
A Henry Zunlga, campanero de grado y demas campaneros por toda su
colaboración prestada durante toda la carrera.
Alexander Scarpetta Rodriguez
v
7. TABLA DE CONTENIDO
Página
INTRODUCCION 1
1 TEORIA SOBRE EL ACONDICIONAMIENTO
DEL AIRE 6
1.1 RESEÑA HISTORICA 6
1.2 EVOLUCION DEL SISTEMA 7
1.3 SISTEMAS UTILIZADOS S
1.3.1 Unidad central de expansión directa. S
1.3.2 Unidades de ventana. 9
1.3.3 Método de enfriamiento de agua. 9
1.3.3.1 Equipos rellevantes. 10
1.3.3.2 Diseno de una planta central de agua frIa. 10
1.4 BASES TEORICAS DE LOS CICLOS DE
REFRIGERACION. 17
1.4.1 Conceptos basicos. 17
1.4.2 Termodinámica. 24
1.4.2.1 Primer principio de la termodinámica. 24
1.4.2.2 Segundo principio de la termodinámica. 25
vi
8. 1.4.2.3 Transformación de una masa de gas. 28
1.4.2.4 Principio de licuación de gases. 32
1.4.3 Ciclo estandar de compresion de vapor 34-
1.4.3.1. Coeficiente de funcionamiento del ciclo
standard de compresión de vapor. 35
1.4.3.2. Ciclo real de compresión de vapor. 37
1.4.4. Psicometrfa. 38
2. CALCULO DE LA CARGA DE ENFRIAMIENTO 44
2.1 CONDICIONES DE PROYECTO 44
211 Orientación del espacio. 44
2.1.2 Dfa de proyecto. 45
2.2 MEMORIAS DE CALCULOS 46
2.3 CALCULO DE LA CARGA TERMICA PARA
LA OFICINA DE CONTABILIDAD. 46
2.3.1 Ganancia calorffica por conducción a través
de paredes. 47
2.3.1.1 Ganancia calorffica para pared occidental. 48
2.3.1.2 Ganancia calorffica para pared norte. 58
2.3.1.3 Ganancia calorfflca para pared oriental. 59
2.3.2 Ganancia calorifica por conducción y
convección a través del techo. 60
vil
9. 2.3.3 Ganancia calorttlca por calor solar a
través de Superficies de ventanas. 64
2.3.3.1. Ganancia calorffica ventana occidental. 64
2.3.3.2 Ganancia calorffica ventana norte. 67
2.3.4. Ganancia calorlfica por conducción a
través de superficies de ventanas. 67
2.3.5. Ganancias calorlflcas interiores debidas
a los ocupantes. 69
2.3.5.1 Ganancia de calor la sensible. 69
2.3.5.2. Ganancia de calor latente. 69
2.3.6. Ganancia calorfficas Interiores debidas
al alumbrado. 69
2.3.7. Ganancia calorlflcas debidas a equipos
de oficina. 71
2.3.8. Ganancia calorlfica por infiltración. 72
2.3.9. Ganancia calortfica por ventilación. 77
3. EMPLEO DEL DIAGRAMA PSICROMETRICO 96
3.1. CALCULO DE LAS CONDICIONES DE
ENTRADA Y SALIDA DE LAS UNIDADES. 99
3.1.1. Cálculo del factor de calor sensible del local. 99
3.1.2. Cálculo del factor de calor sensible total. 99
viii
10. 3.1.3. Cálculo de las ganancias sensibles efectivas
del local.
3.1.4. Cálculo de las ganancias latentes efectivas
del local.
3.1.5. Cálculo del factor de calor sensible efectivo.
3.2. SELECCION DEL PUNTO DE ROCIO
DEL APARATO.
3.3. CALCULO DEL CAUDAL DE AIRE TRATADO
POR EL EQUIPO.
3.4. CONDICIONES DE ENTRADA Y SALIDA DEL
APARATO.
3.5. SELECCION DEL EQUIPO.
3.5.1. Unidad serpentln - ventilador.
3.5.2. Unidad de enfriamiento de agua.
4. DISE~O y SELECCION DEL CIRCUITO
HIDRAULlCO.
4.1. RED HIDRAULlCA.
4.2. TUBERIA.
4.2.1. Perdidas por longitud de tuberia de impulsión.
4.2.2. Perdidas a la entrada y salida de la unidad.
4.2.3. Perdidas por longitud en tuberia de retorno.
Ix
99
101
101
101
101
102
104
104
105
110
110
112
113
116
116
Uaiversi4¡d Aatlnoma de Occi4enle
SECCION BIBLIOTECA
11. 4.2.4. Perdidas de presión en la unidad de fal1-coll. 120
4.2.5. Perdidas en los accesorios. 120
4.3. BOMBA CENTRIFUGA. 126
4.4. TANQUE DE ALMACENAMIENTO. 126
4.5. AISLANTES TERMICOS. 128
5. CONCLUSIONES. 131
6. RECOMENDACIONES 133
BIBLlOGRAFIA 136
x
12. LISTA DE TABLAS
Pagina
TABLA 1 Descripción de la cosntrucción de la Pared 49
TABLA 2 Correcciones de las Diferencias equivalentes
de temperatura. 51
TABLA 3 Correción de color para pared. 51
TABLA 4 Máximas aportaciones solares(RS). 52
TABLA4a : Aportaciones solares (RM) 54
TABLA 5 Diferencia equivalente de temperatura para
muros. 55
TABLA 6 Valor de resistencias para materiales de
construcción. 57
TABLA 7 Resistencia térmica para materiales y
aislantes. 61
TABLA 8 Diferencia equivalente de temperatura
para techo. 63
TABLA 9 : Aportaciones solares. 65
xi
13. TABLA 10 Factor de almacenamiento para superftcles
acristaladas. 66
TABLA 11 Coeficiente global de temperatura para
vidrios y puertas. 68
TABLA 12 Ganancia calorlflca debido a las personas 70
TABLA 13 Ganancia calorlflca debido al alumbrado 71
TABLA 14 Factor de Infiltración en el espacio. 73
TABLA 15 Caudal de Infiltración por puertas. 74
TABLA 16 Caudal de ventilación por persona. 76
TABLA 17 Cálculo de la carga térmica - Contabilidad. 78
TABLA 18 Cálculo de la carga térmlca- Despachos. 79
TABLA 19 Cálculo de la carga térmlca- Gerencia de
Recursos Humanos. 80
TABLA 20 Cálculo de la carga térmlca- Gerencia tecnlca 81
TABLA 21 Cálculo de la carga térmica- Sistemas. 82
TABLA 22 Cálculo de la carga térmica- Jefe de Adm.
y Ventas. 83
TABLA 23 Cálculo de la carga térmlca- Finanzas
y Compras. 84
TABLA 24 Cálculo de la carga térmica- Jefe de
Contabilidad. 85
xli
14. TABLA 25 Cálculo de la carga térmlca- Juntas de
Contabilidad. 86
TABLA 26 Cálculo de la carga térmlca- Cartera. 87
TABLA 27 Cálculo de la carga térmlca- Costos. 88
TABLA 28 Cálculo de la carga térmlca- Secretaria
de Gerencia Técnica. 89
TABLA 29 Cálculo de la carga térmlca- Sala de Juntas 90
TABLA 30 Cálculo de la carga térmlca- Bienestar Social. 91
TABLA 31 Cálculo de la carga térmica- Salud
Ocupacional. 92
TABLA 32 : Cálculo de la carga térmlca- Servicio Adm. 93
TABLA 33 : Cálculo de la carga térmlca- Nomina. 94
TABLA 34 : Cálculo de la carga térmlca- Caja. 95
TABLA 35 : Punto de roela del aparato. 97
TABLA 36 Factor de By Pass. 100
TABLA 37 Cálculo de los factores de calor. 106
TABLA 38 Cálculo del caudal de aire sumlstrado. 107
TABLA 39 Calculo de las condiciones de entrada
y salida de la unidad. 108
TABLA 40 Selección de Equipos. 109
TABLA 41 Propiedades fislcas del agua. 114
xiii
15. TABLA 42 PerdIdas por longitud en tuberia de ImpulsIón. 117
TABLA 43 Peridas a la entrada y salida de la unidad. 118
TABLA 44 Perdidas por longitud en tuberla de retomo. 119
TABLA 45 Perdidas de presión en la unidad de Fancoil. 122
TABLA 46 Perdidas en accesorios. 123
TABLA 47 Perdidas por estrechamiento brusco. 124
TABLA 48 Perdidas por ensachamiento brusco. 125
TABLA 49 Ficha Técnica Jumbolon. 130
16. LISTA DE FIGURAS
FIGURA 1 : Carta zona de confort.
FIGURA 2 : Diagrama de Clapeyron.
FIGURA 3 : Diagrama de Clapeyron para un ciclo
completo.
FIGURA 4 : Diagrama modificado de Clapeyron.
FIGURA 5 : Transformaciones politripicas.
FIGURA 6 : Máquina térmica de Camot.
FIGURA 7: Ciclo de refrlgeracón de Camot.
FIGURAS: Principio de licuación de los gases.
FIGURA 9: Ciclo estandar de compresión de vapor.
FIGURA 10 : Comparación de los ciclos de compresión
de vapor real y estandar.
Pagina
20
25
26
27
29
30
31
33
34
38
FIGURA 11 : Proceso tlplco de acondicionamiento de aire
representado sobre el diagrama pslcrométrlco 42
FIGURA 12 : Esquema del diagrama pslcrometrlco. 43
17. FIGURA 13 : Condiciones de entrada y salida de la unidad
representados en la tabla psicrometrica. 102
FIGURA 14 : Diagrama de Moody. 115
FIGURA 15 : Curvas caracteristicas de la bomba. 127.
18. LISTA DE ANEXOS
Pagina
ANEXO A : Unidades Fancoll 138
ANEXO B: Unidad de Enfriamiento de Agua. 142
ANEXO C: Cátalogo de Tuberias 146
ANEXO D: Cátalogo de Bombas 148
ANEXO E: Planos de las oficinas. 151
xvii
19. RESUMEN
En el presente estudio se realizará, el análisis, cálculo diseno y selección de
equipos para un sistema de acondicionamiento aire en el conjunto de oficinas
de la empresa ETERNIT PACIFICO ubicada en la zona Industrial de YUMBO.
Se utilizara el método de acondicionamiento de aire por medio de agua frIa ;
la cual actuara como medio refrigerante a través de unidades de serpentrn
ventilador (FAN COll), ubicadas estratégicamente en cada una de las
oficinas.
Para llegar al calculo y diseno del sistema se hará una resena sobre el
prtnclplo utilizado, métodos y su Justl1lcaclón en las diferentes aplicaciones.Se
medirá y analizara vartables como las condiciones ambientales y las
actMdades desarrolladas en el local, asr como el diseno y ubicación del
edl1lclo.
Además se hará la selección de todos los equipos requeridos Junto con la
propuesta de Instalación y recomendaciones para que el proyecto sea llevado
a cabo.
xviII
20. INTRODUCCION
Este proyecto anállza el sistema de aire central por enfriamiento de agua
mediante la utlllzaclon de una unidad central (Chiller), la cual tiene como
función principal el enfriamiento del agua, para que posteriormente esta entre
en la unidad acondicionadora (Fancoll) y dltrlbuya el aire acondicionado en las
oficinas.
Se tuvieron en cuenta diferentes variables tales como:
El nivel de contaminación de la zona; donde el aire que sale de un local con
bajo grado de contaminación, se va a contaminar con el aire de otro local en
el que. ha"a mas actMdad, de aqur que se deba pensar en unos muy buenos
filtros y purificadores de aire.
Analizando el sistema de equipos IndMduales de ventana, los costos son mas
elevados por mantenimiento de equipo y en el momento que este se dana se
paraliza totalmente el servicio en el local.
21. 2
Teniendo en cuenta estas situaciones se decidió utilizar el método de
enfriamiento por agua, haciendo circular ésta a baja temperatura (7 grados
centlgrados) por cada local a través de unidades de serpentln ventilador
(fancoll).
Ventajas:
- Se tendrá la posibilidad de tener el equipo apagado o encendido según las
necesidades que el usuario tenga dentro del local, además el de poder regular
la temperatura del mismo.
- Las grandes maquinas de refrigeración cuestan menos por Tonelada de
refrigeración que varias maquinas pequenas.
- La carga de aire acondicionado de las diversas zonas tienen carga pico a
diferentes horas del dla debido a la variación en orientación y ocupación,
puede usarse el factor de diversidad. Esto puede resultar en una reducción de
la capacidad Instalada a 65 o 75% de la que fuera la necesaria si las
maquinas fueran instaladas en edificios IndMduales.
- Costos mas bajos de operación y mantenimiento. Estos costos son
reducidos a causa de que el dlsenador puede seleccionar la fuente de energla
22. 3
para operar el equipo mayor. Se puede ahorrar una considerable cantidad de
dinero al hacerle mantenimiento al equipo en una planta de potencia en
comparación con el mantenimiento a equipos dispersos en los diferentes sitios
del complejo.
Puede realizarse supervisión mas cercana al trabajo y se requiere menos
personal de mantenimiento, el cual puede ser contratado de mayor nivel
técnico. Se logra un uso mas eficiente de la capacidad Instalada (alternando
maquinas bombas,etc), especialmente a carga parcial, resultando en una
economfa general de energfa.
- El ruido y la vibración generados por los equipos de refligeraclón es
removido de las edl1lcaclones IndMduales. Con el equipo centralizado en un
local, este problema puede ser resuelto a un menor costo y con mayor
eficiencia. Mayor capacidad de stand-by comparada con maquinaria
IndMdual por zona. Para aplicaciones de confort,la planta central trabajará
normalmente a una capacidad menor a la carga pico Instalada.
- Facilita la instalación de aires acondicionados en edi1lcaclones antiguas que
tengan problemas estructurales, para soportar equipos pesados y para
instalar grandes duetos.
23. 4
Posibles desventajas:
No todo complejo de edificios es apropiado para instalarle
un sistema central de agua frra, antes de proceder con ello deben
considerarse los siguientes aspectos:
- Costo Inicial. Una planta central tiene un costo inicial alto, comparado con un
equipo indMdual de expansión directa. Este ha sido el principal factor por el
cual este sistema no se ha popularizado en nuestro pals.
Los beneficios económicos hay que encontrarlos en menor costo de
operación, menor costo de mantenimiento, mayor facilidad para control
indMdual, mayor flexibilidad para modificaciones y adiciones.
- Requerimiento de espacios. La disponibilidad de terrenos donde se localise
la planta,puede ser costosa o dificil de proveer.
El espacio requerido para la instalación de tuberra de distribución puede
causar problemas al cruzarse con otras Instalaciones, por ejemplo
electrlcas,sanitarlas o estructurales. Tambien se requiere espacio para sub-
estaciones eléctricas y tableros.
