SlideShare ist ein Scribd-Unternehmen logo
1 von 5
MICROSCOPIO ELECTRONICO DE BARRIDO
OBJETIVOS
_ Conocer lo que realmente es un microscopio electrónico de barrido
_ Saber cual es su funcionamiento
_ Saber cual es su utilizacion
FUNDAMENTOS TEORICOS
El microscopio electrónico de barrido o SEM (Scanning Electron Microscope), inventado en
1937 por Manfred von Ardenne, es aquel que utiliza un haz de electrones en lugar de un
haz de luz para formar una imagen. Tiene una gran profundidad de campo, la cual permite
que se enfoque a la vez una gran parte de la muestra. También produce imágenes de alta
resolución, de forma que las características más ínfimas de la muestra pueden ser
examinadas con gran amplificación. La preparación de las muestras es relativamente fácil
ya que la mayoría de los SEM sólo requieren que estas sean conductoras. De esta forma, la
muestra generalmente es recubierta con una capa de carbono o una capa delgada de un
metal como el oro para conferirle carácter conductor. Posteriormente, se barre la
superficie con electrones acelerados que viajan a través del cañón. Un detector formado
por lentes basadas en electroimanes, mide la cantidad e intensidad de electrones que
devuelve la muestra, siendo capaz de mostrar figuras en tres dimensiones mediante
imagen digital. Su resolución está entre 4 y 20 nm, dependiendo del microscopio.
Antecedentes
Los primeros instrumentos desarrollados para este propósito fueron los microscopios
ópticos. Estos instrumentos consistieron, a lo largo de los años, entre una simple lupa
hasta un microscopio compuesto. Sin embargo, aún en el mejor instrumento óptico, la
resolución está limitada a la longitud de onda de la luz que se utilice, que en este caso es
la luz violeta, cuya longitud de onda es de aproximadamente 400 nanómetros, separación
máxima entre detalles que puede observarse de esta manera. En términos de
amplificación, esto quiere decir que no podemos amplificar más de 1000 veces.
Una salida inmediata a éste límite de resolución, fue utilizar alguna radiación de longitud
de onda más corta que la de la luz violeta. Los candidatos inmediatos son los rayos X, que
se caracterizan por una longitud de onda del orden de 0,15 nanómetros;
desafortunadamente éstos tienen la gran desventaja de ser absorbidos rápidamente por
las lentes de vidrio, y de no poder ser desviados por las lentes magnéticas (además de las
precauciones que debería tener el operador).
Otra posibilidad que se contempló fue la de aprovechar el comportamiento ondulatorio
de los electrones acelerados por alguna diferencia de potencial. Sea el caso, por ejemplo,
de electrones acelerados en un campo de 100000 voltios que presentan comportamiento
ondulatorio con una longitud de onda de 0,0037 nm (3,7 picómetros), lo que en principio
permitiría tener un aparato que resolviera detalles del mismo orden. Esto, en principio,
sería suficiente para resolver detalles atómicos, puesto que los átomos en un sólido están
separados en un orden de 0,2 nm. Sin embargo, en la práctica, los detalles inherentes a la
técnica de observación o los defectos en el maquinado de las piezas polares producen
aberraciones.
Manfred von Ardenne
Artículo principal: Manfred von Ardenne
En 1928, Manfred von Ardenne estableció su laboratorio de investigación
privadaForschungslaboratorium für Elektronenphysik,1 en Berlin-Lichterfelde, para llevar
a cabo su propia investigación en tecnología de radio y televisión y microscopía
electrónica. Inventó el microscopio electrónico de barrido.2 3
Funcionamiento
En el microscopio electrónico de barrido es necesario acelerar los electrones en un campo
eléctrico, para aprovechar de esta manera su comportamiento ondulatorio, lo cual se lleva
a cabo en la columna del microscopio, donde se aceleran mediante una diferencia de
potencial de 1000 a 30000 voltios. Los electrones acelerados por un voltaje pequeño se
