SlideShare a Scribd company logo
1 of 59
Download to read offline
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 1
Load Flow Studies
Importance of Load Flow Studies:
The great importance of load flow studies is in the planning the future expansion of the
power system as well as in determining the best operation of the existing systems. The
principle information obtained from load flow studies are the magnitude and phase angle
of the voltage at each bus and the real and reactive power flowing in each line. This
information is essential for the continuous monitoring of the current state and to have a
close look for the scope of the future expansion to meet the increased load demand.
With the advent of the fast and large size digital computers, all kinds of the power
system studies, including load flow can be carried out conveniently. The load flow solution
is an essential tool for designing a new power system and modifying or improving the
performance of the existing ones.
Load flow solutions for a power network can be worked out under balanced and
unbalanced conditions. For such a system, a single-phase representation is adequate. It
requires following steps.
1) Formulation of the network equations
2) Mathematical technique for solution of the equations.
Bus Classification:
In a power system, each bus or node is associated with four quantities, real and reactive
powers, bus voltage magnitude and its phase angle. In a load flow solution, two of the four
quantities are specified and the remaining two are obtained through the solution of the
equations. Depending upon which quantities have been specified, the buses are classified
in the following three categories.
1) Load bus (P,Q bus)
2) Generator bus or Voltage controlled bus (P,V bus)
3) Slack or swing or reference bus (V, bus)
Load bus (P,Q bus)
Real and reactive powers are specified and it is desired to find out the voltage magnitude
and its phase angle. At the load bus, voltage can be allowed to vary within the permissible
tolerance of 5%.
Generator bus or voltage controlled bus (P,V bus)
Here the magnitude of the voltage corresponding to generation voltage and the real power
PG are specified. It is required to find out the reactive power generation QG and the phase
angle of the bus voltage.
Slack Bus or reference bus or swing bus
The magnitude of the voltage and its phase angle are specified. The real and reactive
powers are required to be found out i.e. PG & QG respectively. The phase angle of the
voltage at the slack bus is usually taken as reference. In the analysis, the real and reactive
component of the voltage at a bus are taken as independent variables for the load flow
equations i.e. Vi I = ei + j fi where ei & fi are the real and reactive components
of the voltage at the ith
bus.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 2
Nodal Admittance Matrix (Network Model Formulation)
133112211111312111 )()(
1
yVVyVVyVIIII
nodeAt

)1(][ 13312213121111 yVyVyyyVI 
1313121213121111
11
1331221111
;;
1tanarg
yYyYyyyY
busofceadmitingchshunty
YVYVYVI



Similarly, the nodal current equations at bus 2 and bus 3 can be written as follows:
)2(2332222112 YVYVYVI 
&
)3(3333223113 YVYVYVI 
In Matrix form
)(
3
2
1
333231
232221
131211
3
2
1
A
V
V
V
YYY
YYY
YYY
I
I
I































or in compact form, these equations can be written as
busesthreefortopVYI
q
qpqP 

3
1
31,


n
q
qpqp npVYI
busesofnumbernforgeneralIn
1
................3,2,1,
I1 I2
I3
I13
I32
I23
I22
I31
I33
I21I12
I11
1
3
2
y12 = y21
y32 = y23y13 = y31
Three Bus System
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 3




















































nnnnn
n
n
n V
V
V
YYY
YYY
YYY
I
I
I
formmatrixinor
'
'
'''''
'''''
'
'
2
1
21
22221
11211
2
1
A nodal admittance matrix is a square matrix i.e. a few number of elements are non-zero
for an actual power system.
The nodal admittance matrix for the system is as follows:

















555451
45444341
343332
232221
15141211
00
0
00
00
0
YYY
YYYY
YYY
YYY
YYYY
Ypq
Where
1514121111 yyyyY 
21122112 yyYY 
41144114 yyYY 
51155115 yyYY 
23212222 yyyY 
32233223 yyYY 
34323333 yyyY 
~
~
4
5
2
3
1
y12 = y21
y15 = y51
y45 = y54
y34 = y43
y23 = y32
y14 = y41
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 4
43344334 yyYY 
4541434444 yyyyY 
54455445 yyYY 
54515555 yyyY 
NOTE: This Y bus matrix can be easily written just by inspection.
NUMERICAL PROBLEM 1
Find YBUS for the system shown below when dotted line is not connected and when it is
connected. Shunt admittances at all buses are neglected.
The following table gives the line impedance identified by the buses on which it terminates.
Solution:
62
15.005.0
111
121212
12 j
jjxrz
y 




31
3.01.0
111
131313
13 j
jjxrz
y 




2666.0
45.015.0
111
232323
23 j
jjxrz
y 




31
3.01.0
111
242424
24 j
jjxrz
y 




62
15.005.0
111
343434
34 j
jjxrz
y 




Line
Bus to Bus
r, pu x, pu
1-2 0.05 0.15
1-3 0.1 0.3
2-3 0.15 0.45
2-4 0.1 0.3
3-4 0.05 0.15
1 2
3 4
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 5
The YBUS matrix for a four-bus system in general is













44434241
34333231
24232221
14131211
YYYY
YYYY
YYYY
YYYY
YBUS

















42433424
343432312313
24232423
1313
0
0
00
yyyy
yyyyyy
yyyy
yy
YBUS

















9362310
6211666.32666.031
312666.05666.10
031031
jjj
jjjj
jjj
jj
YBUS
If line 1-2 is connected, only Y11,Y22, Y12 & Y21 will change
Therefore

















42433424
343432312313
242312242312
13121213
0
0
yyyy
yyyyyy
yyyyyy
yyyy
YBUS
Y11(new) = Y11(old) + y12 = 1 – j 3 + (2 – j 6) = 3 – j 9.
Y22(new) = Y22(old) + y12 = 1.666 – j 5 + (2 – j 6) = 3.666 – j 11
Y12(new) = Y12(old) - y12 = 0 - (2 – j 6) = -2 + j 6.
The modified YBUS with line 1-2 connected is as follows:
Line
Bus to Bus
g, pu b, pu
1-2 2 -6
1-3 1 -3
2-3 0.666 -2
2-4 1 -3
3-4 2 -6
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 6

















9362310
6211666.32666.031
312666.011666.362
0316293
jjj
jjjj
jjjj
jjj
YBUS
Numerical Problem 2
1) Find the bus incidence matrix [A] for the system shown in fig. Take ground as
reference.
2) Find the primitive admittance matrix [Y]. It is given that all the lines are
characterised by a series impedance of 0.1 + j 0.7 ohms per kilometer and a shunt
admittance of j0.35x10-5
mho per kilometer. Lines are rated at 220 KV
3) Find the bus admittance matrix using singular transformation. Use base values
220 KV and 100 MVA. Express all impedance and admittance in per unit.
4) Also find YBUS by inspection method.
Solution:
Network Graph
1 2
3
4
Oriented Graph
1 2
3
4
120 km
100 km
150 km
100 km110 km
1 2
3 4
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 7
The primitive admittance matrix for the system is given by
Tree
1 2
3
41 2
3
4
5
6
7
8
9
node
elements
Element
Element
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 8


484
10100
)10220(
)(
/
6
3
2
x
x
VABase
VoltageBase
VoltageBaseVABase
VoltageBase
currentBase
VoltageBase
impedanceBase
mhox
pedanceBase
ceAdmitBase 3
10066115.2
484
1
Im
1
tan 

Line impedance per kilometer = 0.1 + j 0.7 ohms
ValueBase
ValueActualj
unitperinkilometerperimpedanceLine 