- El personal de supervisión y de mantenimiento debe ser calificado y tener la
suficiente experiencia para operar en forma confiable la planta. Deben
24. 5
tenerse en cuenta consideraciones estéticas para la planta de potencia, el
equipo de expulsión de calor, las estaciones de bombeo y las subestaclones
eléctricas. la localización mas deseable para la planta y distribución de
tuberlas puede ser la menos deseable desde el punto de vista estético.
25. 1. TEORIA SOBRE EL ACONDICIONAMIENTO DE AIRE.
1.1. RESEÑA HISTORICA.
El hombre ha demostrado en todas las épocas históricas un gran interés por
lo referente al frlo y al calor. Parece demostrado que los seres prehistóricos
guardaban entre el hielo los animales cazados y que los romanos encerraban
nieve en grandes grutas para utilizarla posteriormente.
El hallazgo fortuito de un mamut perfectamente conservado
entre la nieve en slberla en 1799 hace el Interés por producir de algún modo
fria artificial. A partir de este momento se suceden una serie de Intentos ya a
nivel Industrial o semllndustrlal. Pero es realmente en 1865 cuando CHARLES
TELLlER construye la primera máquina de compresión utilizada con fines
industriales, equIpa con ella el vapor -LE FRIGORIFIQUE- y realiza un
transporte de carne vacuna desde un puerto francés hasta buenos aires,
llegando el producto en excelentes condiciones.
Con todos estos adelantos el hombre en los últImos 40 aflos ha desarrollado
plenamente sistemas completos de acondicionamiento de aire para producir
confort y para control de productos industriales.
26. 7
Técnicamente el aire acondicionado es el -CONTROL DE FACTORES- que
afectan las condiciones atmosféricas que rodean al hombre dentro de una
estructura. En cambio la refrigeración es básicamente un proceso por el cual
solo el calor se elimina dentro de una estructura. El término aire
acondicionado, probablemente fUe primero empleado para significar el
proceso de humidificación del aire en plantas textiles y poder controlar los
efectos de la electricidad estática y reducir el rompimiento de las 1Ibras. Este
problema fue controlado agregándole humedad al aire (humidificación), lo cual
dio un gran (mpetu al desarrollo del aire acondicionado en la Industria.
1.2. EVOLUCION DEL SISTEMA
-En los próximos 25 anos, el aire acondicionado llegará a ser un servicio
público en las grandes ciudades. Se medirá la cantidad de enfriamiento y
calefacción suministrada, y los ocupantes pagarán realmente por lo que
reciban, como ahora pagan por el gas, la electricidad y el agua-o
Este pronunciamiento del Doctor WILLlS CARRIER en 1940, llegó a ser una
realidad en Junio 25 de 1962, cuando la companra de gas, THE HARFORD,
oficialmente abrió una planta Industrial de agua frra, la cual tenia 15000 T.R.
de refrigeración, y que dlstlibula agua fria para enfriamiento en el centro de
Hartford, Connectlcut.
27. 8
Desde entonces las companras de Chlllers han vendido millones de toneladas
de enfriamiento para sistemas centrales con agua fria.
1.3. SISTEMAS UTILIZADOS
Para el acondicionamiento de aire existen diversos sistemas que se adaptan a
las condiciones requertdas para un determinado espacio. Se cuenta con las
unidades de ventana y sistemas centrales.
1.3.1. Unidades centrales de expanslon directa. Estas unidades son
utilizadas para grandes espacios como lo son un conjunto de oficinas, salas de
reuniones, teatros, etc.
El suministro y retomo del aire se hace generalmente por medio de ductos,
llegando este a una unidad manejadora o acondicionadora cuya función es la
de enfrlarto, para postertor hacerto recircular al espacio.
Estas unidades se dMden en tres grupos:
Unidades tipo paquete: Son unidades compactas donde el sistema de
condensación y evaporación vienen en un solo paquete. Se dMden en dos
según el enfrtamlento del condensador: Unidades de paquete enfrtadas por
aire y unidades enfrtadas por agua. Su capacidad varta entre 0.5 a 30
toneladas de refrtgeración
28. 9
Sistemas DMdldos : (Unidad condensadora-evaporadora), como su nombre lo
dice son unidades que trabajan separadamente e Interconectadas por lineas
de liquido y gas refrigerante. la unidad manejadora o enfriadora va ubicada
en el Interior, y la condensadora en el exterior del equipo. la capacidad para
sectores Industriales y residencial varia entre 7.5 a 100
toneladas y de 1 a 7.5 respectivamente
1.3.2. Unidades de ventana. Estas unidades son muy útiles para
acondicionar espacios pequenos como lo son habitaciones, oficinas, etc, que
requieran de una baja capacidad de enfriamiento (5000-20000 BTU/H), su
operación es de fácil manejo y es Instalado generalmente en una pared. En
estos equipos la ubicación desempena un papel Importante para lograr las
condiciones deseadas.
1.3.3. Método de enfriamiento de agua. los sistemas centrales con agua
fria proveen esta ultima a un grupo de edlftclos o de zonas en un mismo
edlficlo,desde una sola fuente.los mercados para plantas centrales con agua
fria Incluyen: Campos universitarios, complejos Industriales, edlftcaclones de
oficinas y almacenes, complejos gubernamentales, centros comerciales.
Uaillnid.d Aotlnom. de Occiftnt,
SECCIOIf BIBLIOTECA
29. 10
1.3.3.1. Equipos reUevantes. l-Chlllers: las máquinas de refr1geraclón
Incluyen sus motores tanques de expansión. unidades de manejo. bases.
páneles de control, válvulas, etc.
2-Expulslón de calor: Torres de enfr1amlento, sistemas de tratamiento de agua
de condensación. válvulas, bombas, etc. Un rlo o un lago puede ser utilizado
como una fuente de agua de condensación.
3-Bombas: Las bombas de agua fria pueden ser primarias o secundarias.
4-Controles: Sistema de control para operación manual y/o automática de
arranque, parada control bajo carga parcial. Sistemas de conmutación para
alternar unidades y equipos de seguridad.
5-Tuberla de distribución: Esta representa un gran porcentaje del costo Inicial
de la planta de agua fr1a, Incluye, tuberla, Instalación, aislamiento,
recubrimientoJuntas. ftexlbles. válvulas. soporterla. etc.
1.3.3.2. DI8efto de una planta central de agua fria. Este diseno requiere
consideraciones cuidadosas y análisis de muchas variables de Ingenlerla a
saber:
30. 11
1.Capacldad de la planta.
Es una de las primeras consideraciones a tener en cuenta,los requisitos de
carga pico necesitan ser determinados tan precisamente como sea posible;
para edl1lclos futuros debe haber una proyección razonable de la demanda.
Se deben establecer perftles de carga para cada edlftclo y para la capacidad,
en gráficos de carga real en T.R. vs Tiempo del dla o tiempo del ano.
los requisitos de la capacidad combinada pico es normalmente menor que la
suma de los picos Individuales esto permite el uso de un factor de diversidad
cuando se dimensiona la planta central, el cual es la máxima demanda sobre
la planta central dividida por la suma de las cargas pico Individuales del
sistema.
la diversidad resulta principalmente de:
a. Componente solar de las cargas del edlftclo.
b. Almacenamiento térmico Inherente retardado de las cargas térmicas
c. Utilización del edlftclo.
la magnitud de un factor de diversidad preciso es dificil de encontrar y hay
poca Información para asistir al dlsenador en su determinación, por lo tanto
debe ser conservativo a un cuando resulte en mayor capacidad Instalada,
pero esto da una ventaja potencial para proveer soporte y proyección para
ampliaciones futuras. El perffl de carga también muestra al dlsetlador:
31. 12
a. Qué niveles de capacidad son necesarios en la mayor porción del tiempo.
b. Cual es el mfnimo requerimiento de carga y por que longitud de tiempo.
Esta Información es útil para establecer los tamanos IndMduales de la
máquina.
La variación y la demanda requiere que la planta de enfriamiento de agua
tenga flexibilidad de capacidad la cual es la habilidad del equipo central para
acomodarse precisa y económicamente a la demanda de carga. El tiempo de
operación anual varia debido al tipo de carga y localización geográfica y es
normalmente de 3000 a 5000 horas en climas moderados, hasta todo el ano
para aplicaciones industriales y en climas muy cálidos.
2. Agua fria:
El suministro de agua fria es mas económico y el Incremento de temperatura
a través del equipo de transferencia de calor deben ser parámetros de
diseno.
Una temperatura baja de suministro (40 o F), tiene las siguientes
caracterfstlcas:
a. Máxima deshumldmcaclón
32. 13
b. Permite mayor Incremento de temperatura lo cual reduce el ftujo de agua y
este a su vez el diámetro de tuberfas y válvulas; tamano de la bomba y el
consumo de energfa para el bombeo.
c. Mayores diferencias medias logarftmlcas de temperaturas que permitan la
selección de serpentines mas económicos.
d. En contraprestación se requiere de mas baja temperatura en el refrigerante
lo cual Incrementa los requisitos de potencia en el compresor, reduce la
capacidad de la máquina afectando adversamente el costo Inicial y el costo de
operación.
e. Mayores requisitos de aislamiento y barreras de vapor.
Una temperatura alta (46 °F) tiene las siguientes caracterfstlcas:
a. Reduce la capacidad de deshumldlftcaclón.
b. Limita el Incremento de temperatura permisible para mantener la
temperatura promedio para una aceptable selección del serpentín,
requlr1endose mas superftcle del mismo con mayor costo.
c. Se requieren mayores ratas de ftuJo de agua y por tanto mayores tuberfas,
válvulas, bombas, energla de bombeo, y mayor costo Inicial.
33. 14
d. llene a favor que decrece la potencia del compresor, Incrementando su
capacidad o permitiendo el uso de una máquina menor; el costo inicial y el
costo de operación pueden ser reducidos.
3. Sistemas de distribución:
El sistema de tuberla de agua fria en una planta central puede consistir de
una tuberfa única, o una serie de circuitos y bombas separados. En sistemas
muy grandes se establecen estaciones de bombeo separadas para:
a. Circuito de planta central.
b. Circuito de distribución..
c. Circuito de los edl1lclos.
A menudo los circuitos a y b se combina en uno solo; otra alternativa es un
sistema primario de ftuJo contante para el circuito central y el de distribución
con bombeo secundarlo para cada circuito del edl1lclo.
Las ventajas de esta alternativa son:
* Cualquier tipo de control, de terminal o serpentln puede ser utilizado, no
limitado a terminales de ftuJo total.
* llpo de tuberla; acero negro,hlerro fundido, galvanizada.
* Aislamiento.
* Ganancia de calor en la tuberra si el circuito es largo.
* Juntas de expansión.
34. 15
* Soportes de tuber(as válvulas, etc.
4. Controles:
Para obtener rendimientos de operación máximos y economJa, se deben
Incluir ciertos controles en una planta central sin embargo para abolir
Innecesaria, complejidad y mantenimiento, los controles deben mantenerse lo
mas simple posible.
Se necesitan controles de seguridad para el equipo y el personal. los
controles de operación son necesarios para acoplar la capacidad del sistema
a la carga de la manera mas ellclente. Esto puede lograrse controlando las
siguientes variables:
a. Control de temperatura a la salida del chiller.
b. Incrementos de temperatura primarios y secundarlos para minimizar la
potencia del compresor y la bomba.
c. Flujo de agua en los circuitos primarios y secundarlos los cuales pueden
ser variados para reducir el costo del bombeo.
d. la capacidad de la planta se controla mediante una combinación de
unidades que operan bajo ciclos y variando la capacidad de las unidades, por
ejemplo con descargadores de válvulas de refrigeración dellluJo refrigerante.
35. 16
~. Equipo:
El dlsenador debe dar primordial atención a la selección de los equipos como
chlllers, bombas equipos de expulsión de calor, motores y controles, teniendo
el tipo, los niveles de operación, los Incrementos de capacidad la variación en
la demanda para lograr ftexlbllldad de la capacidad, el número y ubicación de
los mismos. En este aspecto se tiene un gran porcentaje del costo del
sistema.
S.Slstema de aire acondicionado:
El diseno de la planta central, arreglo del equipo, distribución de tuberfa, son
determinados, por un Ingeniero cuyos servicios pueden no ser contratados
para coordinación del diseno de circuitos secundarlos. En efecto en un
complejo de edlftclo que se expanden, algunos de los sistemas secundarlos no
serán dlsenados e Instalados hasta fechas posteriores; es muy Importante
que el diseno de estos sistemas secundarlos con respecto al primario estén
en concordancia con el diseno de la planta central para asegurar una
operación apropiada y máxima e1lclencla.
Diversos tipos de sistemas de aire acondicionado se usan en una Instalación
Uplca de multl edificios, por ejemplo FAN COILS, de volumen variable, de
Inducción, multlzona o sistema con recalentamiento.
36. 17
En resumen la coordinación de dlsenos de sistemas secundarlos con el diseno
de la planta central es esencial para asegurar la operación apropiada del
complejo total.
1.4. BASES TEORICAS DE LOS CICLOS DE REFRIGERACION
1.4.1 Conceptos baslcos. 1- Acondicionamiento de aire:
Comúnmente, cuando se escucha el término Aire Acondicionado, lo primero
que una persona se Imagina es aire fresco. Pero en la realidad un verdadero
sistema de aire acondicionado controla automáticamente la temperatura,
humedad, pureza y circulación de aire.
2- Refrigeracion o enfriamiento:
Es la remoción de calor no deseado en espacios u objetos seleccionados y su
transferencia a otros espacios y obJetos. La remoción del calor baja la
temperatura y puede ser llevada a cabo mediante el uso del hielo, nieve,
agua frra o refrigeración mecánica.
3- Efecto de refrigeraclon :
Un Término común que se utiliza en trabajo de refrigeración para medir y
definir la capacidad del efecto refrigerante, se llama ton. o tonelada de
37. 18
refrigeración, es la cantidad de calor absorbida para fundir una tonelada de
hielo (2.000. libras) en un perfodo de 24 horas.
4- Efecto refrigerante:
Para que se realice un trabajo eficiente, en un sistema o ciclo de refrigeración,
cada libra de refrigerante en circulación en el sistema debe hacer su porción
de trabajo, debe absorber una cantidad de calor en el evaporador o serpentfn
de enfriamiento y disiparlo (más el que es anadido en el compresor), al
exterior con ayuda del condensador.
El trabajo hecho por cada libra de refrigerante sufre un cambio de estado de
liquido a vapor para que un liquido pueda cambiar a vapor, debe anadlrsele
calor.