utilizan para muestras muy sensibles, como podrían ser las muestras biológicas sin
preparación adicional o muestras muy aislantes. Los voltajes elevados se utilizan para
muestras metálicas, ya que éstas en general no sufren daños como las biológicas y de esta
manera se aprovecha la menor longitud de onda para tener una mejor resolución. Los
electrones acelerados salen del cañón, y se enfocan mediante las lentes condensadora y
objetiva, cuya función es reducir la imagen del filamento, de manera que incida en la
muestra un haz de electrones lo más pequeño posible (para así tener una mejor
resolución). Con las bobinas deflectoras se barre este fino haz de electrones sobre la
muestra, punto por punto y línea por línea.
Cuando el haz incide sobre la muestra, se producen muchas interacciones entre los
electrones del mismo haz, y los átomos de la muestra; puede haber, por ejemplo,
electrones que reboten como las bolas de billar. Por otra parte, la energía que pierden los
electrones al "chocar" contra la muestra puede hacer que otros electrones salgan
despedidos (electrones secundarios), y producir rayos X, electrones Auger, etc. El más
común de éstos es el que detecta electrones secundarios, y es con él que se hace la
mayoría de las imágenes de microscopios de barrido.
También podemos adquirir la señal de rayos X que se produce cuando se desprenden
estos mismos de la muestra, y posteriormente hacer un análisis espectrográfico de la
composición de la muestra .
Utilización
Cabeza de hormiga vista con un (MEB).
Se utilizan ampliamente en la biología celular. Aunque permite una menor capacidad de
aumento que el microscopio electrónico de transmisión, éste permite apreciar con mayor
facilidad texturas y objetos en tres dimensiones que se hayan pulverizado metálicamente
antes de su observación. Por esta razón solamente pueden observarse organismos
muertos, y no se puede ir más allá de la textura externa que se quiera ver. Los
microscopios electrónicos sólo pueden ofrecer imágenes en blanco y negro puesto que no
utilizan la luz visible.
Este instrumento permite la observación y caracterización superficial de materiales
inorgánicos y orgánicos, entregando información morfológica del material analizado. A
partir de él se producen distintos tipos de señal que se generan desde la muestra y se
utilizan para examinar muchas de sus características. Con él se pueden observar los
aspectos morfológicos de zonas microscópicas de diversos materiales, además del
procesamiento y análisis de las imágenes obtenidas.
3D en SEM
Los microscopios electrónicos de barrido no proporcionan naturalmente las imágenes en
3D contrarias a microscopio de sonda de barrido. Sin embargo los datos 3D se pueden
obtener utilizando un SEM con diferentes métodos, tales como:
Fotogrametría (2 o 3 imágenes de muestra inclinado)
-Stereo fotométrica también llamado "la forma con sombreado" (con 4 imágenes)
-Reconstrucción inversa utilizando modelos interactivos de electrones de material
-Las aplicaciones posibles son la medición de rugosidad, medida de la dimensión
fractal,medición de la corrosión y la evaluación altura de los escalones.
CONCLUSIONES
_ Es aquel que usa un haz de electrones en vez de un haz de luz para formar una imagen
_ En el microscopio electrónico de barrido es necesario acelerar los electrones en un
campo eléctrico, para aprovechar de esta manera su comportamiento ondulatorio, lo cual
se lleva a cabo en la columna del microscopio, donde se aceleran mediante una diferencia
de potencial de 1000 a 30000 voltios.
_ Se utilizan ampliamente en la biología celular. Aunque permite una menor capacidad de
aumento que el microscopio electrónico de transmisión, éste permite apreciar con mayor
facilidad texturas y objetos en tres dimensiones que se hayan pulverizado metálicamente
antes de su observación.