484
7.01.0
=2.066115 x 10-4
+ j 1.44628 x 10-3
pu
puj
xjxZkmforlineforimpedanceLine
144628.00206611.0
]1044628.110066115.2[10010021 34
12

 
pujZkmforlineforimpedanceLine 15909.002272.011031 13 
pujZkmforlineforimpedanceLine 216942.003099165.015041 14 
pujZkmforlineforimpedanceLine 144628.00206611.010042 24 
pujZkmforlineforimpedanceLine 1735536.00247933.012043 34 
puj
j
y 776.6968.0
87.81146096.0
1
144628.00206611.0
1
012 




puj
j
y 16.688.0
87.8116070495.0
1
1590908.002272.0
1
013 




puj
j
y 5174.464533.0
87.8121914.0
1
216942.003099165.0
1
014 




puj
j
y 776.6968.0
87.81146096.0
1
144628.00206611.0
1
024 




puj
j
y 6466.580665.0
87.811753156.0
1
1735536.00247933.0
1
034 




Line charging admittance per km = j0.35 x 10-5
mho/km
Line charging Admittance per km in per unit = j0.35 x 10-5
/ 2.06615 x 10-3
= j1.6939 x 10-3
pu.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 9
1
pqy pu 2/1
pqy pu
Line charging admittance for line 1-2 (100 km) j0.16939 j0.084695
Line charging admittance for line 1-3 (110 km) j0.186336 j0.093168
Line charging admittance for line 1-4 (150 km) j0.254 j0.127
Line charging admittance for line 2-4 (100 km) j0.16939 j0.084695
Line charging admittance for line 3-4 (120 km) j0.2032 j0.1016
Computing the parameters of Primitive admittance matrix
𝑦10 = 𝑗(0.08469 + 0.127 + 0.09316) = 𝑗0.3048
𝑦20 = 𝑗(0.08469 + 0.084695) = 𝑗0.16939
𝑦30 = 𝑗(0.09316 + 0.1016) = 𝑗0.1947
𝑦40 = 𝑗(0.1016 + 0.127 + 0.08469) = 𝑗0.31329
The primitive admittance matrix is as follows:





























14
24
34
13
12
40
30
20
10
][
y
y
y
y
y
y
y
y
y
Y
1 2
3 4
y12 = 0.908-j6.776
y14 = 0.6453-j4.5174
y34 = 0.80665-j5.6466
y24 = 0.968-j6.776
y13 = 0.88-j6.16
J0.1016
J0.093168
J0.093168
J0.084695 J0.084695
J0.127
J0.127
J0.084695
J0.084695J0.1016
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 10










































51.4
645.0
00000000
0
77.6
968.0
0000000
00
64.5
806.0
000000
00016.688.000000
000077.6968.00000
00000313.0000
000000194.000
0000000169.00
00000000304.0
j
j
j
j
j
j
j
j
j
Y
YBUS = AT
YA

































517.4645.000517.4645.0
776.6968.00776.6968.00
646.5806.0646.5806.000
016.688.0016.688.0
0077.6968.077.6968.0
313.0000
0194.000
00169.00
000304.0
]][[
jj
jj
jj
jj
jj
j
j
j
j
AY

















62.1642.2646.5806.0776.6968.051.4645.0
646.5806.061.1168.1016.688.0
776.6968.0038.1393.1774.6968.0
51.4645.016.688.0774.6968.014.1749.2
jjjj
jjj
jjj
jjjj
YBUS
Load Flow Problem
The complex power injected by the source into ith
bus of a power system is
Si = Pi + jQi = Vi Ji
*
i = 1, 2, ……….n (1)
Where Vi is the voltage at ith
bus with respect to ground and Ji is the source current
injected into the bus.
The load flow problem is handled more conveniently if we use Ji rather than Ji
*
.
Therefore taking the complex conjugate of equation (1), we have
Pi –jQi = Vi
*
Ji i = 1,2,………………n (2)
As I = YV
At any particular node
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 11
I1 = V1Y11 + V2Y12 + V3Y13
In general


n
k
kiki niVYJ
1
................,2,1
Substituting value of Ji in equation (2), we get


n
k
kikiii niVYVjQP
1
*
.................,2,1
Equating real & imaginary parts
)3..(........................................Re)(Re
1
*






 
n
k
kikii VYVPoweralP
)4..(........................................Im)(Re
1
*






 
n
k
kikii VYVpoweractiveQ
iki j
ikik
j
i eYYeVVformpolarIn 
||&|| 
The real & reactive powers can be expressed as


n
k
ikikikkii niCosYVVpowerrealP
1
)5(................2,1)(||||||)( 


n
k
ikikikkii niSinYVVpowerreactiveQ
1
)6(................2,1)(||||||)( 
APPROXIMATE LOAD FLOW SOLUTION
Assumptions:
1) The line resistance is negligible. Since line resistance is small as compared to its
reactance, therefore it can be neglected. Thus the active power loss is zero.
2) This gives ik  90o
& ii  -90o
and i - k is small below 30o
so that sin(i - k)
 (i - k)
Therefore equation (5) and (6) reduces to
𝑃𝑖 = |𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| 𝑐𝑜𝑠[90 − (𝛿𝑖 − 𝛿 𝑘)] + |𝑉𝑖||𝑌𝑖𝑖| 𝑐𝑜𝑠[−90 − (𝛿𝑖 − 𝛿𝑖)]}
𝑛
𝑘=1
𝑃𝑖 = |𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| sin(𝛿𝑖 − 𝛿 𝑘) − |𝑉𝑖||𝑌𝑖𝑖| 𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑖)}
𝑛
𝑘=1
𝑠𝑖𝑛𝑐𝑒 𝑠𝑖𝑛 (𝛿𝑖 − 𝛿 𝑘) ≅ (𝛿𝑖 − 𝛿 𝑘)
)7(..........................,3,2;)(||||||
1
niYVVP k
n
ik
k
iikkii  



Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 12
𝑄𝑖 = −|𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| 𝑠𝑖𝑛[90 − (𝛿𝑖 − 𝛿 𝑘)] + |𝑉𝑖||𝑌𝑖𝑖| 𝑠𝑖𝑛[−90 − (𝛿𝑖 − 𝛿𝑖)]}
𝑛
𝑘=1
𝑄𝑖 = −|𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| cos(𝛿𝑖 − 𝛿 𝑘) − |𝑉𝑖||𝑌𝑖𝑖| cos(𝛿𝑖 − 𝛿𝑖)}
𝑛
𝑘=1
)8(...............,3,2;||||)(|||||| 2
1
niYVCosYVVQ iiik
n
ik
k
iikkii  



3) All buses other than the slack are PV buses i.e. voltage magnitude of all the buses
including the slack bus are specified.
NUMERICAL PROBLEM 3
Consider a four-bus sample power system wherein line reactances are indicated in per unit.
Line resistances are considered negligible. The magnitude of all the four bus voltages is
specified to be 1.0 pu. The bus powers are specified in the table below.
Bus Real Demand Reactive
Demand
Real Generation Reactive Generation
1 PD1 = 1.0 QD1 = 0.5 PG1 = ? QG1(unspecified)
2 PD2 = 1.0 QD2 = 0.4 PG2 = 4.0 QG2(unspecified)
3 PD3 = 2.0 QD3 = 1.0 PG3 = 0 QG3(unspecified)
4 PD4 = 2.0 QD4 = 1.0 PG4 = 0 QG4(unspecified)
Solution:
Generation = Demand + Losses
But since resistance is negligible, it is a loss less line.
Therefore
PG1 + PG2 + PG3 + PG4 = PD1 + PD2 + PD3 + PD4
PG1 + 4.0 + 0 + 0 = 1.0 + 1.0 + 2.0 + 2.0
G1 G3
G2G4
S1=1.0+jQ1 S3 = -2+jQ3
S4 = -2+jQ4
S2 = 3+jQ2
1 3
4 2
|V1| = 1.0 |V3| = 1.0
|V4| = 1.0 |V2| = 1.0
J0.15
J0.2
J0.15
J0.1 J0.1
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 13
PG1 = 2.0 pu.
67.615.0 1313 jyjz 
52.0 1212 jyjz 
101.0 1414 jyjz 
101.0 3232 jyjz 
67.615.0 2424 jyjz 
Y11 = y13 + y12 + y14 = - j 6.67 – j 5 – j 10 = - j 21.67
Y22 = y23 + y21 + y24 = - j 10 – j 5 – j 6.67 = - j 21.67
Y33 = y31 + y32 = - j 6.67 – j 10 = - j 16.67
Y44 = y41 + y42 = - j 10 – j 6.67 = - j 16.67
Y12 = -y12 = j 5
Y13 = -y13 = j 6.67
Y14 = -y14 = j10
Y23 = -y23 = j10
Y24 = -y24 = j6.67
Y34 = -y34 = 0

