Esto es lo que sucede en el serpentln de enfriamiento. El refrigerante entra
como liquido y pasa a través del evaporador donde absorbe calor, tomándose
vapor. Como el vapor hace su recorrido por la linea de succión hacia el
compresorI aquf es comprimido desde la condición de vapor a baja presión y
baja temperatura a vapor con alta presión y alta temperatura; luego pasa por
la tuberfa de alta presión al condensador donde sufre otro cambio de fase
(Vapor liquido) en tal estado, fluye a la tuberla de Uquldo. Para otro viaje a
través del evaporador.
38. 19
El contenido de humedad del aire se Indica por la sensación de sequedad en
Invierno o de pegajosidad en verano. La humedad se refiere al agua
evaporada en el aire y que existe como un gas Invisible. Para medir lo
anterior, se utiliza un termómetro de bulbo húmedo Cuando las lecturas de
bulbo seco y húmedo son Iguales, la humedad relativa es 100 %.
Cuando se tiene una diferencia entre las temperaturas de bulbo seco y bulbo
húmedo, se llama la depresión de bulbo húmedo.
5- Zona de confort:
Es una zona en la cual el cuerpo humano se siente bien o agradable dentro de
un rango de temperaturas, humedades y movimiento del aire. (Ver figura 1)
Teniendo en cuenta el rango de temperaturas, humedades, y movimiento del
aire, la AMERICAN SOCIETY OF HEATIN GREFRIGERATING,AND AIR
CONDITIONING ENGINEERS (ASHRAE), logró construir una carta donde se
obtenfa una zona de corfort.
Cada combinación (temperatura, humedad y movimiento del aire), se conoce
como temperatura efectiva. Esta se encuentra sombreada en el cuadro y
puede determinar que temperatura de bulbo seco y humedad relativa,
producirán ese resultado.
Ullirersi~ad AatMom. de OI:ci~tnt,
SECCIOH BIBLIOTECA
39. ex:
o
n:
90° l
I I
W I 7Go
z 85°, ~,......
t-
8 w 1 7~O
UJ :t
(f) Z
UJ
~ ~ 800
tr---t-
~ ~
:J11..
col/')
wO
o o 75°r-t_-t-
<:( ~
75°
73ft
---.. 71 0
cr. CJ
:J
- I ,: o
~ 69
a: 700 -:', ','
W .__Ir-~
n.. " 6i~
¿
~ M VIM ENTO D8l. AlnE 1
65°" , 1 I I .1 I J I { t .... 4 I
20 25 30 35 40 45 50' 55 60 65 70 75 80
3 115 F1IES/Mtr~
HUMEDAD .RELATIVA INTERIOR-PORCENTAJE
Figura 1, CARTA DE ZONA DE CONFORT
40. 21
&- Movimiento del aire:
El movimiento del aire, es otro factor a considerar en el confort, la zona de
confort presentada anteriormente, se basa en un movimiento de aire con
velocidades que varlan entre 15 - 20 pies por minuto. La temperatura efectiva
cae bruscamente cuando se Incrementa la velocidad, esto
parecerla deseable para aire acondicionado de verano, pero éste aire se
Introduce usualmente de 15 a 20 grados centfgrados según las condiciones
del cuarto.
Como una buena regla general, es necesario no exceder de 50 ples/rnto. la
velocidad es la zona de confort.
7- Temperatura seca:
Es la temperatura que registra un termómetro ordinario.
B-Temperatura humeda :
Es la temperatura que Indica un termómetro cuyo bulbo esté cubierto por una
mecha húmeda y expuesto a una corriente de agua.
9- Temperatura de roclo :
Es la temperatura a la cual empieza la condensación de humedad cuando el
aire se enfrra.
41. 22
10- Humedad relativa :
Relación entre la presión de vapor de agua contenida en el aire. y la presión
de vapor saturante a la misma temperatura.
11- Entalpla:
Es la cantidad de calor contenida en el aire. con toda a partir de los cero
grados centlgrados.
12- Varlaclon de entalpla :
Cualquiera que sea la temperatura considerada. la entalpla arriba mencionada
se supone en la saturación para cualquier aire no saturado. Se tendré. que
corregir utilizando la linea de variación de entalpla. en casos en los que es
necesario una gran precisión.
En casos normales de acondicionamiento de aire se puede prescindir de dicha
corrección. al Igual que la entalpla viene dada en Kcallkg. de aire seco.
13- Volumen especlftco :
Los metros cúbicos de aire que corresponden a un kilo de aire seco.
14- Factor de calor sensible:
Relación entre los calores sensibles y calor total.
42. 23
15- Punto de referencia:
Situado a los 26.7 grados centlgrados y 50% de humedad relativa. que se
emplea Junto a la escala de calor sensible para dibujar las lineas de proceso
del aire acondicionado.
16- Kilos de aire seco:
Constituyen la base de todos los célculos pslcrométrlcos y permanecen
constantes en todos los procesos. la temperatura. humedad. seca. y de roclo
y la humedad relativa estén relacionadas de forma tal que cuando se conocen,
dos de ellas se pueden determinar las restantes. Cuando el aire esté saturado
las temperaturas.
17- Flujo calorl1lco :
Hay tres tipos de lIuJo calorlllco, varlan con el tiempo:
a- Ganancia de calor con el tiempo: Es la cantidad Instantánea de calor que
sale o entra del espacio a condicionar.
t
b- Carga de Acondicionamiento: Es la cantidad de calor que se necesita
extraer del espacio para mantener una temperatura constante y de confort.
c- Régimen de extracción de calor del ambiente: Es la velocidad a la cual se
extra el calor del espacio acondicionado, es Igual a la carga de
43. 24
acondicionamiento del ambiente, solo cuando la temperatura del espacio
cambia continuamente con el tiempo.
1.4.2. Termodinámica. El ciclo de compresión de vapor es el ciclo de
refrigeración mas Importante desde el punto de vista comercial. En tal ciclo,
un ftuldo se evapora y se condensa alternativamente siendo uno de los
procesos que intervienen en el ciclo de compresión de vapor.
Un sistema de acondicionamiento de aire debe ser capaz de extraer el calor y
la humedad del espacio a acondicionar.
El aire suministrado a dicho espacio debe cumplir con ciertas caracterlstlcas
termodinámica como lo son, un porcentaje bajo en entalpla y humedad.
1.4.2.1. Primer principio de la termodinámica principio de meyer o de la
equivalencia. -Calor y trabajo pueden ser transformados el uno en el otro y
en toda transformación, la relación entre la cantidad de energla transformada
que desaparece bajo una forma y aquella que aparece bajo otra forma es
constante-o El valor J=W/Q es llamado equivalente mecánico de la calorla;
siendo W trabajo y Q calor.
Su Inverso 1/J =A es llamado equivalente calorlftco mecánico de la calorla.
44. 25
.
1.4.2.2. Segundo principio de la termodinámica principio de carnot
clauslus. -No se puede producir trabajo con calor si no existen dos fuentes,
una frIa y otra caliente, es decir si no existe una diferencia de temperatura
entre ellas·.(Ver figura 2 )
P
PBI------.
·
·
·
·
·
·
·
·
·
PM ---- --- --- --1--------
·
·
·
·
·
·
·
PA -------------~--------
·
·
·
------------------------------~--~--~-~.---~
--------------------------~~---v
a.
b m! m a v
Figura 2. Fuente: Manual Curso de Ingenlerla del frlo.
45. 26
Suponiendo un dispositivo experimental como el de la figura, donde el pistón
avanza disminuyendo el volumen ocupado por el gas y aumentando la presión,
se obtiene el diagrama presión volumen. Al desplazarse el pistón a una
distancia Infinitesimal tenemos:
dN =F * dL =Pm * ( S * dL) =Pm * dv
Donde: F =Pm * S
S =Area del plston
El trabajo total necesario para comprimir el gas desde A hasta B, será la
suma de las diferentes áreas del área ABba.
Para un ciclo completo de un pistón en el Interior de un cilindro de un
compresor ideal tenemos. (Ver figura 3)
P
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
: JL
PA~~----~--------~=-~
~o------~-------------r------V
Figura 3. Fuente: Manual de curso de Ingenlerla del frlo.
46. 27
TRAMO A-B: En el punto A se encuentra gas expandido a presión Pa y
volumen Va, al desplazarse el pistón se comprime el gas hasta alcanzar la
presión Pb Yel volumen Vb.
TRAMO B-C: En el punto b se, descarga el gas a presión constante Pb;
llegando el pistón a su 1Inal de recorrido en C.
TRAMO C-D-A: La presión se baja y el compresor retrocede abriéndose la
válvula de aspiración hasta una presión Pa. Donde el trabajo realizado
durante la compresión esta representado por el área ABCoaA y el trabajo
realizado en la aspiración por el área DAaoD. Siendo el trabajo neto a realizar
el compresor Ideal el área bajo la curva ASCDA diagrama modificado de
Clalperon para un compresor real: (Ver figura 4)
--.. e +-
~I
,
~ ~
~ I
,
,
,
,
,
PB
C1 !C B
t i b a
Figura 4. Fuente: Manual de curso de Ingenlerla del frlo.
47. El espacio muerto tiene un valor absoluto Igual a
E =AD1 - AD Y aveces se expresa en tanto por uno sobre la carrera.
E =(AD1 - AD) I (AD)
28
La relación AD/AD1 recibe el nombre de rendimiento volumétrico del
compresor. ExIste un aparato denominado Indicador de Watt que permite
trazar gráficamente el diagrama real de trabajo de una maquina alternativa de
forma automática. Se utilizan para detectar funcionamientos defectuosos en
los compresores.
1.4.2.3 Transformación de una masa de gas. a- Transformaciones
Isotérmicas: Son aquellas durante las cuales la temperatura del sistema
permanece constante. Cumplen exactamente la ley de MARlOTE:
P1*V1 =P2*V2
b- Transformaciones adiabáticas:
Se denomina a aquella transformación durante la cual no existe Intercambio de
calor entre el sistema y el medio exterior. cumplen con la ley de LA PLACE P1
* V1 1
=P2 * V21
siendo (') =CP I CV .
Las transformaciones Isotermas y adiabáticas. tienen en teorfa una duración
Infinitamente larga y son por lo tanto transformaciones teóricas. Sin embargo
48. 29
admiten que una compresión o una expansión real en un cilindro son
adiabáticas se realicen en forma tan rápida que no da lugar a que halla
transformación de calor a través de las paredes del cilindro.
c- Transformaciones polltróplcas:
Se denominan también transformaciones reales por ser las que suceden en la
practica, en ellas hay Intercambio de calor el exterior, y variación de
temperatura.Como norma general obedece a la ley:
p * V :: CTE
Si n :: 1, se convierte en isoterma y n :: Infinito, en una transformación
adiabática. (VER FIGURA 5)
""'-
-------- ". 0-
p ~--'--
1 ------------------------------------_:-:-_:-:'_=-=-
---';;:=-~-r
Figura 5. Fuente: Manual de curso de Ingenlerla del frlo.
Ulliftrsldad Aatlnoml de Occi~lfttt
SECCfON BIBLIOTECA
49. 30
El rendimiento del ciclo de Camot es mayor que el de cualquier otro ciclo que
trabaje entre las dos mismas temperaturas extremas. La maquina térmica de
Camot esta representada esquemáticamente en la siguiente figura, con su
correspondiente diagrama temperatura entalpla.
(Ver figura 1)
2
Calor ..el fooo
oaliente
empreaor
1
Calor al feoe
frie.
4
2.-______________~3
Trabaje Nete
1~______________~4
3
rbina
Figura l. Fuente: Refrigeración y Acondicionamiento de Aire de
stoecker W. F.
50. 31
La méqulna térmica de Camot recibe energfa de un foco caliente a alta
temperatura, convierte una porción de energla en trabajo y cede el restante a
un foco frlo a baja temperatura.
El ciclo de refrigeración de Carnot consigue el efecto Inverso de la méqulna
térmica, por que transporta energla desde un foco frlo a un foco caliente.
Para realizar el ciclo de refrigeración se necesita suministrar un trabajo
externo, el diagrama de la Instalación y el diagrama temperatura - entropla del
ciclo de refrigeración se muestran en las siguientes figuras: (Ver figura 7)
Calor al fooo oaliente
3 2
Turbina COIIp:re.er
4 1
8alor al feoo
frie
TOK 3
T:cabajo Neto
4 '--_______-1 1
Entropía. cal!(Ke) ( K)
Figura 7. Fuente: Refrlg..aclón y Acondicionamiento de Aire de Stoeck.. W. F•
•
51. Los procesos que comprenden el ciclo son:
1 - 2: Compresión Adiabático
2 - 3: Cesión de Calor Isoterma
3 - 4: Expansión Adiabática
4 - 1 : Adición de Calor Isoterma
32
Todos los procesos del ciclo de Camot son termodinámicamente reversibles.
En consecuencia los procesos 1 - 2,3 - 4, son Isoentroplcos.
La absorción de calor del foco frlo en el proceso 4 - 1, es la operación de
refrigeración y el único efecto útil del ciclo. Todos los restantes procesos del
ciclo tienen como misión que la energfa tomada de un foco frlo a baja
temperatura pueda ser cedida a un foco caliente a alta temperatura
1.4.2.4. Principio de IIcuaclon de gases. En los gases las moléculas se
encuentran muy separadas entre si, de tal modo que la fuerza de atracción
entre ellas es débil, por otra parte estas tienen un nivel de energfa que hacen
que choquen. Estas consideraciones llevaron a pensar que los gases podrfan
licuarse a cualquier temperatura si se aumentaba lo suficiente la presión .
Pero gases como el hidrógeno, oxigeno nitrógeno y helio fueron Imposibles de
licuarse con estas condiciones y se denominaron gases perfectos.
Posteriormente ANDREWS cambio las condiciones: aumento la presión y
52. 33
disminuyo la temperatura, logrando licuar los gases considerados hasta ese
momento perfectos.
Como resultado de este estudio se obtlNO el siguiente gréftco. (Ver figura 8)
p
Ter
....
~--------------------------------.v
Figura 8. Fuente: Manual de curso de Ingenlerla del frlo.
La condensación se presentaba a presión constante.
Cuando se llega a la Unea de saturación el gas esta completamente licuado y
a partir de este punto a muy ligeras disminuciones de volumen corresponden
aumentos de presión.
Al aumentar la temperatura las presiones a las cuales ocurre la condensación
aumentan, ocurriendo un cambio mas brusco de estado. En la cima de la
curva de saturación se encuentra el punto critico del gas y este es
caracterfstlco para cada uno.
53. -Punto Critico del C02 :
Pcr = 75.21 Kglcm, Tcr = 304 K, Vcr = 2.156 DcJkg
-Punto Crttlco del R-12 :
Pcr = 40.879 kglcm, Tcr = 388.5 k, Vcr = 1.793 DcJkg
Por encima de la temperatura crttlca no es posible licuar el gas.