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Clase microscopio electronico
Clase microscopio electronicoClase microscopio electronico
Clase microscopio electronico
 
2 tecnica en humedo
2 tecnica en humedo2 tecnica en humedo
2 tecnica en humedo
 
Microscopio Electrónico de Barrido.pptx
Microscopio Electrónico de Barrido.pptxMicroscopio Electrónico de Barrido.pptx
Microscopio Electrónico de Barrido.pptx
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
MicroscopíA ElectróNica
MicroscopíA ElectróNicaMicroscopíA ElectróNica
MicroscopíA ElectróNica
 
Concentraciones y Diluciones
Concentraciones y DilucionesConcentraciones y Diluciones
Concentraciones y Diluciones
 
Introducción a la Microscopía Electrónica
Introducción a la Microscopía ElectrónicaIntroducción a la Microscopía Electrónica
Introducción a la Microscopía Electrónica
 
MICROSCOPÍA Y TINCIÓN
MICROSCOPÍA Y TINCIÓNMICROSCOPÍA Y TINCIÓN
MICROSCOPÍA Y TINCIÓN
 
Microscopio electrónico
Microscopio electrónicoMicroscopio electrónico
Microscopio electrónico
 
Microscopia presentacion
Microscopia presentacionMicroscopia presentacion
Microscopia presentacion
 
Microscopia electronica de barrido
Microscopia electronica de barridoMicroscopia electronica de barrido
Microscopia electronica de barrido
 
TINCIONES ÁCIDO-RESISTENTES
TINCIONES ÁCIDO-RESISTENTESTINCIONES ÁCIDO-RESISTENTES
TINCIONES ÁCIDO-RESISTENTES
 
imforme de Tincion gran
imforme de Tincion granimforme de Tincion gran
imforme de Tincion gran
 
Microscopía electrónica
Microscopía electrónicaMicroscopía electrónica
Microscopía electrónica
 
Principios de la microscopia.
Principios de la microscopia.Principios de la microscopia.
Principios de la microscopia.
 
Informe electroforesis
Informe electroforesisInforme electroforesis
Informe electroforesis
 
Tinciones selectivas
Tinciones selectivasTinciones selectivas
Tinciones selectivas
 
Microscopio optico
Microscopio opticoMicroscopio optico
Microscopio optico
 
Nutricion bacterias
Nutricion bacteriasNutricion bacterias
Nutricion bacterias
 
Papanicolaou ii
Papanicolaou iiPapanicolaou ii
Papanicolaou ii
 

Andere mochten auch

Microscopio eléctrico de transmisión
Microscopio eléctrico de transmisiónMicroscopio eléctrico de transmisión
Microscopio eléctrico de transmisiónAdriana Rios Contreras
 
Microscopio Electrónico de Transmision
Microscopio Electrónico de TransmisionMicroscopio Electrónico de Transmision
Microscopio Electrónico de TransmisionPipe Gaitán
 
Espectroscopia de absorción atómica
Espectroscopia de absorción atómicaEspectroscopia de absorción atómica
Espectroscopia de absorción atómicaSooey Wong
 
Espectroscopia de emision I
Espectroscopia de emision IEspectroscopia de emision I
Espectroscopia de emision IAlex Santiago
 
Microscopio electrónico
Microscopio electrónico Microscopio electrónico
Microscopio electrónico yaneeeee
 
Microscopio con contraste de fases.
Microscopio con contraste de fases.Microscopio con contraste de fases.
Microscopio con contraste de fases.Gema Noriega
 
quimica analitica
quimica analiticaquimica analitica
quimica analiticaCinhndz
 
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...Mario A. Hernandez
 
Introducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentalesIntroducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentalesDaniel Martín-Yerga
 
Curso Química Analítica Ingenieros
Curso Química Analítica Ingenieros Curso Química Analítica Ingenieros
Curso Química Analítica Ingenieros anfranci
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química Analíticaanaliticauls
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química AnalíticaArturo Caballero
 
Espectrometría de fluorescencia de rayos
Espectrometría de fluorescencia de rayosEspectrometría de fluorescencia de rayos
Espectrometría de fluorescencia de rayosAlejito Cuzco
 

Andere mochten auch (18)