67.16067.610
067.161067.6
67.61067.215
1067.6567.21
jjjj
jjjj
jjjj
jjjj
YBUS
Now, real power generation at various buses are:
P2 = PG2 – PD2 = 4 – 1 = 3
P3 = PG3 - PD3 = 0 - 2 = -2
P4 = PG4 - PD4 = 0 - 2 = -2
.......,..........,3,2;)(||||||
1
niYVVP ki
n
ik
k
ikkii  



Thus
for i = 2
 
 
)1......(..............................367.61067.215
)(67.6)(10)(50.13
)(||||)(||||)(||||||
4321
423212
42244322331221122





 YVYVYVVP
for i = 3
 
 
)2......(..............................267.161067.6
)(10)(67.60.12
)(||||)(||||)(||||||
321
2313
43344233221331133





 YVYVYVVP
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 14
for i = 4
 
 
)3......(..............................267.1667.610
)(67.6)(100.12
)(||||)(||||)(||||||
421
2414
34433244221441144





 YVYVYVVP
If bus ‘1’ is considered as reference, 1 = 0.
Solving equation 1, 2 & 3 we get,
2 = 0.077 rad = 4.41o
; 3 = -0.074 rad = -4.23o
; 4 = -0.089 rad = -5.11o
.
The bus voltages are now updated as follows:
𝑉1 = 1.0  0 𝑜
𝑝𝑢; 𝑉2 = 1.0  4.41 𝑜
𝑝𝑢;
𝑉3 = 1.0  −4.23 𝑜
𝑝𝑢; 𝑉4 = 1.0  − 5.11 𝑜
𝑝𝑢;
Again
.......,..........,3,2,1;||||)(|||||| 2
1
niYVCosYVVQ iiiki
n
ik
k
ikkii  



The above equation is required to find the reactive power generation at each bus using
QGi = Qi + QDi
Thus
For i = 1
 
  .0727.067.21)11.5(10)23.4(67.6)41.4(50.1
||||)(||||)(||||)(||||||
1
11
2
141144311332112211
puCosCosCosQ
YVCosYVCosYVCosYVVQ

 
for i = 2
 
  .2202.067.21)11.541.4(67.6)23.441.4(10)41.4(50.1
||||)(||||)(||||)(||||||
2
22
2
242244322331221122
puCosCosCosQ
YVCosYVCosYVCosYVVQ

 
for i = 3
 
  .132.067.16)41.423.4(10)23.4(67.60.1
||||)(||||)(||||)(||||||
3
33
2
343344233221331133
puCosCosQ
YVCosYVCosYVCosYVVQ

 
for i = 4
 
  .132.067.16)41.411.5(67.6)11.5(100.1
||||)(||||)(||||)(||||||
4
44
2
434433244221441144
puCosCosQ
YVCosYVCosYVCosYVVQ

 
Reactive Power Generation
QG1 = Q1 + QD1 = 0.0727 + 0.5 = 0.5727 pu
QG2 = Q2 + QD2 = 0.2202 + 0.4 = 0.6202 pu
QG3 = Q3 + QD3 = 0.1320 + 1.0 = 1.1320 pu
QG4 = Q4 + QD4 = 0.1320 + 1.0 = 1.1320 pu
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 15
Reactive Line Losses = [QG1+QG2+QG3+QG4] - [QD1+QD2+QD3+QD4] = 0.5569 pu.
Since |Z|  X therefore  = 90o
, the line flows can be written as
)(
||||
ki
ik
ki
kiik Sin
X
VV
PP  
where Pik is the real power flow from bus ‘i’ to bus ‘k’
Using Approximate load flow solution
.492.0))23.4(0(
15.0
1
)(
||||
31
13
31
3113 puSinSin
X
VV
PP  
.3844.0))41.40(
2.0
1
)(
||||
21
12
21
2112 puSinSin
X
VV
PP  
.8906.0))11.5(0(
1.0
1
)(
||||
41
14
41
4114 puSinSin
X
VV
PP  
.502.1)41.423.4(
1.0
1
)(
||||
23
32
23
2332 puSinSin
X
VV
PP  
.103.1))11.5(41.4(
15.0
1
)(
||||
42
24
42
4224 puSinSin
X
VV
PP  
From sending end reactive power as derived earlier in power circle diagram
𝑄𝑠 =
|𝑉𝑠|2
|𝑍|
sin  −
|𝑉𝑠||𝑉𝑟|
|𝑍|
𝑠𝑖𝑛(𝜃 + 𝛿)
The reactive power flow for |Z| = X &  = 90o
Using Approximate load flow solution
)(
|||||| 2
ki
ik
ki
ik
i
kiik Cos
X
VV
X
V
QQ  
where, Qik is the reactive power flow from bus ‘i’ to bus ‘k’.
.018.0
15.0
)23.4(
15.0
1
)(
||||||
31
13
31
13
2
1
3113 pu
Cos
Cos
X
VV
X
V
QQ  
.015.0
2.0
)41.4(
2.0
1
)(
||||||
21
12
21
12
2
1
2112 pu
Cos
Cos
X
VV
X
V
QQ 

 
.04.0
1.0
)11.5(
1.0
1
)(
||||||
41
14
41
14
2
1
4114 pu
Cos
Cos
X
VV
X
V
QQ  
.1135.0
1.0
)41.423.4(
1.0
1
)(
||||||
23
32
23
32
2
3
2332 pu
Cos
Cos
X
VV
X
V
QQ 

 
.0918.0
15.0
)11.541.4(
15.0
1
)(
||||||
42
24
42
24
2
2
4224 pu
Cos
Cos
X
VV
X
V
QQ 

 
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 16
S13 = P13 + j Q13 = 0.492 + j 0.018 (Power flows from bus 1 to bus 3)
S12 = P12 + j Q12 = -0.3844 + j 0.015 (Power flows from bus 2 to bus 1)
S14 = P14 + j Q14 = 0.8906 + j 0.04 (Power flows from bus 1 to bus 4)
S32 = P32 + j Q32 = -1.502 + j 0.1135 (Power flows from bus 2 to bus 3)
S24 = P24 + j Q24 = 1.103 + j 0.0918 (Power flows from bus 2 to bus 4)
Line Flows can be indicated on the system as follows:
Gauss Seidel Method
It is an iterative algorithm for solving a set of non-linear algebraic equations. The iterative
process is then repeated till the solution vector converges. It is assumed that all the buses
other than slack bus are PQ buses. This method is also applicable to PV buses as well.
In a GS method, the slack bus voltages are specified, suppose there are ‘n’ number of buses
in a power system, there will be (n-1) bus voltages, starting values of whose magnitude and
angles are assumed. These values are then updated through the iterative process.
The complex power injected by a source into ith
bus of a power system is
Si = Pi + jQi = Vi Ji
*
i = 1, 2, ……….n (1)
Vi = voltage at ith
bus
Ji = source current injected.
Load flow study is convenient by the use of Ji rather than Ji
*
Taking Complex Conjugate of equation (1)
Pi – jQi = Vi
*
Ji i = 1, 2, ………n (2)
Where 

n
k
kiki VYJ
1
1
2
3
4
0.3844+j0.015
0.492+j0.018
0.8906+j0.04
8
1.502+j0.1135
1.103+j0.0918
1+j0.5
2+j1
2+j1
1+j0.4
j1.1322+j0.57
4+j0.62j1.132
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 17
Expanding & Rewriting, we get




n
ik
k
kiki
ii
i VYJ
Y
V
1
][
1
But from equation (2), *
i
ii
i
V
jQP
J


)3(......................,3,2
1
1
*
niVY
V
jQP
Y
V
n
ik
k
kik
i
ii
ii
i 












 


Where, the voltages substituted on right hand side of equation (3) are the most recently
calculated (updated) values for the corresponding buses. But slack bus voltage is fixed and
hence it is not updated. The iterations are repeated till no bus voltage magnitude changes.
Such a computation process is called as convergence of the solution.
If PV Buses are also present
At PV bus, P & V are specified whereas Q &  are unspecified. Here Q and  are updated
using GS method. It includes the following steps
aswrittenbecanequationaboveiteration
rforSideHandRightonvoltagesofvaluerecentmostputtingbyupdatedisQ
VYVQ
Step
th
i
n
k
kikii
,
)1(
Im
1
1
*