34
1.4.3. Ciclo standard de compresión de vapor. Los procesos que
comprende el ciclo standard de compresión de vapor son (Ver figura 8).
p
Evaporaoión
Entalpía. Cal Ke
JIt-----I Conaen..-to
3
Válvula te
Expan.ión
4
2
2
Figura 9. Fuente: Refrlg..aclón y Acondicionamiento de Aire de stoeck.. W. F.
54. 1 - 2 : Compresión adlabatlca y reversible, desde vapor saturado hasta la
presión del condensador
2 - 3 : Cesión reversible de calor a presión constante en la zona de
recalentamiento y posterior condensación
35
3 - 4 : Expansión Irreversible a temperatura constante desde liquido saturado
hasta la presión del evaporador
4 - 1 : Adición reversible de calor a presión constante durante la evaporación.
1.4.3.1. Coeficiente de funcionamiento del ciclo standard de compresión
de vapor. Las magnitudes slgnlftcatlvas del ciclo standard de compresión de
vapor pueden determinarse fácilmente con la ayuda del diagrama presión-
Entalpla. Estas cantidades son:
El trabajo de compresión, el calor cedido, el efecto refrigerante, el coeficiente
de funcionamiento, el caudal en volumen por tonelada y la potencia por
tonelada.
1- Trabalo de compreslon ( ca" kgreO: Es el cambio de entalpla en el
proceso 1-2 en el diagrama presión entalpla el trabajo W es Igual a h1 menos
h2. donde la diferencia de entalpla es una cantidad negativa, lo que expresa
que el trabajo se realiza contra el sistema.
55. 36
2- Calor cedido (Cal/kgren: Es el calor que sale del refrigerante en el
proceso 2-3 Yvale h3-h2, este valor es una cantidad negativa, lo que expresa
que el calor es cedido por el reft1gerante.
3- Efecto reft1gerante (Cal/Kg): Es el calor puesto en el proceso 4-1 es decir,
h1-h4, cuyo cálculo es necesario por que precisamente este proceso es el fin
ó único efecto útU de este sistema.
4- Coeftciente de funcionamiento: Para el ciclo estandart de compresión de
vapor, es el cociente del efecto refrigerante por el trabajo de compresión.
Coeficiente de funcionamiento = h1 - h4
h2 - h1
Caudal en volumen por tonelada (m3 , mto y ton)
Se mide en la entra del compresor (Pto 1), el caudal en volumen por ton. da
una idea aproximada del tamafto del compresor.
5- Potencia por tonelada: Es una fndlce de la bondad del funcionamiento. la
potencia por tonelada es la Inversa del coeftclente de funcionamiento, puesto
56. 37
que un sistema de refrigeración de gran rendimiento tiene una potencia por
tonelada baja, pero un coeficiente de funcionamiento muy alto.
1.4.3.2. Ciclo real de compresión de vapor. Las diferencias escenclales
entre el ciclo real y el standart, están en las caldas de presión en el
condensador y en el evaporador, en el subenfrlamlento dellfquldo a la salida
del condensador y en el recalentamiento del vapor a la salida del evaporador.
El ciclo standart supone que no existe ninguna calda de presión en el
condensador ni en el evaporador. A causa de fricción sin embargo, la presión
del refrigerante cae en el ciclo real. El resultado de esta calda de presión es
que el proceso de compresión entre 1 y 2 requiere más trabajo que en el ciclo
standart.
El subenfr1amlento del Uquldo en el condensador, es un hecho normal cuyo
objeto es tener la seguridad de que un 100% de Uquldo entre en la válvula de
expansión.
El recalentamiento del vapor ocurre normalmente en el evaporador, y está
recomendado como precaución contra las gotitas de liquido que podrlan
introducirse en el compresor. La última diferencia del ciclo real respecto al
57. 38
standart es que la compresión no es Isoentróplca, y hay una pérdida de
rendimiento debido a la fricción y a las restantes perdidas. (Ver figura 10)
p
CiCLO RtAL 2
- - - - - - - - - - - ~ - j - - - - - - - - - -:,-,.:~' --
,
,
,
,
4 -4-............,,~-_ _....1.-+- '
--------------y-d 1
I.~ecae'am e.t.o
Entalpía. Cal/Kg
Figura 10. Fuente: Refrigeración y Acondicionamiento de Aire de
Stoecker W. F.
1.4.4. Pslcometrla. Estudia las propiedades de las mezclas de aire y vapor
de agua. La pslcometrla es Importante porque el aire atmosférico no está
completamente seco, sino que es una mezcla de aire y vapor de agua. Todos
los procesos de acondicionamiento de aire deben tener en cuenta la presencia
del vapor de agua en el aire.
termlnos baslcos:
58. 39
Calor sensible: Este solo se refiere a un cambio de temperatura. No causa
ninguna modificación en el estado de la sustancia, se le denomina sensible
porque puede perclblrse con el sentido del tacto.
Calor latente: Es el que se extrae o se toma de una sustancia y que produce
un cambio de estado en ella pero no modifica la temperatura de la sustancia,
durante el tiempo que tiene lugar este cambio flslco, el calor latente no puede
perslblrse con el tacto y no se registra con el termómetro.
Calor especifico: El calor especIfico de una sustancia es la cantidad de calor
en BTU requerida para cambiar la temperatura de una libra de la sustancia en
un grado fahrenheit.
Calor total: El contenido de calor total de la mezcla aire y vapor de agua,
también se conoce como entalpla. Es la suma de los calores sensible y
latente, expresado en BTU/Lb de aire.
Temperatura de bulbo seco: Es la temperatura tomada con un termómetro
ordinario, y es la medida del calor sensible el aire expresado en grados
fahrenhelt o centlgrados.
UliYlrsi.ad A.tlnoml de Occi••nt.
SECCION BiBliOTECA
59. 40
Temperatura de bulbo humedo: Indica la cantidad de calor total contenida en
el aire y esta expresado en grados fahrenhelt o centfgrados, se determina
cubriendo el bulbo de un termómetro con franela o trapo húmedo y haciendo
pasar aire rápidamente; en esta forma la humedad comienza a evaporarse.
La temperatura del agua y del aire circundante, baja proporcionalmente a la
de la evaporación ocurrida.
Temperatura de punto de roclo: Es la temperatura de saturación a la cual
tiene lugar la condensación de agua. Un ejemplo es la humedad sobre un vaso
de agua con hielo. El vidrio frfo reduce la temperatura del aire por debajo de
su punto de roclo y la humedad que se condensa forma gotas sobre la
superncle del vidrio.
Leyes pslcometrlcas:
1- Cuando el aire seco, se satura adiabáticamente, la temperatura se reduce
y la humedad relativa se Incrementa, y la reducción de calor sensible es Igual
al Incremento simultáneo de calor latente.
2- Cuando el contenido de humedad del aire se Incrementa adlabátlcamente,
la temperatura se reduce simultáneamente hasta que la presión de vapor
60. 41
corresponde a la temperatura de saturación, esta se "ama "Temperatura de
saturación adiabátlca-.
3- Cuando cierta cantidad de agua aislada de evapora, se supone que la
temperatura final será la adiabática de saturación y no está afectada por
convección, por lo que la temperatura de bulbo húmedo será la adiabática de
saturación.
4- La temperatura de bulbo húmedo del aire, depende solo del calor total
sensible y latente y es Independiente de sus proporciones relativas, en otras
palabras, la temperatura de bulbo húmedo, es constante ya que el calor total
también lo es. (Ver figura 11)
La carta muestra básicamente, la relación entre las 5 propiedades del aire:
1- Temperatura de bulbo húmedo
2- Temperatura de roclo
3- Temperatura de bulbo seco
4- Humedad relativa
5- Humedad Especifica.
61. Temperatura húmeda
punto de rodo o
de saturación Oc
Temperatura seu DC
/-:.~.,
~§ " 1," '-',,".(",'""- .
'.~ r::j ¿ j J • , "
·r~~~..f.~~~t~;- '
ÁBACO PSICROMÉTRICO
Temperaturas normales
PROCESO DE ACONDICIONAMIENTO Del AIRE
l. El aire de retorno desde el local (1) eltA mel-
dado con el aire exterior ;'1; necesario para l.
ventlladón.
2. Esta mezcla de aire exterior y de retorno entra
en el equipo tJ) donde es acondicionado., luml-
nlstrado al local.
l. Luelo se repite el ciclo periódicamente.
';
".
~.
l
.":
o:.
:'
."
~. ~.
j ~
Figura 11. Fuente Manual de Aire Acondicionado de Carrier.
/',
Entalpll en la saturación kc:al por kl.
kcal por k& de aire leco
l" J'.
p, ",
p
~
".
~ ~
¡ l
Gramos de a,ua por kg
de aire seco
1.0
70
"
'.0
"]~
""
(U'>
r.,t;('I
rl',O¡
Of,{l
O,fi'>
!','1
""",
l'!'-
,
Factor
de calor
s~nslble
62. 43
Cuando se conocen dos de las anteriores propiedades. las demás se
encuentran con toda facilidad.
La carta parte de la Unea de saturación. osea, a cada temperatura de bulbo
seco corresponde determinada cantidad de humedad. para que haya
saturación; por lo tanto. si en las abclsas se representan las temperaturas. y
en las ordenadas las humedades especrficas. la Unea de saturación tiene la
forma mostrada en la figura: (Ver figura 12)
Figura 12. Fuente: Manual de aire acondicionado de Camero
63. 2. CALCULO DE LA CARGA DE ENFRIAMIENTO
Para efectuar dicho cálculo se establecerán las siguientes condiciones:
~ Se efectuará el cálculo de la carga, separadamente para cada una de las
o1lclnas. se sumarán todos los 1IuJos calorr1lcos de cada local y con base en el
resultado se entrará en el diseno y la selección de equipos.
B- Se Ilustrará el cálculo de la carga térmica del local que presenta mayor
actMdad y equipos. los resultados de los otros locales, se presentarán en
cuadros.
2.1. CONDICIONES DE PROYECTO
2.1.1. Orientación del·edificio. La construcción se encuentra localizada en
el sector Industlal de Yumbo, exactamente a 3 grados y 28 minutos de latitud
norte, con una altitud de 961 metros sobre el nivel del mar. Se establecerá
64. 45
como punto de referencia la entrada principal del conjunto de oftclnas. la cual
está ubicada en la parte oriental. no presenta en sus alrededores estructuras
que tengan efectos de sombra. existe una zona de estacionamiento en la
parte oriental y por la zona norte se encuentra la carretera de acceso; en la
parte sur se encuentran dos árboles que tienen un efecto de sombra
considerable.
2.1.2. Dla de proyecto. Los datos son obtenidos la segunda semana del
mes de agosto de 1.995 de las 12 M a las 15 pm. Los datos obtenidos
fueron los siguientes :
1- En el exterior
Tempatura promedio de bulbo seco 31.1 oC ó 88 °F.
Bulbo húmedo promedio 27 oC ó 80.6°F.
húmeda relativa 76 %.
2- En el Interior
Temperatura promedio de bulbo seco 27 oC (80.6 °F).
Temperatura promedio de bulbo húmedo 23 oC (73.4 °F)
Variación diaria de la temperatura 16.9 oC.
65. 46
2.2 MEMORIAS DE CALCULO.
El calculo de la carga de enfriamiento se mostrara para una de las
oficlnas,luego mediante cuadros se conocerán la carga de enfriamiento por
oficina.
2.3. CALCULO DE LA CARGA TERMICA PARA LA OFICINA DE
CONTABILIDAD.
Datos:
Dimensión: 8.000 x 4.550 mm.
Altura: De suelo a cielo falso 2.650 mm.
Materiales de construcción: La oficina esté constituida de paredes en ladrillo
ordinario de 100 mm de espesor, con una capa de repello en ambos lados de
25 mm y acabados en yeso, tanto en la parte exterior como en el Interior de
un mlUmetro; Suelo embaldosado, cielo falso en tableta de adbesto cemento y
techo en teja ondulada de adbesto con un espesor de 3 mm.
Condiciones circundantes: Las paredes en su lado exterior e Interior estén
pintadas de color habano.
Ventanas: ExIsten tres ventanas en el local, estas tienen marco metéllco con
vidrio ordinario, las dimensiones son: 2.400 x 1.500. mm.
66. 47
Puertas: ExIste una puerta en madera ubicada al oriente cuyas dimensiones
son: 2.150 x 1.000 mm, es una puerta de utilización media.
Ocupantes: La oficina es ocupada por siete personas, con un grado de
actividad de empleados de oflclna los cuales ocupan el local durante 8 horas
en el dra.
Alumbrado: Hay 16 lámparas fluorescentes de 40 watlos. en la hora pico hay
6.400 watlos en funcionamiento.
Equipo Electrónico: Hay siete computadores cada uno con una potencia de
200 watlos funcionando todos los dlas al mismo tiempo.
Horario de Funcionamiento: El sistema debe funcionar seis dlas a la semana
en horario de 07 am a las 19 pm.
2.3.1. Ganancia calorfflca por conducción a través de paredes. Al existir
un diferencial de temperatura, se produce un flujo calorlflco para nuestro caso
dicho flujo va de la parte exterior a la Interior y está representado por:
Q-KxAxAT
Donde:
Q : Flujo de calor.
67. K: Coeficiente global de transmisión.
A : Area total de la pared.
AT: Diferencia de temperatura corregida.
2.3.1.1 Ganancia calorfflca para pared Occidental.
Datos:
Ancho 150 mm
Orientación Occidental
Latitud 3 oC Norte
Temperatura Exterior 31 .1 oC
Ventanas: 2 dimensión (240Ox1500 mm)
Peso por Metro Cuadrado: 300 Kg
(Ver tabla 1.)
Se calcula la diferencia equivalente de temperatura corregida.
AT corregido = a + ATes + b (RsJRm) (ATem - ATes)
Selección de a (Factor de corrección)
23 Temperatura de Confort
31.1 - 23 =8.1
48
68. TABLA 1. DESCRIPCIONDE LACONSTRUCION DE LA PARED
GRUPO COMPORERTES
A 2.5 cm de estuco + 10 cm bloque de concreto
ligero + espacio libre
2.5 cm de estuco + espacio de aire +
5 cm de aislamiento
a 2.5 cm estuco + 10 cm ladrillo comun
2.5 cm estuco
2.5 cm estuco + 10 cm concreto pesado
e 10 cm de ladrillo de fachada + 10 cm bloque
concreto ligero +2 5 + 2.5 aislamiento
2.5 cm estuco + 10 cm concreto pesado +
5 cm aislante
D 2.5 cm estuco + 20 cm bloque de concreto
ligero + 2.5 cm aislamiento
2.5 cm estuco + 5 cm aislante + 10 cm
bloque de concreto pesado
E 10 cm ladrillo de fachada + 10 cm bloque
de concreto ligero
2.5 cm estuco + 20 cm bloque de concreto
pesado
F 10 cm ladrillo de fachada +10 cm ladrillo
comun
10 cm ladrillo de fachada + 5 cm aisla-
miento + 10 cm bloque concreto ligero
Fuente: Manual del Ingeniero Mecanico, Volumen 3, Capitulo 12.