Microscopio eléctrico de transmisión
Microscopio eléctrico de transmisiónMicroscopio eléctrico de transmisión
Microscopio eléctrico de transmisión
 
Microscopio Electrónico de Transmision
Microscopio Electrónico de TransmisionMicroscopio Electrónico de Transmision
Microscopio Electrónico de Transmision
 
Espectroscopia de absorción atómica
Espectroscopia de absorción atómicaEspectroscopia de absorción atómica
Espectroscopia de absorción atómica
 
Quimica analitica
Quimica analiticaQuimica analitica
Quimica analitica
 
Espectroscopia de emision I
Espectroscopia de emision IEspectroscopia de emision I
Espectroscopia de emision I
 
Microscopio electrónico
Microscopio electrónico Microscopio electrónico
Microscopio electrónico
 
Microscopio con contraste de fases.
Microscopio con contraste de fases.Microscopio con contraste de fases.
Microscopio con contraste de fases.
 
quimica analitica
quimica analiticaquimica analitica
quimica analitica
 
Difraccion Rayos X
Difraccion Rayos XDifraccion Rayos X
Difraccion Rayos X
 
quimica analitica
quimica analiticaquimica analitica
quimica analitica
 
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...
Analitica-muestreo-tipos de muestreo-muestra- tipos de muestra- toma de muest...
 
Microscopía
MicroscopíaMicroscopía
Microscopía
 
El Microscopio
El  MicroscopioEl  Microscopio
El Microscopio
 
Introducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentalesIntroducción a los métodos analíticos instrumentales
Introducción a los métodos analíticos instrumentales
 
Curso Química Analítica Ingenieros
Curso Química Analítica Ingenieros Curso Química Analítica Ingenieros
Curso Química Analítica Ingenieros
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química Analítica
 
Introducción a la Química Analítica
Introducción a la Química AnalíticaIntroducción a la Química Analítica
Introducción a la Química Analítica
 
Espectrometría de fluorescencia de rayos
Espectrometría de fluorescencia de rayosEspectrometría de fluorescencia de rayos
Espectrometría de fluorescencia de rayos
 

Ähnlich wie Microscopio electronico de barrido

Microscopios electronicos, microscopio electronico de barrido y de transmicion
Microscopios electronicos, microscopio electronico de barrido y de transmicionMicroscopios electronicos, microscopio electronico de barrido y de transmicion
Microscopios electronicos, microscopio electronico de barrido y de transmicionTommy Rdzz
 
Microscopio electrónico
Microscopio electrónicoMicroscopio electrónico
Microscopio electrónicoAndres crespo
 
Caracterización de materiales: Microscopías
Caracterización de materiales: MicroscopíasCaracterización de materiales: Microscopías
Caracterización de materiales: MicroscopíasAlex V. Salazar
 
Hardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosHardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosCristian Saliba
 
Hardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosHardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosCristian Saliba
 
Citometría de flujo y microscopía electrónica
Citometría de flujo y microscopía electrónicaCitometría de flujo y microscopía electrónica
Citometría de flujo y microscopía electrónicapatiighattas
 
Microscopio 1232371283375771-1
Microscopio 1232371283375771-1Microscopio 1232371283375771-1
Microscopio 1232371283375771-1alondra santana
 
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)Jonathan Saviñon de los Santos
 
Microscopio electronico de transmision
Microscopio electronico de transmisionMicroscopio electronico de transmision
Microscopio electronico de transmisionStephanieSilva90
 
Microscopio electrónico eq. 4
Microscopio electrónico eq. 4Microscopio electrónico eq. 4
Microscopio electrónico eq. 4CBTis 103 6to. i
 
Microscopía electrónica unidad 3
Microscopía electrónica  unidad 3Microscopía electrónica  unidad 3
Microscopía electrónica unidad 3mujer_fresa
 
1- Microscopios - CON AUDIO.pptx
1- Microscopios - CON AUDIO.pptx1- Microscopios - CON AUDIO.pptx
1- Microscopios - CON AUDIO.pptxGabriPez
 