 
   






  

 

1
1
*)1(*
Im
i
k
n
ik
r
kik
r
i
r
kik
r
ii VYVVYVQ
 
ii
r
iir
i
i
k
n
ik
r
kik
r
kik
r
i
r
i
r
i
r
i
Y
jQP
A
where
VBVB
V
A
ofAngle
VThusstepfromobtainedisofvaluerevisedThe
Step
)1(
)1(
1
1 1
)()1(
*)(
)1(
)1()1(
.1
2



 















 

This gives a range of reactive generation, i.e. Qmin to Qmax , If Qi is not within this limit,
that particular ith
bus is then treated as ‘PQ’ bus.
NUMERICAL PROBLEM 4
For the network shown in figure, obtain the complex bus bar voltage at bus 2 at the end of
first iteration. Use GS method. Line impedances shown in figure are in per unit. Bus 1 is a
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 18
slack bus with V1 = 1.00o
; P2 + j Q2 = -5.96 + j 1.46 ; |V3| = 1.02 pu. Assume V3
o
=
1.02 0o
; and V2
o
= 1.00o
Solution
53.1169.7
06.004.0
1
12 j
j
y 

 ; 07.2338.15
03.002.0
1
23 j
j
y 


Y11 = y12 = 7.69 – j 11.53; Y12 = -y12 = -7.69 + j 11.53 ; Y13 = 0;
Y22 = y21 + y23 = 23.07 – j 34.61; Y23 = -y23 = -15.38 + j 23.07;
Y33 = y32 = 15.38 – j 23.07.














07.2338.1507.2338.150
07.2338.1561.3407.2353.1169.7
053.1169.753.1169.7
jj
jjj
jj
YBUS
  









 0
323
0
121*0
2
22
22
1
2
1
VYVY
V
jQP
Y
V










 02.1)07.2338.15()53.1169.7(
)01(
46.196.5
61.3407.23
11
2 jj
j
j
j
V
V2
1
= 0.973 -8.1934o
pu OR 0.963 –j 0.1386 pu.
NUMERICAL PROBLEM 5
For the sample system, the generators are connected to all four buses while loads are at
buses 2 & 3. All buses other than slack bus are PQ type. Assume flat voltage start, find the
voltage and bus angles at other three buses at the end of third GS iteration.
Bus Pi pu Qi pu Vi pu. Remarks
1 - - 1.04  0o Slack bus
2 0.5 -0.2 - PQ bus
3 -1.0 0.5 - PQ bus
4 0.3 -0.1 - PQ bus
Line
Bus to Bus
r, pu x, pu
1-2 0.05 0.15
1-3 0.1 0.3
2-3 0.15 0.45
2-4 0.1 0.3
3-4 0.05 0.15
0.04+j0.06 0.02+j0.03
1 2 3
1 2
3 4
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 19
Solution:
62
15.005.0
111
121212
12 j
jjxrz
y 




31
3.01.0
111
131313
13 j
jjxrz
y 




2666.0
45.015.0
111
232323
23 j
jjxrz
y 




31
3.01.0
111
242424
24 j
jjxrz
y 




62
15.005.0
111
343434
34 j
jjxrz
y 





















42433424
343432312313
242312242312
13121213
0
0
yyyy
yyyyyy
yyyyyy
yyyy
YBUS

















9362310
6211666.32666.031
312666.011666.362
0316293
jjj
jjjj
jjjj
jjj
YBUS
Using Formula




n
ik
k
kiki
ii
i VYJ
Y
V
1
][
1
where *
i
ii
i
V
jQP
J


bus 1 is a slack bus V1 = 1.04  0 o
= 1.04 + j0.
Initially we shall assume V2
0
= V3
0
= V4
0
= 1 + j 0 and later on after each iteration, they
will be updated.
FIRST ITERATION
  









 0
424
0
323
0
121*0
2
22
22
'
2
1
VYVYVY
V
jQP
Y
V
Line
Bus to Bus
g, pu b, pu
1-2 2 -6
1-3 1 -3
2-3 0.666 -2
2-4 1 -3
3-4 2 -6
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 20
pujpu
jjj
j
j
j
V
o
046.00186.1.59.2019.1
)31()266.0(04.1)62(
01
2.05.0
1166.3
1'
2












Note: initially we assumed V2
o
= 1 + j 0 but with the value V2
1
obtained we shall put it in
our upcoming equations.
  









 0
434
'
232
0
131*0
3
33
33
'
3
1
VYVYVY
V
jQP
Y
V
pujpu
jjjj
j
j
j
V
o
087.00273.1.851.4031.1
)62()046.00186.1)(266.0(04.1)31(
01
5.01
1166.3
1'
3












Note: initially we assumed V3
o
= 1 + j 0 but with the value V3
1
obtained we shall put it in
upcoming equations.
  









 '
343
'
242
0
141*0
4
44
44
'
4
1
VYVYVY
V
jQP
Y
V
puj
jjjj
j
j
j
V
00948.002443.1
)087.00273.1)(62()046.00186.1)(31(
01
1.03.0
93
1'
4












SECOND ITERATION
  









 '
424
'
323
0
121*'
2
22
22
''
2
1
VYVYVY
V
jQP
Y
V
pujpu
j
jjjj
j
j
j
V
o
026.002815.1.49.10285.1
)00948.00244.1(
)31()087.00273.1)(266.0(04.1)62(
046.00186.1
2.05.0
1166.3
1''
2

















  









 '
434
''
232
0
131*'
3
33
33
''
3
1
VYVYVY
V
jQP
Y
V
pujpu
j
jjjj
j
j
j
V
o
1022.0030.1.662.5036.1
)00948.00244.1(
)62()026.002815.1)(266.0(04.1)31(
087.0027.1
5.01
1166.3
1''
3

















  









 ''
343
''
242
0
141*'
4
44
44
''
4
1
VYVYVY
V
jQP
Y
V
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 21
.488.1031.1026.00311.1
)1022.003.1)(62()026.002815.1)(31(
00948.0024.1
1.03.0
93
1''
4
pupuj
jjjj
j
j
j
V












THIRD ITERATION
  









 ''
424
''
323
0
121*''
2
22
22
'''
2
1
VYVYVY
V
jQP
Y
V
pujpu
j
jjjj
j
j
j
V
o
0195.0031.1.083.10319.1
)026.00311.1(
)31()1022.003.1)(266.0(04.1)62(
026.00322.1
2.05.0
1166.3
1'''
2

















  









 ''
434
'''
232
0
131*''
3
33
33
'''
3
1
VYVYVY
V
jQP
Y
V
pujpu
j
jjjj
j
j
j
V
o
104.00368.1.724.5042.1
)026.00311.1(
)62()0195.0031.1)(266.0(04.1)31(
1022.003.1
5.01
1166.3
1'''
3

















  









 '''
343
'''
242
0
141*''
4
44
44
'''
4
1
VYVYVY
V
jQP
Y
V
.7.1031.103.00358.1
)104.00368.1)(62()0195.0031.1)(31(
026.00311.1
1.03.0
93
1'''
4
pupuj
jjjj
j
j
j
V