PESO
LBI PIE KG/M
28,8 139 .83
18,3 79,58
55,9 298.90
82,5 305,13
82,5 305,13
82,9 307,08
41,4 202,11
38,8 17888
82,2 303,88
58,8 278,32
89,5 438,94
82,5 305,13
UIIiftl1i.ad Altlnem. d, Oc:ci...tt
SECCION BIBLIOTECA
69. segan la tabla 2 obtengo.
a =-1.095.
b =Coeficiente por pared color exterior
Según la tabla 3.
b =0.55.
Rs =MéxJma Insolación en la fecha considerada.
segun la tabla 4
Rs = 442
Rm =MéxJma Insolación en el mes de Julio.
Segun la tabla 4a
Rm =444.
ATem = Diferencia equivalente de temperatura a la hora considerada. .
según la tabla 5.
ATem =14.4 oc
Por lo tanto
AT corregido =a + ATes + b Rs/Rm (ATem - Ates)
= - 1.905 + 0,55 x(4421444) x(14.4)
AT corregido = 3.89 oC.
50
70. TABLAZ.
CORRECCIONES DE LAS DIFERENCIAS EQUIVALENTES DE TEMPERATURAS
DIFERENCIA DE VARlACION DE LA TEMPERATURA EXTERIOR
TEMPERATURA 13 14
4 -5 -5.5
6 -3.1 -3.8
8 -1.1 -1.6
10 0.8 0.3
12 2.9 2.04
1. 4.9 4.4
Fuente: Manual de Aire Ac:ondic:ionado de Carrier, Primera Parte.
TABLA 3.
COEFICIENTE DE COLOR
PARA PAREDES
NOMBRE COEFICIENTE
DEL COLOR b
Azul oscuro 1
Rojo oscuro 1
Marron oscuro 1
Verde claro 0,78
Azul claro 0.78
Gris claro 0,78
Blanco 0,55
Crema 0.55
1S
·5.9
-4
-2
-0.1
1.8
3.8
Fuente: Manual de Aire Acondicionado de Carrier.
18
-6.04
-4.5
-2.5
-0.8
1.3
3.3
17
-6.9
-5
-3
-1.1
0.8
2.8
71. TABLA 4. lfAXIl1AS APORTACIONES SOLARES
ORIENTACION DE LA PARED
LATITUD NORTE MES N E s o
.....".............j~.~~.~...................................J.~................................ª.~ª.................................ª.ª.................................~ª.ª...............
..........j~.~~.~..y...~~.~~..........................~.~................................~.~.~.................................ª.ª.................................~1..~...............
.........~~.~~~..y...~.~~.L..... ..................~?..................................~.~~.................................ª.ª.................................~~.~...............
O 1
.........~.!~..),!..!!1~r.;,~...........................~?..................................~.~~.................................ª.ª.................................~~.~...............
..........9..~.y...!!.~~!!.~............................~?..................................~.~~.................................ª.~.................................~~.~................
··_·...."'n.!;:~~~..··..··t.._
.._
....·..;;.._·..............·
..............:~:··.................._
........;:;...............................~!.._
..........
....................j~.~~.~...................................J.ºª................................~.~º.................................ª.ª.................................~~.º...............
..........j~.~~.~..y...~~.~~............................ª1...................................~.~ª.................................ª.ª.................................~~.ª...............
.........~~.~~~..y...~.~~.~..........................~~..................................~.~~.................................ª.ª.................................11.~.....__.......
1O 1
.........~.!~..y...!!1!:r.;,~...........................~?..................................~.~~.................................?.~.................................11.~...............
..........9..~.y...!~.~~~!.~...........................~?..................................~.~º................................~.~...............................~~.º...............
·········_·"-!;:~~:·········t·····..········_;!···_····..._·................~;~............................._~;:..........................._
..;.~..._...._.
Fuente: MarAlaI de Aire Acondicionado de c.rier. Prtmera Parte
72. TABLA4a. APOR T AC IONE S SOLARE S
LAliTUO NORTE HORA SOLAR
40 ORIENTACION 10 11 12 13 14 15 16 17
N 38 38 38 38 38 35 32 54
22Juloy E 257 119 38 38 38 35 32 27
21-may S 94 119 146 119 94 51 32 27
O - - - '----~ 38 38 119 257 385 439 436
-_._-
Fuente: Manual de Aire Acondicionado de Carner. Primera Parte
73. TABLA 5. DIFERENCIA EQUIVALENTE DE TEMPERATURA PARA MUROS
HORA SOLAR HORA SOLAR
ORIENTACION PESO MURO 10 11 12 13 14 16 16 17
Kg/m2
E 300 16,7 17,2 17,2 10,6 7,8 7,2 6,7 7,2
S 300 -1,1 3,9 6,7 11,1 13,3 13,9 14,4 12,8
O 300 O 1,1 2,2 3,9 5,5 10,6 14,4 18,9
N 300 -1,1 -0,5 O 1.7 3,3 4,4 5,5 6,1
Fuente : Manual de AIre Acondicionado de carrter, PrImera Parte.
74. El coe1lclente global de transmisión K
K = ( 1/Resistencia del Muro)
K =(1/ Reslst.enlucldo+Resist ladrlllo+resis yeso)
56
Según la tabla' el valor de las resistencias para materiales de construcción
será :
Resistencia Enlucido: 0,10 Hpl~ °F/Bto
0,020 oC M"f2H1KCal.
Resistencia ladrillo común: 0,41 oC Mt2
H1 Kcal.
Resistencia Yeso Ligero : 0,0052 oC Mt2
H1KCal
K = 1/[2(0,020) + 0,41 + 2(0,0052)] = 2,17 KcalloCMt2H
Calculo del área de la pared:
Largo: 8 Mt. Area total =(8x2,65) - 2(3,6)]
Altura: 2,65 Mt Area total = 14 Mt2
Area ventana: 3,6 Mt2
Por lo tanto ellluJo de calor Q será:
Q =(14 Mt2
) x (2,17 KcalloCMt2
H) x (3,89)
Q =118,17 KcallHora.
75. TABLA 6. VALOR DE RESISTENCIAS PARA MATERIALES DE CONSTRUCION
RESISTENCIA TERMICA R
Por PO de Por el espesor Por el espesor
DESCRIPCION DE MATERIALES espesor listado listado
POR GRUPOS h.ple. flBtu.pg h.ple. flBtu.pg h.mt. elKea!
MATERIAL DE MANPOSTERIA
Ladrilo comun, 4 pg • 10cm 0,2 0,8 0,41
tadrllo Implo para fachada, 4 I 0,15 0,6
Bloque hueco 1celda, 3pg 0,8
Bloque hueco 1 celda, 4 pg 1,11
Bloque hueco 2 celdas, 6 PSI 1,52
Bloque hueco 2 celdas, 8 pg 1,85
Bloque hueco 3 celdas, 12 PSI 2,5
Ladrllo hueco 3 celdas en y.so, 3 pg 1,35
Ladrilo hueco 3 celdas en yeso, 4PSl 1,61
Ladrllo refractario, 4 pg 0,14 0,56
MATERIAL DE ACABADO
Repelo de arena-eemento, 1/2 PSI 0,2 0,1 0,02
Repelo de y.so con agregado lvtano,112 0,32
Repelo de yeso con agregado lviano,518 0,39
Repelo de y.so con agregado lvIano, 3/4 0,47
Repelo de yeso con agregado perita 0,67 0,5
Repelo de y.so con agregado de arena 0,18 0,14
Estucado de cemento 0,12
Estucado de y.so 0,3 0,0052
Fuente: Refrigeración y Aire Acondicionado Instituto Aiñngten VA • Capitulo 6
76. 2.3.1.2. Ganancia calorfnca para pared none.
Datos
Ancho 150 mm.
Orientación norte
Latitud 30
norte
Temperatura exterior 31,1 oC.
1 Ventana de 1,5 x2,4 mts.
Diferencia de temperatura :
(AT) ATcorr =a + ATes + b Rs/Rm (ATem - ATes)
a =1,905.
Rm =65.
b =0,55.
ATem =4,4.
Rs =77.3
ATcorr =-1,905 + 0,55 (77,3/65) (4,4)
=0,972
Coeftclente global de transmisión (K) =2,17 KCalloC Mt2
H
Longitud de la pared:
Largo =4,55 mts
Alto =2,65 mts
58
77. 59
Area ventanas :: (2,4 x 1,5) :: 3,6 Mt2
Area total :: [(4,55 x2,65) - 3,6] :: 8,45 Mt2
Donde elllujo de calor seré:
Q :: 0,972 X 2,17 KcaVoC Mt2
H x8,45 Mt2
Q :: 17,82 KcaVHora.
2.3.1.3 Ganancia calorlflca para pared oriental.
Datos:
(Por ser pared Interior se considera como tabique).
Area de transferencia : 7 Mt2
.
Orientación: Oriental
latitud: 30
Norte
Temperatura exterior bajo techo : 27 oC
L.T:: (27 - 23 ) :: 4 oC
Q = 60,76 KCaVHora.
La diferencia equivalente de temperaturas para una pared común a dos
oficinas, es préctlcamente cero, por lo tanto asumimos que no hay
transmisión de calor a través de estas.
Ullwershlld Alttnom. de 0CcI4111tt
SECCION BiBliOTECA
78. 60
2.3.2. Ganancias calorfncas a través de techos. Datos: Techo en teja
de asbesto, de construcción ligera Techo asoleado y considerado horizontal.
DMslón en cielo falso sin ventilación intermedia Vientos de 12 KmlHora - Aire
entre techo y cielo falso quieto.
Techo considerado como claro.
Elflulo de calor se da por:
1. Convección con el aire exterior.
2. Conducción a través de la teja Asbesto
3. Convección con el aire encerrado.
4. Conducción a través del cielo falso.
5. Convección con Aire quieto.
Los valores de las resistencias de los anteriores materiales se obtienen Según
la tabla 7.
R1 = 1/h aire =0.052 OC Mt 2 Hora I Kcal.
R2(teja de asbesto) =0,01 oC Mt 2 HIKcal.
R3(alre) =1/alre =0.0203 oC Mt 2 HIkcal.
R4(clelo falso) = 0,006 oC Mt2
HIKcal.
R5 (aire) = 0.019 e Mt 2 HIkcal.
79. TABLA 7. RESISTENCIAS TERMICAS PARA MATERIALES Y AISLANTES
MATERIAL DESCRIPCION ESPESOR RESISTENCIA R I
PORMl Por el espesor
d.....don
Posicion FIujo de calor -x10 ¡
horizontal Asceodarte (hIIemo) 20-100 174 I
/
- •• (Verano) 20-100 160
- Descendente (Invierno) 20 209
- - 40 236
Lanma de '*e - - 100 252
- - 200 256
- - 20 174
- - 40 291
- - 100 203
Inclilaclón 45 Ascandarte (hIIemo) 20-100 285
- Descandarte (Verano) 20-100 183
Vertical Horizontal (Invierno) 20-100 199
- Horizontal (Verano) 20-100 176
CONVECClON Poslclon ~ de calor
Horizontal Ascendente 125
Inclilaclon 45 - 127
Alre cpeto Vertical HorIzontal 140
Inclilaclon 45 Descendente 158
Horizontal - 190
V1arto de 29 KmIh Todas las posiciones y ~nes (InY) 35
V1ento de 12 KmIh Todas las posiciones y ca-ecdones (ver) 52
Fuente :Manual deNle Acondicionado de Csñer, Prinera. Psrte_
80. Donde el 1IuJo de calor viene dado por la siguIente fonnula:
Q techo
R
Q techo
=.1TxAlR
= R1 + R2 + R3 + R~ + Rs
=(ATxA)/(R1 + R2 + R3 +~ + Rs)
Area de techo: (8,0) x (4,55)
: 36,4 Mt2
Diferencia equivalente de temperaturas:
a =-1,905.
b =0,55.
Rs =668,2.
Rm =631.
Según la tabla 8 la diferencia equivalente de temperatura para un techo de
340 kg de peso y siendo las 3 pm será:
62
81. TABLA 8. DIFERENCIA EQUNALENTE DE TEMPERATURA
PARA TECHOS
HORA SOLAR
CONDICIONES PESO 10 11 12
TECHO
Kg/ rnt2
Soleado 300 4,4 6,1 8,9
400 6,7 7.2 8.9
Cubierto con agua 300 -1.1 1.1 2.8
Rociado 300 -1.1 O 1.1
En la sombra 300 -1.1 -0.5 O
Fuente : Manual de Aire Acondicionado de Carrler,
Primera Parte.
ATem = 16,56 oC.
13
12,2
12.2
3.9
2.8
1.1
ATcorregido =a + ATes + b x (Rs/Rm) x (AT mes - ATes)
ATcorregldo =-1,905 + 0,55 (668,21631) (16,56 OC)
ATcorregido = 7.73
Flujo calorífico por Techos:
Q ::::[(7.73x36.4mt2
)1(0.052+0.01 +0.19+0.006+0.0203)]
Q:::: 1091.5 KcaVHora .
14
15
14.4
5.5
4.4
2.2
63
16
17,2
15.6
6.7
5.5
3.3
82. 2.3.3. Ganancia calorfflca por calor solar a trav6s de superficies de
ventanas. Condiciones de diseno: Seleccionamos el flujo calorf1lco por
metro cuadrado para el mes de agosto, en dos ventanas con orientación
occidental y 3° latitud Norte.
Atmósfera contaminada, 961 Mt de altura sobre el nivel del mar y marco
metálico.
2.3.3.1 Ganancia caloriflca Ventana occidental: SegOn la tabla l.
Máxima aportación de Calor =442 KcaVHora Mt2
Area de dos Ventanas =7,2 Mt2
Factor de sombra =0,56.*
Factor de atmósfera =0,90.-
Según la tabla 10.
Factor de almacenamiento =0,54.
Según pie de pagina de la tabla 9 la Corrección por Altitud para 936 Mt es
2,1% =1,021.
* ** Valor obtenido del manual de aire acondicionado de Carrler
pagina 1-43, 1-44
64
83. TABLA 9. APORTACIONES SOLARES
LATITUD NORTE HORA SOLAR
O ORlENTAClON 10 11 12 13 14 15 16 17
N 89 92 92 92 89 84 75 46
24 Agosto y E 279 125 38 38 38 35 32 16
2O-abr S 38 38 38 38 38 35 32 16
O 38 38 38 124 279 401 442 349
LATITUD NORTE HORA SOLAR
10 ORlENTAClON 10 11 12 13 14 15 16 17
N 40 38 38 38 40 40 43 40
24 Agosto y E 282 124 38 38 38 35 29 19
2O-abr S 38 38 38 38 38 35 29 19
O 38 38 38 124 282 404 442 374
.
