Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Machine learning is being deployed in a growing number of applications which demand real-time, accurate, and robust predictions under heavy serving loads. However, most machine learning frameworks and systems only address model training and not deployment.
Clipper is a general-purpose model-serving system that addresses these challenges. Interposing between applications that consume predictions and the machine-learning models that produce predictions, Clipper simplifies the model deployment process by isolating models in their own containers and communicating with them over a lightweight RPC system. This architecture allows models to be deployed for serving in the same runtime environment as that used during training. Further, it provides simple mechanisms for scaling out models to meet increased throughput demands and performing fine-grained physical resource allocation for each model.
In this talk, I will provide an overview of the Clipper serving system and then discuss how to get started using Clipper to serve Spark and TensorFlow models in a production serving environment.
Machine learning is being deployed in a growing number of applications which demand real-time, accurate, and robust predictions under heavy serving loads. However, most machine learning frameworks and systems only address model training and not deployment.
Clipper is a general-purpose model-serving system that addresses these challenges. Interposing between applications that consume predictions and the machine-learning models that produce predictions, Clipper simplifies the model deployment process by isolating models in their own containers and communicating with them over a lightweight RPC system. This architecture allows models to be deployed for serving in the same runtime environment as that used during training. Further, it provides simple mechanisms for scaling out models to meet increased throughput demands and performing fine-grained physical resource allocation for each model.
In this talk, I will provide an overview of the Clipper serving system and then discuss how to get started using Clipper to serve Spark and TensorFlow models in a production serving environment.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!