Acceleration of Convergence
Convergence in GS solution can sometimes be speeded up by the use of the acceleration
factor. For the ith
bus, the accelerated value of voltage at the (r + 1)th
iteration is given by
)()( )()1()()1( r
i
r
i
r
i
r
i VVVdaccelerateV  

where  is a real number called the acceleration factor. A suitable value of  for any system
can be obtained by trial load flow studies. A generally recommended value is  = 1.6. A
wrong choice of  may indeed slow down convergence or even cause the method to
diverge.
This concludes the load flow analysis for the case of PQ buses only.
NOTE: Powers at load bus are taken as negative and at generator bus they are taken as
positive.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 22
NUMERICAL PROBLEM 6
The load flow data for a four-bus system is given in the table 1 & 2.
Table 1
Table 2
Bus code P Q V Remarks
1 - - 1.06 Slack
2 -0.5 -0.2 1+j0 PQ
3 -0.4 -0.3 1+j0 PQ
4 -0.3 -0.1 1+j0 PQ
i) Determine the voltages at the end of first iteration using GS method. Take  = 1.6.
ii) If Bus ‘2’ is taken as a generator bus with |V2| = 1.04 and reactive power constraint is
0.1  Q2  1.0 Determine the voltages starting with a flat profile and assuming
accelerating factor as 1.0. (Take P2 = +0.5 pu when bus 2 is a generator bus)
iii) If the reactive power constraint on generator 2 is 0.2  Q2  1.0. Determine the voltages
starting with a flat profile and assuming accelerating factor as 1.0. (Take P2 = +0.5 pu
when bus 2 is a generator bus)
Solution:
;82;41
;664.2666.0;0;41;82;123
664.14666.3;664.14666.3;123
3424
2314131244
3322131211
pujYpujY
pujYYpujYpujYpujY
pujYpujYpujyyY




















12382410
82664.14666.3664.2666.041
41664.2666.0664.14666.382
04182123
:tan
jjj
jjjj
jjjj
jjj
Y
followsasissystemtheforMatrixceAdmitBusThe
BUS
Bus
code
Admittance
1-2 2-j8
1-3 1-j4
2-3 0.666-j2.664
2-4 1-j4
3-4 2-j8
1 2
4
y23 = 0.666-j2.664
y12 = 2-j8
y34 = 2-j8
y24 = 1-j4y13 = 1-j4
3
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 23
Computing voltages at different buses other than slack bus
  









 0
424
0
323
0
121*0
2
22
22
'
2
1
VYVYVY
V
jQP
Y
V
puj
jjj
j
j
j
V
02888.001187.1
)41()664.2666.0(06.1)82(
01
2.05.0
664.1466.3
1'
2












V2
1
acc = (1.0 + j 0.0) + 1.6 {(1.01187 – j 0.02888) - (1.0 + j0)}
= 1.01899 – j 0.046208 pu.
  









 0
434
1
232
0
131*0
3
33
33
'
3
1
VYVYVY
V
jQP
Y
V acc
puj
jj
jjj
j
j
j
V
029248.0994119.0
)01)(82(
)046208.001899.1)(664.2666.0(06.1)41(
01
3.04.0
664.1466.3
1'
3

















V3
1
acc = (1 + j 0) + 1.6 {(0.994119 – j 0.029248) – (1 + j 0)}
= 0.99059 - j 0.0467968 pu.
  









 accacc
VYVYVY
V
jQP
Y
V 1
343
1
242
0
141*0
4
44
44
'
4
1
puj
jjjj
j
j
j
V
064684.09716032.0
)0467968.099059.0)(82()046208.001899.1)(41(
01
1.03.0
123
1'
4












V4
1
acc = (1 + j 0) + 1.6{(0.9716032 – j 0.064684) – (1 + j 0)}
= 0.954565 – j 0.1034944 pu.
If bus ‘2’ is a PV bus
    )1(Im
1
1
*)1(*






  

 

i
k
n
ik
r
kik
r
i
r
kik
r
ii VYVVYVQ
Thus for i = 2 ; r = 0;
  )2()()()()(Im 0
424
0
323
0
222
*0
2
1
121
*0
22 VYVYVYVVYVQ 
It should be noted that V1
1
is equal to V1
0
since it is a slack bus, its voltage is fixed at
1.06 pu. Therefore the above expansion can be simplified as
    )3()(Im 0
424
0
323
0
222
0
121
*0
22 VYVYVYVYVQ 
Voltage at bus ‘2’ is specified as |V2| = 1.04 pu.
Initial value of 2 = 0o
(Assumed) it will be updated after iterations.
Therefore V2 in its polar form can be written as V2  2 = 1.04 0o
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 24
In Rectangular form V2 = 1.04 + j 0 pu.  V2
*
= 1.04 – j 0 pu.
Flat Voltage profile is given therefore all the bus voltages are 1 + j 0 i.e.
V3 = V4 = 1 + j 0.
Putting values in equation (3)















0.1)41(
0.1)664.2666.0()004.1)(664.14666.3()06.1)(82(
)004.1(Im2
j
jjjj
jQ
Q2 = 0.1108 pu.
The reactive power limit is specified as 0.1  Q2  1.0
The calculated value of Q2 using equation (3) lies within the specified limit.
Therefore bus ‘2’ is a PV bus i.e. bus ‘2’ is a voltage controlled or generator bus.
Since bus ‘2’ is concluded to be a generator bus, the powers will now be taken as positive
at this bus. i.e. P2 = 0.5 pu (given) ; Q2 = 0.1108 pu (calculated) .
 
ii
r
iir
i
i
k
n
ik
r
kik
r
kik
r
i
r
i
r
i
r
i
Y
jQP
A
where
VBVB
V
A
ofAngle
VThusobtainedisofvaluerevisedThe
)1(
)1(
1
1 1
)()1(
*)(
)1(
)1()1(
.



 















 

















 424323121*0
2
22
22
2
)(
1
VYVYVY
V
jQP
Y
new
















 0.1)41(0.1)664.2666.0(06.1)82(
004.1
1108.05.0
664.14666.3
1
2 jjj
j
j
j
new
= 1.0472846 + j0.0291476 pu = 1.04769  1.59o
pu
Thus 2 new = 1.59 o
Therefore voltage at bus ‘2’ in its polar form V2 = 1.04 1.59o
pu
In rectangular form V2 = 1.0395985 + j 0.02891158 pu.
However V3 & V4 can be calculated using conventional method but with new updated
value of V2.








 0
434232
0
131*0
3
33
33
1
3
)(
1
VYVYVY
V
jQP
Y
V
















)01)(82(
)02891158.00395985.1)(664.2666.0(06.1)41(
01
3.04.0
664.14666.3
11
3
jj
jjj
j
j
j
V
pujV 015607057.09978866.01
3 
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 25








 1
343242
0
141*0
4
44
44
1
4
)(
1
VYVYVY
V
jQP
Y
V
















)015607057.09978866.0)(82(
)02891158.00395985.1)(41(
)01(
1.03.0
123
11
4
jj
jj
j
j
j
V
.022336.0998065.01
4 pujV 
If reactive power limit on generator 2 is 0.2  Q2  1.0.
In the second part of the problem, Q2 has been calculated as 0.1108 pu which does not lie
within limits specified above. For this, voltage at bus ‘2’ is assumed to be 1 + j0 (Using
flat voltage profile) and will be updated through iterations assuming V3
0
= V4
0
= 1 + j 0
pu. It should also be noted that for a generators bus, powers are taken positive whereas
for a load or PQ bus, powers are taken as negative. Therefore P2 = 0.5 pu and setting Q2
to its minimum limit i.e. Q2 min = 0.2 pu.








 0
424
0
323
0
121*0
2
min22
22
1
2
)(
1
VYVYVY
V
jQP
Y
V










 )41()664.2666.0(06.1)82(
)01(
2.05.0
664.14666.3
11
2 jjj
j
j
j
V
𝑉2
′
= 1.09822 + 𝑗0.03010 𝑝𝑢








 0
434
1
232
0
131*0
3
33
33
1
3
)(
1
VYVYVY
V
jQP
Y
V
















)82(
)03010.0098221.1)(664.2666.0(06.1)41(
)01(
3.04.0
664.14666.3
11
3
j
jjj
j
j
j
V
𝑉3
′
= 1.00853 − 𝑗0.01545 𝑝𝑢 = 1.00865  − 0.878 𝑜
𝑝𝑢