Velazquez microscopioelectronico
Velazquez microscopioelectronicoVelazquez microscopioelectronico
Velazquez microscopioelectronicovelazquezfede
 
Introduccion a la_microscopia_parte_3
Introduccion a la_microscopia_parte_3Introduccion a la_microscopia_parte_3
Introduccion a la_microscopia_parte_3mickymin18
 

Ähnlich wie Microscopio electronico de barrido (20)

Microscopios electronicos, microscopio electronico de barrido y de transmicion
Microscopios electronicos, microscopio electronico de barrido y de transmicionMicroscopios electronicos, microscopio electronico de barrido y de transmicion
Microscopios electronicos, microscopio electronico de barrido y de transmicion
 
Microscopia
MicroscopiaMicroscopia
Microscopia
 
Microscopio electrónico
Microscopio electrónicoMicroscopio electrónico
Microscopio electrónico
 
Caracterización de materiales: Microscopías
Caracterización de materiales: MicroscopíasCaracterización de materiales: Microscopías
Caracterización de materiales: Microscopías
 
Hardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosHardware Aplicado A Los Microscopios
Hardware Aplicado A Los Microscopios
 
Hardware Aplicado A Los Microscopios
Hardware Aplicado A Los MicroscopiosHardware Aplicado A Los Microscopios
Hardware Aplicado A Los Microscopios
 
Citometría de flujo y microscopía electrónica
Citometría de flujo y microscopía electrónicaCitometría de flujo y microscopía electrónica
Citometría de flujo y microscopía electrónica
 
Microscopio 1232371283375771-1
Microscopio 1232371283375771-1Microscopio 1232371283375771-1
Microscopio 1232371283375771-1
 
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)
1414 l práctica 3 microscopía electrónica (sem, tem, fib, afm)
 
Técnicas de estudio de la célula
Técnicas de estudio de la célulaTécnicas de estudio de la célula
Técnicas de estudio de la célula
 
Microscopio electronico de transmision
Microscopio electronico de transmisionMicroscopio electronico de transmision
Microscopio electronico de transmision
 
Microscopio electrónico eq. 4
Microscopio electrónico eq. 4Microscopio electrónico eq. 4
Microscopio electrónico eq. 4
 
El mircroscopio
El mircroscopioEl mircroscopio
El mircroscopio
 
Microscopía electrónica unidad 3
Microscopía electrónica  unidad 3Microscopía electrónica  unidad 3
Microscopía electrónica unidad 3
 
tp7_tm.pdf
tp7_tm.pdftp7_tm.pdf
tp7_tm.pdf
 
1- Microscopios - CON AUDIO.pptx
1- Microscopios - CON AUDIO.pptx1- Microscopios - CON AUDIO.pptx
1- Microscopios - CON AUDIO.pptx
 
Velazquez microscopioelectronico
Velazquez microscopioelectronicoVelazquez microscopioelectronico
Velazquez microscopioelectronico
 
Unidad iii
Unidad iiiUnidad iii
Unidad iii
 
Introduccion a la_microscopia_parte_3
Introduccion a la_microscopia_parte_3Introduccion a la_microscopia_parte_3
Introduccion a la_microscopia_parte_3
 
SEM
SEMSEM
SEM
 

Kürzlich hochgeladen

Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadMiguelAngelVillanuev48
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesEdomar AR
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfjeondanny1997
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptchaverriemily794
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxazmysanros90
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfedepmariaperez
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOnarvaezisabella21
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.241514949
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
Excel (1) tecnologia.pdf trabajo Excel taller
Excel  (1) tecnologia.pdf trabajo Excel tallerExcel  (1) tecnologia.pdf trabajo Excel taller
Excel (1) tecnologia.pdf trabajo Excel tallerValentinaTabares11
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzzAlexandergo5
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificialcynserafini89
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxNombre Apellidos
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptJavierHerrera662252
 
Tecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxTecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxGESTECPERUSAC
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son241514984
 

Kürzlich hochgeladen (20)

Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidad
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, Aplicaciones
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptx
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdf
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
Excel (1) tecnologia.pdf trabajo Excel taller
Excel  (1) tecnologia.pdf trabajo Excel tallerExcel  (1) tecnologia.pdf trabajo Excel taller
Excel (1) tecnologia.pdf trabajo Excel taller
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzz
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificial
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
 
Tecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxTecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptx
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son
 

Microscopio electronico de barrido

  • 1. MICROSCOPIO ELECTRONICO DE BARRIDO OBJETIVOS _ Conocer lo que realmente es un microscopio electrónico de barrido _ Saber cual es su funcionamiento _ Saber cual es su utilizacion FUNDAMENTOS TEORICOS El microscopio electrónico de barrido o SEM (Scanning Electron Microscope), inventado en 1937 por Manfred von Ardenne, es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una imagen. Tiene una gran profundidad de campo, la cual permite que se enfoque a la vez una gran parte de la muestra. También produce imágenes de alta resolución, de forma que las características más ínfimas de la muestra pueden ser examinadas con gran amplificación. La preparación de las muestras es relativamente fácil ya que la mayoría de los SEM sólo requieren que estas sean conductoras. De esta forma, la muestra generalmente es recubierta con una capa de carbono o una capa delgada de un metal como el oro para conferirle carácter conductor. Posteriormente, se barre la superficie con electrones acelerados que viajan a través del cañón. Un detector formado por lentes basadas en electroimanes, mide la cantidad e intensidad de electrones que devuelve la muestra, siendo capaz de mostrar figuras en tres dimensiones mediante imagen digital. Su resolución está entre 4 y 20 nm, dependiendo del microscopio. Antecedentes Los primeros instrumentos desarrollados para este propósito fueron los microscopios ópticos. Estos instrumentos consistieron, a lo largo de los años, entre una simple lupa hasta un microscopio compuesto. Sin embargo, aún en el mejor instrumento óptico, la resolución está limitada a la longitud de onda de la luz que se utilice, que en este caso es
  • 2. la luz violeta, cuya longitud de onda es de aproximadamente 400 nanómetros, separación máxima entre detalles que puede observarse de esta manera. En términos de amplificación, esto quiere decir que no podemos amplificar más de 1000 veces. Una salida inmediata a éste límite de resolución, fue utilizar alguna radiación de longitud de onda más corta que la de la luz violeta. Los candidatos inmediatos son los rayos X, que se caracterizan por una longitud de onda del orden de 0,15 nanómetros; desafortunadamente éstos tienen la gran desventaja de ser absorbidos rápidamente por las lentes de vidrio, y de no poder ser desviados por las lentes magnéticas (además de las precauciones que debería tener el operador). Otra posibilidad que se contempló fue la de aprovechar el comportamiento ondulatorio de los electrones acelerados por alguna diferencia de potencial. Sea el caso, por ejemplo, de electrones acelerados en un campo de 100000 voltios que presentan comportamiento ondulatorio con una longitud de onda de 0,0037 nm (3,7 picómetros), lo que en principio permitiría tener un aparato que resolviera detalles del mismo orden. Esto, en principio, sería suficiente para resolver detalles atómicos, puesto que los átomos en un sólido están separados en un orden de 0,2 nm. Sin embargo, en la práctica, los detalles inherentes a la técnica de observación o los defectos en el maquinado de las piezas polares producen aberraciones. Manfred von Ardenne Artículo principal: Manfred von Ardenne En 1928, Manfred von Ardenne estableció su laboratorio de investigación privadaForschungslaboratorium für Elektronenphysik,1 en Berlin-Lichterfelde, para llevar a cabo su propia investigación en tecnología de radio y televisión y microscopía electrónica. Inventó el microscopio electrónico de barrido.2 3 Funcionamiento
