Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Astronomy Data in the Dataverse by August Muench

713 Aufrufe

Veröffentlicht am

I will describe the relationship between the Dataverse repository and the Astronomy Community. The relationship began when Dataverse sought to solve some of the problems faced by astronomers who wish to share or preserve their data products. I will detail the feedback loop necessary between tool developers and research scientists to make this relationship successful.

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Astronomy Data in the Dataverse by August Muench

  1. 1. Astronomy Data in the Dataverse ● In Scope: taking advantage of standardized file type to enhance discoverability and curation of Astronomy data; ● Out of scope: a. Outreach to Astronomy Community; b. Connections to Literature and Article search.
  2. 2. array data header key : valueFITS File array data header key : valueFITS File array data header key : value FITS Files ● Flexible Image Transport System a. 1981, developed b. 2008, Version 3 ● Our catch all data container a. Tables, Sparse Matrices, Images, Cubes, Photon lists b. once FITS, always FITS(*)
  3. 3. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Dataverse Dataset Citation Metadata (manual authoring) Astronomy & Astrophysics Metadata (automated extraction + curation) field0 = [unique(key0:value, key1:value, )] field1 = [unique(key2:value, null, … )] field2 = array.type(key3:value, key4:value,...) field3 = array.columns ... fieldN = there is no value validation
  4. 4. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Suggested directions: 1. Retain File Level metadata (no aggregation); 2. Validate File Level metadata by completeness & content; 3. Expose full unparsed header via API; 4. Provide transmutable data objects (CSV/TSV tables); 5. Compressed image previews. File Metadata key0 : value key1 : value … keyN : validate completeness
  5. 5. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Suggested directions: 1. Retain File Level metadata (no aggregation); 2. Validate File Level metadata by completeness & content; 3. Expose full unparsed header via API; 4. Provide transmutable data objects (CSV/TSV tables); 5. Compressed image previews and other data widgets. File Metadata key0 : value key1 : value … keyN : validate completeness
  6. 6. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Suggested directions: 1. Retain File Level metadata (no aggregation); 2. Validate File Level metadata by completeness & content; 3. Expose full unparsed header via API; 4. Provide transmutable data objects (CSV/TSV tables); 5. Compressed image previews and other data widgets. /api/access/datafile/$i d/metadata/header
  7. 7. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Suggested directions: 1. Retain File Level metadata (no aggregation); 2. Validate File Level metadata by completeness & content; 3. Expose full unparsed header via API; 4. Provide transmutable data objects (CSV/TSV tables); 5. Compressed image previews and other data widgets. array.tsv array.csv array.json
  8. 8. array data header key : valueFITS File array data header key : valueFITS File array data header key : value Suggested directions: 1. Retain File Level metadata (no aggregation); 2. Validate File Level metadata by completeness & content; 3. Expose full unparsed header via API; 4. Provide transmutable data objects (CSV/TSV tables); 5. Compressed image previews and other data widgets.

×