 1
343
1
242
0
141*0
4
44
44
1
4
)(
1
VYVYVY
V
jQP
Y
V
















)015456.000853.1(
)82()030105662.0098221.1)(41(
01
1.03.0
123
11
4
j
jjj
j
j
j
V
𝑉4
′
= 1.0276 − 𝑗0.020082 𝑝𝑢 = 1.0278 − 1.1196 𝑜
𝑝𝑢
NUMERICAL PROBLEM 7
1) For the sample system, the generators are connected to all four buses while loads are at
buses 2 & 3. All buses other than slack bus are PQ type. Assume flat voltage start, find the
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 26
voltage and bus angles at other three buses at the end of first GS iteration. Assume Base
MVA 1000
Bus Real Power
Generation
PGi (MW)
Real Power
Demand
PDi (MW)
Reactive Power
Generation QGi
(MVAR)
Reactive Power
Demand
QDi (MVAR)
Vi Remarks
1 - - - - 1.040o Slack
2 700 200 200 400 - PQ
3 200 300 600 100 - PQ
4 400 100 200 300 - PQ
2) Let bus 2 be a PV bus with |V2| = 1.04 pu. Assuming a flat voltage start, find Q2,
2, V3, V4 at the end of first GS iteration. Given : 0.2  Q2  1.
3) Repeat part 2 for reactive power limits as : 0.25  Q2  1.
Solution:
62
15.005.0
111
121212
12 j
jjxrz
y 




31
3.01.0
111
131313
13 j
jjxrz
y 




2666.0
45.015.0
111
232323
23 j
jjxrz
y 




31
3.01.0
111
242424
24 j
jjxrz
y 




62
15.005.0
111
343434
34 j
jjxrz
y 




Line
Bus to Bus
r, pu x, pu
1-2 0.05 0.15
1-3 0.1 0.3
2-3 0.15 0.45
2-4 0.1 0.3
3-4 0.05 0.15
Line
Bus to Bus
g, pu b, pu
1-2 2 -6
1-3 1 -3
2-3 0.666 -2
2-4 1 -3
3-4 2 -6
1 2
3 4
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 27

















42433424
343432312313
242312242312
13121213
0
0
yyyy
yyyyyy
yyyyyy
yyyy
YBUS

















9362310
6211666.32666.031
312666.011666.362
0316293
jjj
jjjj
jjjj
jjj
YBUS
Using Formula




n
k
k
kiki
ii
i VYJ
Y
V
1
1
][
1
where *
i
ii
i
V
jQP
J


bus 1 is a slack bus V1 = 1.04  0 o
= 1.04 + j0.
Initially we shall assume V2
0
= V3
0
= V4
0
= 1 + j 0 and later on after each iteration, they
will be updated.
FIRST ITERATION
  









 0
424
0
323
0
121*0
2
22
22
'
2
1
VYVYVY
V
jQP
Y
V
pujpu
jjj
j
j
j
V
o
046.00186.1.59.2019.1
)31()266.0(04.1)62(
01
2.05.0
1166.3
1'
2












  









 0
434
'
232
0
131*0
3
33
33
'
3
1
VYVYVY
V
jQP
Y
V
pujpu
jjjj
j
j
j
V
o
087.00273.1.851.4031.1
)62()046.00186.1)(266.0(04.1)31(
01
5.01
1166.3
1'
3












  









 '
343
'
242
0
141*0
4
44
44
'
4
1
VYVYVY
V
jQP
Y
V
puj
jjjj
j
j
j
V
00948.002443.1
)087.00273.1)(62()046.00186.1)(31(
01
1.03.0
93
1'
4












Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 28
If Bus ‘2’ is a PV bus
Initially we assume 2
o
= 0o
; |V2| = 1.04 pu. ; therefore V2 = 1.04 + j 0 pu.
For flat voltage start V3
o
= V4
o
= 1 + j 0 p u ;
   0
424
0
323
0
222
0
121
*0
2
1
2 )(Im VYVYVYVYVQ 
  )31()2666.0(04.1)11666.3()04.1)(62()004.1(Im1
2 jjjjjQ 
.2079.01
2 puQ 
Q2
1
lies within specified limits hence it is a PV bus
















 0
424
0
323
0
121*0
2
1
22
22
1
2
)(
1
VYVYVY
V
jQP
Y

















 )31()2666.0()004.1)(62(
004.1
2079.05.0
11666.3
11
2 jjjj
j
j
j

  .032.084658.10339.00512.1 01
2 radj 
Therefore voltage at bus ‘2’ becomes V2 = 1.04  1.84658o
pu = 1.03946 + j 0.03351 pu








 0
434232
0
131*0
3
33
33
1
3
)(
1
VYVYVY
V
jQP
Y
V










 )62()03351.003946.1)(2666.0(04.1)31(
01
5.01
11666.3
11
3 jjjj
j
j
j
V
.08937.00317.11
3 pujV 








 1
343242
0
141*0
4
44
44
1
4
)(
1
VYVYVY
V
jQP
Y
V










 )08937.00317.1)(62()03351.003946.1)(31(
01
1.03.0
93
11
4 jjjj
j
j
j
V
pujV 0031.09985.01
4 
If reactive power limit on generator 2 is 0.25  Q2  1.0.
Q2 is not within limit, therefore bus 2 is now a PQ bus. Starting with flat voltage profile,
V2
o
= V3
o
= V4
o
= 1 + j 0 pu. Setting Q2 to its minimum limit i.e. Q2 min = 0.25 pu.
  









 0
424
0
323
0
121*0
2
min22
22
'
2
1
VYVYVY
V
jQP
Y
V










 )31()2666.0(04.1)62(
01
25.05.0
11666.3
11
2 jjj
j
j
j
V
pujV 0341.00559.11
2 
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 29
  









 0
434
1
232
0
131*0
3
33
33
1
3
1
VYVYVY
V
jQP
Y
V










 )62()0341.00559.1)(2666.0(04.1)31(
01
5.01.0
11666.3
11
3 jjjj
j
j
j
V
pujV 0893.00347.11
3 
  









 1
343
1
242
0
141*0
4
44
44
1
4
1
VYVYVY
V
jQP
Y
V










 )0893.00347.1)(62()0341.00559.1)(31(
01
1.03.0
93
11
4 jjjj
j
j
j
V
pujV 0923.00775.11
4 
NUMERICAL PROBLEM 8
For the system shown in fig. Compute the bus voltages using GS method. Assuming bus
1 as slack bus, the data for load flow studies are given in table 1 & 2
Table 1
Bus Code Assumed Voltage Generation Load
MW MVAR MW MVAR
1 1.06 + j 0 - - - -
2 1 + j 0 - - 500 200
3 1 + j 0 300 200 700 500
4 1 + j 0 - - 300 100
Table 2
Bus code Admittance ypq (pu) Line charging y1
pq (pu)
1-2 -j8 j0.06
1-3 -j4 j0.05
2-3 -j2.664 j0.04
2-4 -j4 j0.04
3-4 -j8 j0.06
Solution:
Assuming Base MVA = 1000
Y11 = -j8 –j4 + j 0.06/2 + j0.05/2 = -j11.945
Y22 = -j8 –j2.664 –j4 +j0.06/2 +j0.04/2 +j0.04/2 = -j 14.594
1 2
3 4
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 30
Y33 = -j4-j2.664-j8+j0.05/2 +j0.04/2 + j0.06/2 = -j14.589
Y44 = -j4 –j8+j0.06/2+j0.04/2 = -j11.95
Y12 = j8 ; Y13 = j4 ; Y14 = 0 ; Y23 = j2.664 ; Y24 = j4 ; Y34 = j8;

















95.11840
8589.14664.24
4664.2594.148
048945.11
jjj
jjjj
jjjj
jjj
YBUS
P2 = 0 - 500 = -500 MW = -0.5 pu & Q2 = 0 – 200 = - 200MW = -0.2 pu.
P3 = 300 – 700 = -400MW = -0.4 pu & Q3 = 200 – 500 = -300 MW = -0.3 pu
P4 = 0 – 300 = -300 MW = -0.3 pu & Q4 = 0 – 100 = -100 MW = -0.1 pu
  