Correclones Marco metalca Pafeeto de Alltud PLl'lto de roelo sup PLl'lto de roelo sup (
ónlng~o IIfT1)Ieza 0.7 % por 300m a 19.5 C a 19.5
x 1JO.85 61.17 15%max 14%por 10 e 14%por10 C
Fuerte: Manual de AIre Acondicionado de c.rter. Primera Parle
84. TABLA 10. FACTOR DE ALMACENAMIENfO PARA SUPERFICIES ACRISTALADAS
PESO KgJmt de HORA SOLAR
ORIENTACION supeñicie de suelo 10 11 12 13 14 15 16
ORIENTE 500 0,52 0,35 0,24 0,22 0,2 0,18 0,16
150 0,64 0,42 0,25 0,19 0,16 0,14 0,11
SUR 500 0,52 0,63 0,7 0,71 0,69 0,59 0,45
150 0,17 0,86 0,88 0,82 0,56 0,5 0,24
OCCIDENTE 500 0,09 0,09 0,09 0,18 0,36 0,54 0,66
150 0,08 0,08 0,08 0,19 0,42 0,65 0,81
NORTE 500 0,16 0,79 0,81 0,83 0,85 0,87 0,88
- -
150 0,88 0,91 0,94 0,96_____ 0,96 - ___ º,98 0,98
Fuente: Manual de aire acondicionado de carrier. Primera parte
85. correCCión por pumo eJe Rocro .;;; Temp 26,2 ..c
=26,2 - 19,5;;; 6,7 oC
=1+(6,7/10 x 0,14)
;;; 1,09.
Según pie de pagina de la tabla 9 la Corrección por marco metálico: 1,17
EI1IuJo de calor solar a través de ventanas será:
67
Q ;;; (442 Kcal/h Mt2
) x( 7,2 Mt2
) x 0,56 x0,90 x0,54 x1,021 x1,09 x1,17
Q ;;; 920 KcaUHora.
2.3.3.2. Ganancia calorfflca Ventana norte. Máxima aportacIón de calor
77,3 KcaUHora Mt2
.
Area: 3,6 Mt2
•
Factor de almacenamiento: 0,87
Q =(77,3 KcaUh Mt2
) x (3,6 Mt2
) x 0,87 x 0,56 x 0,90 x 1,021 x 1,09 x 1,17
Q;;;; 158,8 KcaUHora.
'* Viene de la pagina 1-43 del manual de aire acondicionado de Camero
2.3.4. Ganancia calorfflca por conduccl6n a través de ventanas. Viene
dada por la siguiente ecuación:
Q =A x AT x K Vidrio
86. Según tabla No 11.
K vidrio = 5,5 KCallH Mt20
C .
Diferencia de temperaturas.
AT = Text - Tlnt = 31.1 - 24
AT=7.1°C
Area total =10.8 Mt2
•
Por lo tanto ellluJo de calor por conducción será:
Q = (10.8 Mt2) x (7.1 o C) x (5.5 Kcall h mt 2 OC)
Q =421,74 KcallHora.
TABLA 11. COEFICIENTE GLOBAL DE TEMPERATURA PARA
VIDRIOS YPUERTAS
VERTICAL
Sendllo Doble
Espasor da la lémina(mm) 6 13 20 ·100
Chasis simpla 5,5 3 2,7 2,6
Chasis dobla 2,6
Espasor da la puerta (cm) Puerta Puerta doble
sencilla chasis o armadura
2,5 3,4 1,7
3,2 2,9 1,6
3,6 2,6 1,5
4,4 2,5 1,5
5,1 2,3 1,4
6,3 1,9 1,2
7,6 1,6 1,1
Vidrio (herculita de 19 mm) 5,1 2,1
Fuente : Manual de aire acondicionado de earrler
68
Triple
6 13 20·100
2 1,7 1,6
87. 69
2.3.5. Ganancias calor1ncas Interiores debidas a los ocupantes. Segan la
tabla 12 la ganancia debida a los ocupantes para empleados de oficina y una
temperatura de 23 oc
Qs =65 Kcal/ H.
QI =49 Kcal/ H
Datos: 7 Personas adultas
2.3.5.1 Ganancia de Calor Sensible:
Qs =(7 x 65) =455 KcallHora.
2.3.5.2. Ganancia de Calor latente:
QI =(7 x 49) =343 KcallHora
2.3.1. Ganancias calorfflcaslnterlores Debido al alumbrado.
Datos:
16 Lámparas C/u 40 Vatios.
Q =No de unidades x watlos.
Q =(40 x 16) =640 Watios
UIIttt1ItIId Altlnom. de oa:i~etlle
SECCION BiBliOTECA
88. TABLA U. GANANCIA CALORIFICA DEBIDA A LAS PERSONAS
GRADO DE ACTMOAD TIPO DE APUCAOOII .lIItabetllmo .1....... m 71
• :M 2t
lIaIIIIIre aclulto .edlo K"" KcM'II Kcellh KceIJb KceL'II
KcM'II Kc:eI.III Se_ble latente Seaa8II........ Sellllble latente Se_ble latente S.....el......
Sentados.en reposo Teelro EflCuellt!)r¡ 98 B8 44 4449 37 53 35 58 30 65 23
Sentados trablio liaero Escuela sacunclarie 113 IIl5 45 55 48 52 54 48 SO 40 ea 32
EllIIIleltdos de oficina OIk:in. hotel ~rt 120 113 45 ea 50 63 54 59 61 52 71 42
De Die en nwchl lenta Almacenes lienda 139 113 45 ea 50 63 54 59 61 52171 42
Sentido de Die Farmacia 139 126 45 81 50 re 55 71 64 6:2 73 53
De pie marchl lenta Banco 139 126 45 81 50 re 55 71 64 6:2 73 53
Sentido Restaurente 126 139 48 91 55 84 61 78 TI ea 1st 58
Trab110 ligero Fabrica 202 189 48 141 55 134 62 127 T4 115 19:2 g¡
Blile o danza Sale di bale m 214 55 159 6:2 152 89 145 52 132 101 113
MIrCM 5 krnlh Fabrica trllbli9~. :25:2 252 as 1801 78 176 83 169 98 t56 116 138
TrIIb~o re(liclo Pista de bolo. __'- 378 385 __ J..3. :2S: 117 248 122 ___W 132 - -
233 152 213
Fuente: Manual de Ilre acondlclonldo de Clm.... Primera plrte
89. Para lamparas de tipo 1Iuorescente la ganancia real será:
Según la tabla 13.
TABLA 13. GANANCIAS CALORIFICAS DEBIDAS
A ALUMBRADO
TIPO GANANCIAS SENSIBLES
Fluorescente Potencia útil vatios
X 1,25 X 0,86
Incandescente Potencia útil vatios
X 0,86
Fuente: Manual de aire acondicionado de
Carrier.Primera parte
Qreal =Q x 1.25 xO.86
Qreal =(640 Vatios) x 1,25 x 0,86.
Qreal alumbrado =1075 kCallHora
Kcallh
2.3.7. Ganancias calorincas Interiores debida a equipos de onclna.
Datos:
7 Microcomputadores con una potencia útil en vatios de 200 por Equipo.
Q =No de equipos x Vatios.
Q = 1400 Vatios
Que multiplicados por un factor de conversión es:
Q = 1203 KcallHora.
71
90. 2.3.8. Ganancia calorfflca por Infiltraciones. Datos:
Oficina de 8 x 4.55 x 2.65 mts
Concentración de Personas (C P)= 10 Personas/Hora
Puerta de 2.15 x 1 Mt.
Temperatura seca exterior 31.1 oC - 88°F
Temperatura Interior de diseno 23 oC - 73.4 °F
Oficina con dos lados expuestos.
Caudal de Infiltración en el espacio (C lE).
Según la tabla 14 para una protección ordinaria de puertas y ventanas el
factor de Infiltración seré:
Factor de infiltración = 0.9
CIE = (Volumen Espacio xFactor de Infiltración) / Hora.
CIE = 8 x4.55 x2,65 x0.90 /60 mln.
= 1,45 Mt 3 I Mln. ó = 51,3 pies 3 / Mln.
Caudal de Infiltración por puerta (C I P)
Tréflco de Personas (T P) = (C P) / No de Puertas.
(T P) =10
Diferencia de Temperatura (O T) = (Text - Tlnt Diseno).
(O T) =88 - 73,4
(O T) =14,6. ° F
72
91. TABLA 14. FACTOR DE INFILTRACION EN EL ESPACIO
CLASE DE AREA VERANO INVIERNO
O DE EDIFICIO Protección Sellamiento Protección Sellamiento I
Ordinaria Impermeable Ordinaria Im~rmeable
I
Sin ventana o puertas ext. 038 01 15 05 0,25
Salones de entrada t,20 a 1 80 06a 09 2 a 3 1 a 1,5
Salones de recepcion 12 0,6 2 1 I
Ba"os 1 2 0,6 2 1
Infiltraccion a traves de
ventanas-Piezas con un 0,6 0,3 1 0,5
lado expuesto.
Pieza con 2 lados expuest. 09 045 15 0,75
Pieza con 3 lados expuest. 1 2 0,6 . 2 1
Pieza con 4 lados expuesto 1,2 0,6 ~
2 1 .~
----- - - - _.. _- - - - - - - - - - -
Fuente: Refrigeración y Aire Acondicionado Instituto Airlingten V.A. -1981 - Capitulo 7
93. ~egl1n la taDla 10 para un traTlco ae personas T ,. Y una arrerencla ae
temperatura D T el caudal de Infiltración por puertas será:
Caudal de Infiltración por puertas (C I P):
C I P = 5,84 Pie3
I Mln ó = 0,165 Mt3/Mln.
Caudal Total Por Infiltración (C T 1):
CTI=CIP+CIE
C T I = 0,165 Mt3/Mln. + 1,45 Mt3/Mln.
C T 1= 1,610 Mt3/Mln. ó = 57,14 CFM.
Donde la ganancia de calor sensible se expresa de la siguiente forma:
Os = 1.1 x C T I x D T.
Qs = 1,1 x ( 57,14 ) x 14,6.
Os = 917,6 BtulHora ó = 230,85 KcaVHora.
La ganancia calor latente se expresa de la siguiente forma.
QI = 4.840 x e T I x W
AW = Cantidad Humedad (lb)lCantldad aire seco (lb)
AW = Seleccionado en la carta pslcrométrlca.
AWext = 0,0250 (T extls = 88°F - W = 84%).
AW Int. = 0,0185 ( Tlntls = 80,6 °F - W = 83%).
01 = (4840) x (57,14) x (0,0250 - 0,0185)
QI = 1797 BtulHora ó = 453 KcaVHora.
75
94. TABLA 16. CAUDAL DE VENTILACION
POR PERSONA (e.v.p.)
APLICACION C.V.P Pies/min
x Persona
BANCO 7
PELUQUERIA 7
SALON BELLEZA 25
CANCHA BOLOS 15
BAR 30
ALMACEN PUBLICO 7
BODEGA 5
DROGUERIA 20
PARQUEADERO 15
HOSPITAL 10
HOTEL - PIEZA 7
SUIT 10
SALON PRINCIPAL 7
SALON CONFERENCIA 20
OFICINA GENERAL 15
o.. SALON CONFER. 25
SALON DE BILLAR 20
RESTAURANTE 30
.. ..
Fuente: Refrigeraclon y Aire AcondiCionado Instituto
Ainingten V.A. -1981 - Capitulo 8
95. 2.3.9. Ganancia caloriflca por ventilación. Condiciones:
Número de Personas = 7
De la tabla 18 seleccionamos para oficina general el caudal de ventilación
por persona (C P).
(C P) =15 ples3
/ Mln x Persona ó =0,42 Mf/ Mln xpersona.
Caudal por ventilación total (C V T) =(C P) x No personas
(C V T)= (15 ples3
/ Mln xpersona) x( 7 personas)
(C V T)= 105 ples3
/ mln ó = 2,97 Mf/ Mln.
Ganancia de calor sensible (gs).
as =1,1 xC VTxAT
as = 1,1 x105 x14,6
as =1686,3 Btu / Hora ó =424,9 Kcal/ Hora.
Ganancia de calor Latente (gil.
QI =4840 xC V T xAW
al =4840 x 105 x (0,0250 - 0.0185)
01 =3303 Btu / Hora ó =832,4 Kcal/ Hora.
77
A contlnuaclon se presentaran las tablas de resultados para todas las oficinas
96. 78
TABLA 17. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: CONTABILIDAD
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2.65 Altura Altura 2.65 Altura 2.65
PAREDES
Ancho 4.55 Ancho ancho ancho 8 Mts
No. Artl No. Arta No. Arta No. Arta
VENTANAS
1 1.5><2.4 2 1.5><2.4
No. Area No. Area No. Area No. Area
PUERTAS
1 2.15*1
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
36.4m2 1 16x40 PERSONAS
Pe.0341.7Kg 7 10perIHOR
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q - 17,82 KcaIIH Q-O Qa 60,76 kcaIIH Q-118,17 KcaIIH
PAREDES
CONDUC.CAL.ORS Q = 28Sa,3 KcaIJH Q=O Q=O Q= 1201,1
OLAR.VENTAN KcaIJH
TECHOS 1210,5KcaIIH
GANANCIA S INTERIORES
Calor sensible Qs ,. 455KcallHora
OCUPANTES
Calor Latente QI =343 KcallHora
ALUMBRADO Q - 1075 KQ,VHorl
EQUIPOS OFIC. Q. - 1203 KcallHora
GANANCIAS POR INFILTRACIONES • VENTILACION
Cllor sensible Qs. 230,8 KCIVHorl
INFILTRACIONES
Calor Ilttntt QI. 452 KCIVHorl
Calor sensible Os =424,9 KcaVHora
VENTILACION
Calor latente 01 =832 KcaVHora.
CARGA
TOTAL 7,121 KcallHora 2825e BTUlHora 2,35 Ton.
Fuente: Los Autores
97. 79
TABLA 18. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: DESPACHOS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2,65 Altura 2,65 Altura 2,65 Altura
PAREDES
Ancho 7,61 Ancho 3,06 ancho 4,55 ancho
No. Arel No. Ntl No. Arte No. Arte
VENTANAS
240><1,5 24X1,5
No. Area No. Area No. Area
PUERTAS
2,15x1
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS
7,61x4,55134,62 3 12 x40W 3Und.