  • 3. En el microscopio electrónico de barrido es necesario acelerar los electrones en un campo eléctrico, para aprovechar de esta manera su comportamiento ondulatorio, lo cual se lleva a cabo en la columna del microscopio, donde se aceleran mediante una diferencia de potencial de 1000 a 30000 voltios. Los electrones acelerados por un voltaje pequeño se utilizan para muestras muy sensibles, como podrían ser las muestras biológicas sin preparación adicional o muestras muy aislantes. Los voltajes elevados se utilizan para muestras metálicas, ya que éstas en general no sufren daños como las biológicas y de esta manera se aprovecha la menor longitud de onda para tener una mejor resolución. Los electrones acelerados salen del cañón, y se enfocan mediante las lentes condensadora y objetiva, cuya función es reducir la imagen del filamento, de manera que incida en la muestra un haz de electrones lo más pequeño posible (para así tener una mejor resolución). Con las bobinas deflectoras se barre este fino haz de electrones sobre la muestra, punto por punto y línea por línea. Cuando el haz incide sobre la muestra, se producen muchas interacciones entre los electrones del mismo haz, y los átomos de la muestra; puede haber, por ejemplo, electrones que reboten como las bolas de billar. Por otra parte, la energía que pierden los electrones al "chocar" contra la muestra puede hacer que otros electrones salgan despedidos (electrones secundarios), y producir rayos X, electrones Auger, etc. El más común de éstos es el que detecta electrones secundarios, y es con él que se hace la mayoría de las imágenes de microscopios de barrido. También podemos adquirir la señal de rayos X que se produce cuando se desprenden estos mismos de la muestra, y posteriormente hacer un análisis espectrográfico de la composición de la muestra .
  • 4. Utilización Cabeza de hormiga vista con un (MEB). Se utilizan ampliamente en la biología celular. Aunque permite una menor capacidad de aumento que el microscopio electrónico de transmisión, éste permite apreciar con mayor facilidad texturas y objetos en tres dimensiones que se hayan pulverizado metálicamente antes de su observación. Por esta razón solamente pueden observarse organismos muertos, y no se puede ir más allá de la textura externa que se quiera ver. Los microscopios electrónicos sólo pueden ofrecer imágenes en blanco y negro puesto que no utilizan la luz visible. Este instrumento permite la observación y caracterización superficial de materiales inorgánicos y orgánicos, entregando información morfológica del material analizado. A partir de él se producen distintos tipos de señal que se generan desde la muestra y se utilizan para examinar muchas de sus características. Con él se pueden observar los aspectos morfológicos de zonas microscópicas de diversos materiales, además del procesamiento y análisis de las imágenes obtenidas. 3D en SEM Los microscopios electrónicos de barrido no proporcionan naturalmente las imágenes en 3D contrarias a microscopio de sonda de barrido. Sin embargo los datos 3D se pueden obtener utilizando un SEM con diferentes métodos, tales como: Fotogrametría (2 o 3 imágenes de muestra inclinado) -Stereo fotométrica también llamado "la forma con sombreado" (con 4 imágenes) -Reconstrucción inversa utilizando modelos interactivos de electrones de material -Las aplicaciones posibles son la medición de rugosidad, medida de la dimensión fractal,medición de la corrosión y la evaluación altura de los escalones.
  • 5. CONCLUSIONES _ Es aquel que usa un haz de electrones en vez de un haz de luz para formar una imagen _ En el microscopio electrónico de barrido es necesario acelerar los electrones en un campo eléctrico, para aprovechar de esta manera su comportamiento ondulatorio, lo cual se lleva a cabo en la columna del microscopio, donde se aceleran mediante una diferencia de potencial de 1000 a 30000 voltios. _ Se utilizan ampliamente en la biología celular. Aunque permite una menor capacidad de aumento que el microscopio electrónico de transmisión, éste permite apreciar con mayor facilidad texturas y objetos en tres dimensiones que se hayan pulverizado metálicamente antes de su observación.