 0
424
0
323
0
121*0
2
22
22
1
2
1
VYVYVY
V
jQP
Y
V










 4664.2)06.1(8
01
2.05.0
594.14
11
2 jjj
j
j
j
V
   994.145.0
594.14
1
4664.248.82.05.0
594.14
11
2 j
j
jjjj
j
V 




pujpuV 03426.00274.191.1027979.1 01
2 
  









 0
434
1
232
0
131*0
3
33
33
1
3
1
VYVYVY
V
jQP
Y
V










 8)03426.00274.1(664.2)06.1(4
01
3.04.0
589.14
11
3 jjjj
j
j
j
V
   677.14491268.0
589.14
1
8091268.0737.224.43.04.0
589.14
11
3 j
j
jjjj
j
V 




pupujV 01
3 917.10066.103367.000603.1 
  









 1
343
1
242
0
141*0
4
44
44
1
4
1
VYVYVY
V
jQP
Y
V










 )03367.000603.1(8)03426.00274.1(40
01
1.03.0
95.11
11
4 jjjj
j
j
j
V
 26936.004824.813704.01094.41.03.0
95.11
11
4 

 jjj
j
V
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 31
  .05906.0009.135.3010736.105764.127064.0
95.11
1 01
4 pujpuj
j
V 


NUMERICAL PROBLEM 9
The load flow data for a three-bus system is given in table I and table II. The voltage
magnitude at bus ‘2’ is to be maintained at 1.04 pu. The maximum and minimum reactive
power limits for bus ‘2’ are 30 and 0 MVAR respectively. Taking bus ‘1’ as slack bus,
determine the voltages at various buses at the end of the first iteration starting with a flat
voltage profile for all buses except slack bus using GS method.
Table I
Bus code Impedance Line charging
admittance y1
pq/2
1-2 0.06 + j0.18 j0.05
1-3 0.02 + j0.06 j0.06
2-3 0.04 + j0.12 j0.05
Table II
Bus Code Assumed Voltage Generation Load
MW MVAR MW MVAR
1 1.06 + j 0 0.0 0.0 0.0 0.0
2 1 + j 0 0.2 0.0 0.0 0.0
3 1 + j 0 0.0 0.0 0.6 0.25
Solution:
;155
06.002.0
1
;5.75.2
12.004.0
1
;567.1
18.006.0
1
312312 j
j
yj
j
yj
j
y 






The bus admittance matrix for the system shown above can be obtained by inspection














39.225.75.75.2155
5.75.24.1217.4567.1
155567.189.1967.6
jjj
jjj
jjj
YBUS
P2 = 0.2 – 0.0 = 0.2 pu & Q2 = 0.0 – 0.0 = 0.0 pu.
P3 = 0.0 – 0.6 = -0.6 pu & Q3 = 0.0 – 0.25 = -0.25 pu.
1.67 - j5
1 2
3
j0.05 j0.05
j0.06
j0.06
j0.05
j0.05
2.5 – j7.55 – j15
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 32








 0
323
0
121*0
2
22
22
1
2
)(
1
VYVY
V
jQP
Y
V










 )5.75.2(06.1)567.1(
01
02.0
4.1217.4
11
2 jj
j
j
j
V
.6627.003637.10119867.00363.11
2 pupujV o









 1
232
0
131*0
3
33
33
1
3
)(
1
VYVY
V
jQP
Y
V
.008.10388.101827.00388.1
)0119867.00363.1)(5.75.2(06.1)155(
01
25.06.0
39.225.7
11
3
pupuj
jjj
j
j
j
V
o












If bus ‘2’ is a PV bus
V2 = 1.04 pu ; initial value of angle assumed 2 = 0o
; V3 = 1 + j 0 pu.
 )()()()(Im 0
323
0
222
*0
2
1
121
*0
2
1
2 VYVYVVYVQ 
   0
323
0
222
0
121
*0
2
1
2 )(Im VYVYVYVQ 
  )5.75.2(04.1)4.1217.4(06.1)567.1()004.1(Im1
2 jjjjQ 
Q2
1
= 0.096 pu.
The reactive power limit is 0.0 pu to 0.3 pu. Q2 lies within this limit hence bus ‘2’ is a PV
bus.
















 0
323
0
121*0
2
1
22
22
1
2
)(
1
VYVY
V
jQP
Y

















 )5.75.2(06.1)567.1(
004.1
096.02.0
4.1217.4
11
2 jj
j
j
j

2
1
= 0.50470
therefore
V2
1
= 1.04  0.50470
pu = 1.04 + j 0.00916 pu.










 )00916.004.1)(5.75.2(06.1)155(
01
25.06.0
39.225.7
11
3 jjj
j
j
j
V
pujpuV o
02594.006.1402.106027.11
3 
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 33
NEWTON RAPHSON METHOD FOR LOAD FLOW STUDY
At any bus ‘p’


n
q
qpqppppp VYVIVjQP
1
**
Let Vp = ep + j fp
And Ypq = Gpq - jBpq


n
q
qqpqpqpppp jfejBGjfejQP
1
*
))(()(


n
q
qqpqpqpp jfejBGjfe
1
))(()(
Separating real and imaginary parts we have
  
And
BeGffBfGeeP
n
q
pqqpqqppqqpqqpp )1()(
1


  
)3(||
)2()(
222
1
ppp
n
q
pqqpqqppqqpqqpp
feV
Also
BeGfeBfGefQ

 
Equation 1, 2, & 3 are non linear equations. For n number of buses, there are 2(n-1)
unknowns. NR method is an iterative method to solve load flow problem of a power
system.
Let unknown variables are (x1, x2, ……….., xn) & the specified quantities are y1, y2,
………..,yn. They are related by the set of non-linear equations.
).....,..........,,(
..
..
..
)....,..........,,(
)......,..........,,(
21
2122
2111
nnn
n
n
xxxfy
xxxfy
xxxfy



(4)
The equations are linearized about the initial guess. Assume x1
o
, x2
o
, ……., xn
o
are the
corrections required for the next better solution. The equation y1 will be
 
  










000
1
2
1
2
1
1
1211
221111
.......................,,.........,
.........,,.........,
xn
o
n
x
o
x
oo
n
oo
o
n
o
n
oooo
x
f
x
x
f
x
x
f
xxxxf
xxxxxxfy
where 1 is function of higher order of  xs
and higher derivatives which are neglected
according to Newton Raphson method. It can be written in matrix form as:
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 34
 
 
 
CJB
x
x
x
x
f
x
f
x
f
x
f
x
f
x
f
x
f
x
f
x
f
xxxfy
xxxfy
xxxfy
o
n
o
o
n
nnn
n
n
o
n
oo
nn
o
n
oo
o
n
oo
.
'
'
'
.........
''''''
''''''
''''''
.......
.........
,......,
'
'
'
,......,
,......,
2
1
21
2
2
2
1
2
1
2
1
1
1
21
2122
2111




























































































where J is the first derivative known as Jacobian matrix. The solution of matrix gives (x1
o
,
x2
o
,……., xn
o
) and the next better solution is obtained as follows:
o
n
o
nn
oo
oo
xxx
xxx
xxx



1
22
1
2
11
1
1
'
'
The better solution is (x1
1
,x2
1
,………xn
1
)
When referred to a power system problem (assuming one bus as slack bus and the other
buses as load bus), above set of linearized equations become





























































































































































































n
n
n
nnn
n
nnn
nn
nn
n
nnn
n
nnn
nn
nn
n
n
f
f
f
e
e
e
f
Q
f
Q
f
Q
e
Q
e
Q
e
Q
f
Q
f
Q
f
Q
e
Q
e
Q
e
Q
f
Q
f
Q
f
Q
e
Q
e
Q
e
Q
f
P
f
P
f
P
e
P
e
P
e
P
f
P
f
P
f
P
e
P
e
P
e
P
f
P
f
P
f
P
e
P
e
P
e
P
Q
Q
Q
P
P
P
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
....
........
.......
'
'
...
'
'
'
'
'
'
...
'
'
'
'
.......
.........
'
'
3
2
3
2
3232
3
3
3
2
33
3
3
2
3
2
3
2
2
22
3
2
2
2
3232
3
3
3
2
33
3
3
2
3
2
3
2
2
22
3
2
2
2
3
2
3
2
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 35
In short form it can be written as






















f
e
JJ
JJ
Q
P
43
21
If all types of buses are present, the above set of equation becomes
































f
e
JJ
JJ
JJ
V
Q
P
p 65
43
21
2
The elements of Jacobian matrix can be derived from equation 1, 2, 3.
 