Ps341,78 kglMt2
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE
Q=55,34 Q=51,72 Q=137~
PAREDES
GAN. A TRAVES DE Q=299,38 Q=-- Q=370,8
VENTANAS Tot. vent 388,8.
TECHOS Q = 1037 KclllHora
GANANCIA S INTERIORES
Cllor sensible Qs • 385 kclllhora
OCUPANTES
Cllor latente QI =147 kcaUhora
AlUMBRADO Q =516 KclllHora
EQUIPOS OFIC. Q • 515 KclllHora
GANANCIAS POR INFILTRACIONES. VENTILACION
Cllor len.lble QI· 210 KCIVHore
INFllTRACIONES
Cllor Imntt QI· 402 90 KCIVHore
Calor sensible Qs =182,1 KcallHora
VENTllAClON
Calor latentt QI = 356 KCIVHore.
CARGA
TOTAL 4118 KcallHora 18340,2 BTUlHora 1,36 Tonelada.
Fuente: Los Autores
No. Area
TRAFICO DE
PERSONAS
8 pers.x hOra
OCCIDENTE
Q=O
Q=--
UII"",I1d Al"",,"' de Occlll"'''
SECCION BiBliOTECA
98. 80
TABLA 19. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: GERENCIA DE RECURSOS HUMANOS.
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura 2,65 Altura 2,65 Altura
PAREDES
Ancho
-- Ancho 4,550 ancho 3,59 ancho
No. Are. No. Art. No. Art. No. Are.
VENTANAS :':,4Xl,b-
3,S 2,4x1,5
No. Area No. Area No. Arel No. Are.
PUERTAS
8,45 5,91
TECHO: ARe.. No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
17,M MfI -PES- epersona. 12 Unidades 1 computador PERSONAS
341,78K~ 5 persona.. hora
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Qa O Q-O,22 0-.,31 Q-O
PAREDES
CONDUC.CALORS Q=- Q= 1i2,98 Q=39O,81 Q'I:
OLAR.VENTAN
TECHOS 537,5KclllH
GANANCIA S INTERIORES
Calor lenllble QI =390 KcaUHora
OCUPANTES
Calor latente QI = 294 KcaUHora
AlUMBRADO Q= 518 KcaJIHora
EQUIPOS OFIC. Q - 172 KcaJIHora
GANANCIAS POR INFllTRACIONES • VENTllAClON
Cllor sensible Qs - 111,98 KCIIIHore
INFILTRACIONES
Cllor Ilttnte QI- 219 36 Kc.lIHore
Calor sensible Qs =364,14 KcallHora
VENTllAClON
Cllor latente QI ., 713.41 KcallHora.
CARGA
TOTAL 3868.n KclllHora 14557 BTUlHora 1,21 Toneladls,
Fu_te: Los Autores
99. 81
TABLAZO. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: GERENCIA lECNleA
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura 2,65 Altura Altura 2,65
PAREDES
Ancho
-- Ancho 3,85 ancho Ancho 4,55
No. Arta No. Arta No. Arta No. Arta
VENTANAS
2,4Ox1,5 2,4Ox1,5
No. Area No. Area No. Area No. Area
PUERTAS
6,6 Mt2 8,45
TECHO No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
AREA:17,51 8 personas 12 unidades 1 PERSONAS 5 x H
PESO: 341 7KgI
GANANCIAS CALORIFICAS
NORTE SUR ORIENTE OCCIDENTE
Q. Q-O,17 Q- Q • 71,39 KcaIIH
PAREDES
CONDUC.CALORS Q= o Q= 193,7& Q=O Q=704,48
OLAR.VENTAN KclllH
TECHOS
Q-524.8
GANANCIA S INTERIORES
Calor sensible as =390 KcallHora
OCUPANTES
Calor Latente al = 294 KCIIIHora
ALUMBRADO Q = 51& KcaUHora
EQUIPOS OFIC. Q • 172 KclllHora
GANANCIAS POR INFllTRACIONES • VENTllAClON
Calor sensible as • 111 ,25 KcallHora
INFllTRACIONES
Calor latente QI· 217 9:3 KcallHora
Calor sensible as = 364,14 KcallHora
VENTllAClON
Calor latente al =713 41 KcallHora.
CARGA
TOTAL 3943,i7 KcallHora 15649 BTUlHora 1,3 Ton.
Fuente: Los Autores
100. 82
TABLAlt. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: SISTEMAS
CONDICIONES DE PROVECTO
NORTE SUR ORIENTE OCCIDENTE
Altura Altura
-- Altura 2,65 Mt Altura 2,65
PAREDES
Ancho
-- Ancho ancho 7,2Mt ancho 8,27Mt
No. Artl No. Artl No. Artl No. Artl
VENTANAS
1,5x1,5
No. Arel No. Area No. Area No. Area
PUERTAS
16,83 19,76
TECHOAREA: No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
35,48 Pelo: 341,7 2 personal 24 unldadel 4 comp. 2 fotoc PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q-O Q-O QII 274,34 kcaIIH Q - 171,58 KcaIIH
PAREDES
CONDUC.CALORS Q=O Q=O Q=244,19 Q=O
OL.AR.VENTAN
TECHOS 1063
GANANCIA S INTERIORES
Calor sensible Os = 130 KcallHora
OCUPANTES
Calor Latente 01 = 98 KcallHora
ALUMBRADO Q = 1032 KcallHora
EQUIPOS OFIC. Q - 2408 KcallHora
GANANCIAS POR INFilTRACIONES. VENTILACION
Calor sen,lble Q, -213,35 KceVHora
INFILTRACIONES
Celorllttnte QI-41788 KelVHora
Calor sensible Os =121 .4 KcallHora
VENTILACION
Calor latente QI =237,83 KcallHora.
CARGA
TOTAL 8052,3 KcallHora 24015,5 BTUlHora 2 Ton.
Fuente: Los Autores
101. 83
TABLA 12. C~DELACARGAT~CAPOROnaNA
OFICINA: JEFE DE ADMINISTRACION y VENTAS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2,65 Altura 2,65 Altura Altura
PAREDES
Ancho 3,5 Ancho 3,5 ancho ancho
No. Artl No. Arta No. Arta No. Artl
VENTANAS
24OX1.5 1,2x1,2
No. Area No. Area No. Arel No. Area
PUERTAS
5.675 7,83 Mf
TECHOAREA: No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
15.g2 ~ 1 persona 4 Unldade. 1 Micro PERSONAS 5 x h
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q - 15,58 KcaIIH Q-O,20 QII QII
PAREDES
CONDUC.CAlORS Q =290,84 KcaIIH Q = 77,41 Q= Q=
OLAR.VENTAN
TECHOS 476,oe Kcal.n-l
GANANCIA S INTERIORES
Calor sensible Qs =65 KcallHora
OCUPANTES
Calor Latente QI = 49 KcallHora
ALUMBRADO Q = 172 KcallHora
EQUIPOS OFIC. Q - 172 KCallHora
GANANCIAS POR INFILTRACIONES. VENTILACION
Calor sensible Qs • 102.24 KcallHora
INFILTRACIONES
Cllor Imm. QI· 200 25 KCIlIHorl
Calor sensible Qs = 60,7 KcallHora
VENTILACION
Calor latente QI =118,91 KcallHora.
CARGA
TOTAL 1821,28 KcallHora 6433,2 BTUlHora 0,53 Ton.
Fuente: Los Autores
102. B4
TABLA13. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: FINANZAS Y COMPRAS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
AltUra 2.85 AltUra 2.85 AltUra Altura
PAREDES
Ancho 5,23 AnchO 5,23 encho ancho
No. Area No. Area No. Area No. Area
VENTANAS
2.4Ox1.5
No. Arte No. Ar.e No. Arte No. Arte
PUERTAS
1026 966 MtZ
TECHOAREA: No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
23,79 Mt2 3 perwona. 8 Unldade. 3 equlp+ 1fotoc. PERSONAS
1Oxhora
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q=28,3 KcaIIH Q=0,24 KcallH Q= Q=
PAREDES
CONDUC.CALORS Q • 2iO,62KcaIIH Q. Q. Q.
OLAR.VENTAN
TECHOS 712,7 KcallHora
GANANCIA S INTERIORES
Celor s.nslbl. Qs - 196 KcellHora
OCUPANTES
Celor L.lttm QI -147 KcefIHore
ALUMBRADO Q• 344 KcallHora
EQUIPOS OFIC. Q = 1378 KcallHora
GANANCIAS POR INFILTRACIONES - VENTILACION
Calor sensible Os =
158.77 KcallHora
INFILTRACIONES
Calor latente 01 =311 ,O1 KcallHora
Celor s.nslble Os -182.12 KcellHora
VENTILACION
Celor Imm 01- 366 76 KCIlIHore,
CARGA
TOTAL 3.832,4 KcallHora 14.413,5 BTUlHora 1,2 Ton.
Fuente: Los Autores
103. 85
TABLA 14. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: JEFE DE CONTABILIDAD
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2,S~ Altura 2,S~ Altura Altura
PAREDES
Ancho 3,17 Ancho 3,17 ancho ancho
No, Arta No, Arta No. Artl No, Area
VENTANAS
2,4x1,5
No. Area No. Area No. Area No. Area
PUERTAS
4,8 Mra S,2!5 Mra
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
14,42 2 Personas Sunidades 1 Micro PERSONAS 5 x H
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q -13,17 KclllH Q • 0,18 KclllH O- Q-
PAREDES
CONDUC,CALORS Q =290,62 KcaIIH Q= Q= Q=
OLAR.VENTAN
TECHOS 432 Kcll.1H
GANANCIA S INTERIORES
Calor sensible Qs =130 KcaVHora
OCUPANTES
Calor Letante QI =98 KceVHora
ALUMBRADO Q= 258 KcallHora
EQUIPOS OFIC. Q- 172 KclllHora
GANANCIAS POR INFILTF~ACIONES • VENTILACION
Calor s.nslbl. Qs. 93,72 KcaVHol'I
INFILTF~ACIONES
Calor Ilttme QI • 183,53 KcallHol'I
Calor sensible Qs =121 ,41 KcaVHora
VENTILACION
Calor latente QI =237,8 KcaVHora.
CARGA
TOTAL 1.753,1 KcaUHora 8.858,5 BTUlHora 0,58 Ton.
Fuente: Los Autores
104. 86
TABLA~. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: JUNTAS CONTABILIDAD
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura Altura 2,65 Altura 2.65
PAREDES
Ancho
-- Ancho ancho 3,42 ancho 3,42
No. Area No. Art, No. Ar" No. Art,
VENTANAS
1,7x1,5
No. Area No. Area No. Area No. Area
PUERTAS
6,91 6,51
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
15,56 Mtz 8 personas 6 Unldade,
- PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q-O Q-O QII 5'J~7 kclllH Q - 54~ KclllH
PAREDES
CONDUC.CALORS 0=0 0=0 0=0 O = 498,97 Kcal
OLAR.VENTAN
TECHOS 4ee,1~ KclllHora
GANANCIA S INTERIORES
Calor sensible as =520 KcallHora
OCUPANTES
Calor Latente al =392 KcallHora
ALUMBRADO Q =258 KcallHora
EQUIPOS OFIC. Q-O
GANANCIAS POR INFilTRACIONES. VENTllAClON
Calor s.nslbl. as • 100,2 Kc,lIHora
INFllTRACIONES
Calor Ilttntt QI • 196 21 KcallHora
Calor sensible Os = 485,6 KcalJHora
VENTllAClON
Calor latente al =951,3 KCllIHora.
CARGA
TOTAL 3.681~ KclllHora 14.810 BTUlHora 1,21 Ton.
Fueate: Los Autores
105. 87
TABLA 26. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: CARTERA
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura Altura 2,65 Altura 2,65
PAREDES
Ancho Ancho
-- ancho 2,87 ancho 2,87
No. Arte No. Arte No. Arte No. Artl
VENTANAS
1 1x2 1 2,4x1,5
No. Area No. Area No. Area No. Area
PUERTAS 1
(1x2,15) 3,45 4 Mt2
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
13,05 2 Penon,. 8 Unldade. 2 Micro. PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q-O Q-O g. 30 kclllH Q - 33,78 KclllH
PAREDES
CONDUC,CALORS Q=O Q=O Q =223,15 KclllH Q = 704,48 Kcallh
OLAR.VENTAN
TECHOS 3tO,i KclllH
• GANANCIA S INTERIORES
Cllor 'tn,lblt Q, • 130 KCIlJ1-Iol'I
OCUPANTES
Cllor Llttntt QI • 9S KCIlJ1-Iore
ALUMBRADO Q - 344 KcallHora
EQUIPOS OFle. Q = 344 KcllllHora
GANANCIAS POR INFllTRACIONES - VENTILACION
Calor sensible as =85,94 KcallHora
INFILTRACIONES
Calor latente al =168.30 KcallHora
Cllor 'tn,lblt QI - 121,41 KCIlJ1-Iora
VENTILACION
Calor latente QI- 237 8 KcallHora.
CARGA
TOTAl 2.857,4 KclllHora 10.544,8 BTUlHora 0,81 Ton.
FIImte: Los Autores
106. 88
TABLA:!7. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: COSTOS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
A/ture
- A/ture A/tUre 2,65 A/tUre
PAREDES
Ancho
- Ancho ancho 2,95 ancho
No. Area No. Area No. Area No. Area
VENTANAS
1 2x1
No, Arte No, Arte No, Arte No, Arte
PUERTAS
5,81
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
8,58 1 persona .. Unldadel 1 Micro PERSONAS 5 xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q= O Q=O Q = 50,4 kcaIIH Q=O
PAREDES
CONDUC.CALORS Q-O Q-O Q - 217;J KCIIIH Q-O
OLAR.VENTAN
TECHOS 287 KcaIIH
GANANCIA S INTERIORES
Celor sensible as· 65 KceVHore
OCUPANTES
Calor Lattnte al_ 49 KcaVHora
ALUMBRADO Q - 172 KclllHora
EQUIPOS OFIC. Q = 172 KcallHora
GANANCIAS POR INFILTRACIONES - VENTILACION
Calor sensible as = 66,23 KcaVHora
INFILTRACIONES
eelor latente al = 129,7 KcaVHora
Calor s.nslble as. 60,10 KceVHora
VENTILACION
Calor latente al- 118,91 KcaVHore,
CARGA
TOTAL 1182,31 KcallHora 4.731 BTWHora 6,38 Ton.
Fuente: Los Autores
107. 89
TABLA 28. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: SECRETARIA DE GERENCIA TECNICA
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura Altura 2,65 Altura 2,65
PAREDES
Ancho
-- Ancho ancho 4,81 ancho 4,81
No. Area No. Area No. Arta No. Are.
