Whether you’re processing IoT data from millions of sensors or building a recommendation engine to provide a more engaging customer experience, the ability to derive actionable insights from massive volumes of diverse data is critical to success. MediaMath, a leading adtech company, relies on Apache Spark to process billions of data points ranging from ads, user cookies, impressions, clicks, and more — translating to several terabytes of data per day. To support the needs of the data science teams, data engineering must build data pipelines for both ETL and feature engineering that are scalable, performant, and reliable.
Join this webinar to learn how MediaMath leverages Databricks to simplify mission-critical data engineering tasks that surface data directly to clients and drive actionable business outcomes. This webinar will cover:
- Transforming TBs of data with RDDs and PySpark responsibly
- Using the JDBC connector to write results to production databases seamlessly
- Comparisons with a similar approach using Hive