VENTANAS
1 1x2 2.4X1,5
No. Area No. Area No. Area No. Area
PUERTAS 1x (2,15)
8,59 9,14
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
21,88 Mtz 2 pel'lonll 8 Unldade. 2 equipo. PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q-O Q-O ~ 74,56 kcaIIH Q- 149 KcaIIH
PAREDES
CONDUC.CALORS Q=O Q=O Q=217,32 KcaIIH Q = 704,48 KcaJIH
OLAR.VENTAN
TECHOS 655,5 KcallHora
GANANCIA S INTERIORES
Calor sensible Os =130 KcallHora
OCUPANTES
Calor Latente 01 = 98 KcallHora
ALUMBRADO Q = 344 KcaJIHora
EQUIPOS OFIC. Q- 344 KcallHora
GANANCIAS POR INFILTRACIONES - VENTILACION
Calor s.nslble Q'-136,1 KcaVHore
INFILTRACIONES
Calor latente QI - 266 6 KcallHore
Calor sensible Os ::121.41 KcallHora
VENTILACION
Calor latente al z237.83 KcallHora.
CARGA
TOTAL 3.076,08 KcallHora 12.205,8 BTUlHora 1,01 Ton.
Fuente: Los Autores
UII~ad Altlnam. de Occi~ente
SECCION BIBLIOTECA
108. 90
TABLA 19. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: SALA DE JUNTAS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2.65 Altura 2.65 Altura Altura
PAREDES
Ancho 3,15 Ancho 3,85 ancho ancho
No. Ar.. No. Art. No. Ar•• No. Ar••
VENTANAS
1 2.85x1,5
No. Area No. Area No. Area No. Area
PUERTAS 1x2,15
6,23 6,60 Mt'2
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
17,51 12 persona, 10 Unldade, PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q - 54.1 KclllH Q - 0.17 KclllH Q80 Q-O
PAREDES
CONDUC.CAlORS Q=O Q =213,83 KcaIIH Q=O Q=O
OLAR.VENTAN
TECHOS 524.62 KclllH
GANANCIA S INTERIORES
Calor sensible Os =780 KcallHora
OCUPANTES
Calor Latente 01 = 588 KcallHora
ALUMBRADO Q= 430 KcallHora
EQUIPOS OFIC. Q- O
GANANCIAS POR INFILTRACIONES· VENTILACION
Cllor sensible Os - 111.28 KCIlIHol'I
INFILTRACIONES
Cllor Ilttnte 01- 217 93 KCIlIHol'I
Calor sensible Os =728.48 KcallHora
VENTILACION
Calor latente 01 =1427 KcallHora.
CARGA
TOTAL 4.746 KclllHora 18.832,1 BTUlHora 1,57 Ton.
Fuente: Los Autores
109. 91
TABLA lO. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: BIENESTAR SOCIAL
CONDICIONES DE PROYECTO
NORTe SUR ORIeNTe OCCIDeNTe
Altura 2,65 Altura 2,65 Altura Altura
PAREDES
Ancho 2,5 Ancho 2,5 ancho ancho
No. Arte No. Artl No. Ar.1 No. Artl
VENTANAS l,:¿OX
1,85
No. Area No. Area No. Area No. Area
PUERTAS
1 x215 4.47 5,6
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
11,37 1 p.rsona eUnldade. 2 Unldad.s PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q • 38,8 KcaIIH Q. 0,14 KcaIIH Q- Q.
PAREDES
CONDUC.CAl..ORS Q=O Q =110,84 KcaJIH Q=O Q=O
OLAR.VENTAN
TECHOS 340.65 KcaIIH
GANANCIA S INTERIORES
Calor sensible as =65 KcallHora
OCUPANTES
Calor Latente al =49 KcallHora
ALUMBRADO Q = 344 KcaJIHora
EQUIPOS OFIC. Q • 344 KclllHora
GANANCIAS POR INFILTRACIONES. VENTILACION
Cllor ..nslbl. Qs - 76,4 KCIlIHore
INFILTRACIONES
Cllor letente Q/- 14959 KelllHore
Calor sensible as =60,70 KcallHora
VENTILACION
Cllor letente al =118.91 KCIlIHora.
CARGA
TOTAL 1.487,74 KcallHora 5S03,3 BTUlHora O,G Ton.
Fuente: Los Autores
110. 92
TABLA 31. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: SALUD OCUPACIONAL.
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2,65 Altura 2,65 Altura Altura
PAREDES
Ancho 3,0 Ancho 3,00 ancho ancho
No. Arte No. Are. No. Ar.a No. Arta
VENTANAS 1,2~ X 1,2~ x
1,65 1,65
No. Area No. Area No. Area No. Area
PUERTAS
a,aa 6,91
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
13,65 1 Persona 4 Unidades PERSONAS 5xH
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q - n ~7 KclllH Q - 0,18 KclllH a- Q-
PAREDES
CONDUC.CALORS Q - 111,45 KcaIIH Q= 110,84 KcaIIH Q=O Q=O
OlAR.VENTAN
TECHOS 408,17 KcaIIH
GANANCIA S INTERIORES
Calor sensible Os =65 kcallHora
OCUPANTES
Calor Latente 01 = 49 KcallHora
ALUMBRADO Q = 172 KcallHora
EQUIPOS OFIC. Q-O
GANANCIAS POR INFllTRACIONES • VENTllAClON
Celor sensible Os • 89,35 KcellHore
INFILTRACIONES
Calor Ilttnte 01 • 174 96 KCIIIHore
Calor sensible Qs =60,70 KcallHora
VENTllAClON
Celar latente 01 = 118,91 KcallHora.
CARGA
TOTAL 1.318,1 KclllHora 5.233,6 BTUlHora 0,43 Ton.
Fuente: Los Amores
111. 93
TABLA 32. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: SERVICIOS ADMINISTRATIVOS
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura 2,65 Altura 2,65 AltUra AltUra
PAREDES
AnchO 7,7 Mt Ancho 7,7 Mt ancho ancho
No. Area No. Area No. Area No. Area
VENTANAS 1,3><1 +
1 1x2 3 1,3xl +
1,5><2,4
No. Arta No. Area No. Arta No. Artl
PUERTAS
1 x215 16,25 142 MtZ
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
35,03 4 Pel1l0nal 12 Unldadel 4 Equlpol + 1fotoc PERSONAS
10 x hora
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q =141,G5 KcaIIH Q = 0,38 KcaIIH Q= Q=
PAREDES
CONDUC.CALORS Q -166,36 KcaIIH Q - 333,3 KcaIIH Q-O Q-O
OLAR.VENTAN
TECHOS 1.0.t9,s KcallH
GANANCIA S INTERIORES
Celor sensible as - 260 KcallHora
OCUPANTES
Celor Latente al -196 KCIlIHora
ALUMBRADO Q = 518 KcallHora
EQUIPOS OFIC. Q = 1548 KcallHora
GANANCIAS POR INFILTRACIONES - VENTILACION
Cedor sensible as = 222,62 KcallHora
INFILTRACIONES
Calor latente al =436,03 KcallHora
Calor sensible as -242,82 KcallHora
VENTILACION
Calor latente al -443 96 KcallHore.
CARGA
TOTAL 4.897,4 KcallHora 1IU32,8 BTUlHora 1,81 Ton.
halte: Los Autores
112. 94
TABLA 33. CALCULO DE LA CARGA TERMICA POR OFICINA
OFICINA: NOMINA
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura Altura 2,65 Altura 2,65
PAREDES
Ancho
-- Ancho ancho 4.79 ancho 5.21
No. Arta No. Arta No. Arta No. Arta
VENTANAS
1 1,5><2.4 1 1.3x1.7
No. Area No. Area No. Area No. Area
PUERTAS
9,09 1x 2,15 9,45~
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
22,82 2 persona. 8 Unldade. 2 Unldade. PERSONAS
6 xHore
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q. Q. Q-148,17 kcaJIH Q -e2,02 KcaJIH
PAREDES
CONDUC.CALORS 0=0 0=0 0=391,19 KcaIIH O =432,4& KcaIIH
OLAR.VENTAN
TECHOS m,72 KcaJIH
GANANCIA S INTERIORES
Calor sensible Qs =130 KcallHora
OCUPANTES
Calor Latente QI = 98 KcallHora
AlUMBRADO Q =344 KcallHora
EQUIPOS OFIC. Q • 344 KcaJIHora
GANANCIAS POR INFILTRACIONES. VENTILACION
Calor sensible Os. 140.3 KcallHore
INFILTRACIONES
Calor latentt 01. 274 8 KcaVHore
Calor sensible Qs =121.41 KcallHora
VENTILACION
Calor latente QI =237,83 KcaVHora.
CARGA
TOTAL 3,082,6 KcaJIHora 12.152 BTUlHora 1.01 Ton.
Fuente: Los Autores
113. 95
TABLA 34. CALCULO DE LA CARGA TERMlCA POR OFICINA
OFICINA: CAJA
CONDICIONES DE PROYECTO
NORTE SUR ORIENTE OCCIDENTE
Altura
-- Altura Altura 2,65 Altura 2.65
PAREDES
Ancho
-- Ancho ancho 2,5 ancho 2,5
No. Arta No. Arta No. Arta No. ma
VENTANAS , ,'0 x
1 1,15
No. Area No. Area No. Area No. Area
PUERTAS
1 5,3 1 4,47
TECHOAREA No OCUPANTES No LAMPARAS No EQUIPOS TRAFICO DE
11,37 Mt2 1 persona 4 Unidades 1 Unidad PERSONAS
10 x Hora
GANANCIAS CALORlFICAS
NORTE SUR ORIENTE OCCIDENTE
Q- Q- Q -se,4 kclllH Q • 38,8 KclllH
PAREDES
CONDUC.CALORS Q=O Q=O Q =143.53 KcaUH Q=O
OLAR.VENTAN
TECHOS 340,85 KcaIIH
GANANCIA S INTERIORES
Calor sensible as =65 KcallHora
OCUPANTES
Calor Latente al =49 KcallHora
ALUMBRADO Q = 1n KcaUHora
EQUIPOS OFIC. Q • 172 KcallHora
GANANCIAS POR INFILTRACIONES. VENTILACION
Calor 'tn,lblt a. - 88,22 KcaVHora
INFILTRACIONES
Calor Imm. al- 172.74 KcallHora
Calor sensible as = 60,7 KcallHora
VENTILACION
Calor letente al =118,91 KcallHora.
CARGA
TOTAL 1.328,34 KclllHora 5.270,8 BTUlHora 0.44 Ton.
Fuente: Los Autores
114. 3. EMPLEO DEL DIAGRAMA PSICROMETRICO.
Una vez calculada la carga de enfriamiento, utilizamos el diagrama
Pslcrométrlco para la selección del equipo acondicionador.
La selección de los aparatos adecuados para llevar el aire a las condiciones
adecuadas depende de un cierto número de factores:
1- Factor de calor sensible del local ( RSHF ): Es la razón del calor sensible
del local a la suma del calor sensible y el calor latente del local.
RSHF = (RSH)I(RSH + RLH)
Donde: RSH= Ganancia de calor sensible del local
RLH= Ganancia de calor latente del local
2- Factor de calor sensible total ( GSHF ): Este coeficiente es la relación
entre calor sensible total y el balance térmico de la Instalación incluyendo
todas las cargas de calor sensible y latente que procedan del aire exterior.
GSHF = (TSH )/(TLH + TSH)
3- Temperatura equivalente de superficie (Tes ): Es la temperatura
media.Para aire acondicionado dicha temperatura es la intersección de la
linea GSHF con la curva de saturación donde se encuentra ubicado el punto
de rocfo del aparato.
115. 97
4- Punto de rocfo del aparato ADP: Dicho punto es caracterfstlco del diseno
de cada aparato, esta representado sobre la Unea de saturación en la carta
pslcrométrlca. Teniendo las condiciones de confort del local como la
temperatura seca, la humedad relativa y el factor de calor sensible efectivo,
podemos hallar este punto mediante la tabla 36.
TABLA 3!5. PUNTO DE ROCIO DEL APARATO ADP
CONDICIONES INTERIORES
Temperatura Humedad T.b.humedo ESHF AOP
bulbo ,eco relatlvl
24 40 1S,6 1 9,S
0,97 9
-
0,9 8
0,82 6
0,77 4
0,75 2
0,73 O
0,72 ·2
0,71 ·S
24 50 17,1 1 12,9
0,91 12
0,83 11
0,77 10
0,7 8
0,68 6
0,65 4
0,64 2
0,63 ·1
24 60 18,7 1 15,7
0,86 16
0,77 14
0,72 13
0,67 12
0,62 10
O,S9 8
0.58 6
O,S7 4
Fuente: Refrigeración y Aire Acondicionado Instituto Airlingten V.A. •
1981 • Capitulo 7
116. 98
5- Factor de Bypass ( BF): Es el porcentaje de aire que pasa a través del
aparato sin sufrir ningún cambio. Un factor de bypass bajo trae como
consecuencia un AOP mas alto, menor caudal de aire, y por tanto,
ventiladores y motores de menores potencias, mayores superficies de
Intercambio, tuberlas de agua mas pequenas, si disminuye el caudal.Un factor
de Bypass alto trae un AOP mas bajo, mayor caudal de aire, una superficie de
Intercambio mas pequena y conductos de agua mas grandes.
6- Factor de calor sensible efectivo ( ESHF ): Este factor permite establecer
una relación entre el balance térmico, el AOP, yel Factor de Bypas. El ESHF
se de1lne c.omo la relación entre las ganancias sensibles efectivas del local y
la suma de las ganancias sensibles y latentes efectivas del mismo.
ESHF =(ERSH )J(ERSH+ERlH)
ERSH =RSH + BFx(OASH)+RSHS
ERlH =RlH + BFx(OAlH) +RlHS
Donde : OASH =Ganancia sensible por el aire exterior
RSHS =Ganancia sensible suplementarias.
OAlH =Ganancia latente por el aire exterior
RlHS =Ganancia latente suplementaria
117. ,! ~G.-~v", J-" ..--- 99
3:1 Calculo de las condiciones de entrada y salida de las unidades.
3.1.1 Calculo del factor de calor sensible del local. Donde:
RSH =5640,6.
RLH =343.
RSHT =5983.
RSHF = 5640,6/5983 = RSHF = 0,94.
3.1.2 Calculo del factor de calor sensible total
6SH = 6064,9.
6LH =1175.
6SJT =7239,1.
6SHF = 6064,9/7239,1 = 6SHF = 0,83.
OASH =Calor sensible por ventilación de aire exterior
OASH =427,9 KCaVHora.
."
3.1.3 Calculo de las ganancias sensibles efectivas del local. Donde:
ERSH - RSH + BF (OASH) + RSHS.
UIi"rtWld Altlnoma de Occi.ente
SECCION BIBLIOTECA