n
pq
q
pqqpqqppp
p
p
pqppqp
q
p
BfGeGe
e
P
areJofelementsdiagonaltheAnd
pqBfGe
e
P
areJofelementsdiagonaloffThe
1
1
1
2
,
 









n
pq
q
pqqpqqppp
p
p
pqppqp
q
p
BeGfGf
f
P
areJofelementsdiagonaltheAnd
pqBfGe
f
P
areJofelementsdiagonaloffThe
1
2
2
2
,
 









n
pq
q
pqqpqqppp
p
p
pqppqp
q
p
BeGfBe
e
Q
areJofelementsdiagonaltheAnd
pqGfBe
e
Q
areJofelementsdiagonaloffThe
1
3
3
2
,
 









n
pq
q
pqqpqqppp
p
p
pqppqp
q
p
BfGeBf
f
Q
areJofelementsdiagonaltheAnd
pqBfGe
f
Q
areJofelementsdiagonaloffThe
1
4
4
2
,
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 36
p
p
p
q
p
e
e
V
areJofelementsdiagonaltheAnd
pq
e
V
areJofelementsdiagonaloffThe
2
||
,0
||
2
5
2
5







p
p
p
q
p
f
f
V
areJofelementsdiagonaltheAnd
pq
f
V
areJofelementsdiagonaloffThe
2
||
,0
||
2
6
2
6







Next we calculate the vectors consisting of P, Q, and |V|2
.
Let Psp, Qsp, and |Vsp| be the specified quantities at bus ‘p’
Assuming a suitable value of the solution (i.e. flat voltage profile) the value of P, Q, and
|V| at various buses are calculated. Then
222
|||||| o
pspp
o
pspp
o
pspp
VVV
QQQ
PPP



where the superscripts zero means the value calculated corresponding to initial guess i.e.
zeroth iteration. Having calculated the jacobian matrix and the residual column vector
corresponding to the initial guess (initial solution) the desired increment voltage vector








f
e
can be calculated by using any standard technique. The next better solution will be
o
p
o
pp
o
p
o
pp
fff
eee


1
1
These values of voltages will be used in the next iteration. The process will be repeated
and in general the new better estimates for bus voltages will be
k
p
k
p
k
p
k
p
k
p
k
p
fff
eee




1
1
The process is repeated till the magnitude of the largest element in the residual column
vector is less than the prescribed value.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 37
NUMERICAL PROBLEM 10
The load flow data for the sample power system are given below. Determine the set of load
flow equations at the end of first iteration by using NR method. Impedance for the sample
system:
Bus Code Impedance Line charging admittance
1-2 0.08+j0.24 0.0
1-3 0.02+j0.06 0.0
2-3 0.06+j0.18 0.0
Schedule of generation and loads:
Bus Code Assumed Voltage Generation Load
MW MVAR MW MVAR
1 1.06 + j 0 0.0 0.0 0.0 0.0
2 1 + j 0 0.2 0.0 0.0 0.0
3 1 + j 0 0.0 0.0 0.6 0.25
Solution
;0.567.1
18.006.0
1
;155
06.002.0
1
;75.325.1
24.008.0
1
231312 j
j
yj
j
yj
j
y 




















20666.65666.1155
5666.175.8916.275.325.1
15575.325.175.1825.6
jjj
jjj
jjj
YBUS
Assuming a flat voltage profile for bus 2 and 3 and for bus ‘1’
V1 = 1.06 + j 0.0 pu.
From the YBUS matrix and the assumed voltage solution.
G11 = 6.25 B11 = 18.75 e1 = 1.06 f1 = 0.0
G12 = -1.25 B12 = -3.75 e2 = 1.0 f2 = 0.0
G13 = -5.0 B13 = -15.0 e3 = 1.0 f3 = 0.0
G22 = 2.916 B22 = 8.75
G23 = -1.666 B23 = -5.0
G33 = 6.666 B33 = 20.0
  

n
q
pqppqqppqqpqqpp BeGffBfGeeP
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P2 = [(1.06 x –1.25) + 0] + 0.0 + [2.916 + 0.0] + 0.0 + [-1.666 + 0.0] + 0.0 = -0.075 pu.
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P3 = [(1.06 x –5) + 0] + 0.0 + [-1.666 + 0.0] + 0.0 + [6.666 + 0.0] + 0.0 = -0.3 pu.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 38
Using
  

n
q
pqqpqqppqqpqqpp BeGfeBfGefQ
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q2 = 0 – (-1.06 x –3.75) + 0.0 – (-8.75) + 0.0 – (5) = - 0.225 pu.
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q3 = 0.0 – (-1.06 x –15) + 0.0 – (5) –(-20) = -0.9 pu.
P2specified = 0.2 – 0.0 = 0.2 pu ; Q2specified = 0.0 – 0.0 = 0.0 pu
P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.25 = -0.25 pu
P2 = P2specified - P2calculated = 0.2 – (-0.075) = 0.275 pu
P3 = P3specified - P3calculated = -0.6 – (-0.3) = - 0.3 pu
Q2 = Q2specified - Q2calculated = 0.0 – (-0.225) = 0.225 pu
Q3 = Q3specified - Q3calculated = -0.25 – (-0.9) = 0.65 pu
Diagonal Elements are





 n
pq
q
pqqpqqppp
p
p
BfGeGe
e
P
1
)(2
233233211211222
2
2
2 BfGeBfGeGe
e
P



= 2 x 2.916 + 1.06(-1.25) + 0 + (-1.666) = 2.84
322322311311333
3
3
2 BfGeBfGeGe
e
P



= 2 x 6.666 + 1.06 x –5 + 0 + (-1.666) + 0 = 6.366





 n
pq
q
pqqpqqppp
p
p
BeGfGf
f
P
1
)(2
233233211211222
2
2
2 BeGfBeGfGf
f
P



= 0 + 0 – 1.06 (-3.75) + 0 – (-5) = 8.975
322322311311333
3
3
2 BeGfBeGfGf
f
P



Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 39
= 0 + 0 – 1.06 (-15) + 0 - (-5) = 20.90
The off diagonal elements are
pqppqp
q
p
BfGe
e
P



232232
3
2
BfGe
e
P



666.1
3
2



e
P
666.1323323
2
3



BfGe
e
P
pqppqp
q
p
GfBe
f
P



0.5232232
3
2



GfBe
f
P
0.5323323
2
3



GfBe
f
P
Similarly finding the partial derivatives of the reactive power.
Diagonal elements
 




 n
pq
q
pqqpqqppp
p
p
BeGfBe
e
Q
1
2
)()(2 233233211211222
2
2
BeGfBeGfBe
e
Q



525.8)5()75.306.1(75.82  xx
)()(2 322322311311333
3
3
BeGfBeGfBe
e
Q



1.19)50.1()1506.1(202  xxx
 




 n
pq
q
pqqpqqppp
p
p
BfGeBf
f
Q
1
2
991.2)666.1(25.106.1)()(2 233233211211222
2
2



xBfGeBfGeBf
f
Q
966.6)666.1(506.1)()(2 322322311311333
3
3



xBfGeBfGeBf
f
Q
pqGfBe
e
Q
pqppqp
q
p



,
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 40
;5232232
3
2



GfBe
e
Q
;5323323
2
3



GfBe
e
Q
pqBfGe
f
Q
pqppqp
q
p



,
666.1)666.1(232232
3
2



BfGe
f
Q
666.1)666.1(323323
2
3



BfGe
f
Q























































































3
2
3
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
2
3
2
f
f
e
e
f
Q
f
Q
e
Q
e
Q
f
Q
f
Q
e
Q
e
Q
f
P
f
P
e
P
e
P
f
P
f
P
e
P
e
P
Q
Q
P
P














































3
2
3
2
966.6666.11.195
666.1991.25525.8
9.205366.6666.1
0.5975.8666.184.2
65.0
225.0
3.0
275.0
f
f
e
e















































65.0
225.0
3.0
275.0
966.6666.11.195
666.1991.25525.8
9.205366.6666.1
0.5975.8666.184.2
1
3
2
3
2
f
f
e
e


























































0201.0
0088.0
0410.0
0575.0
65.0
225.0
3.0
275.0
0166.00092.00497.00277.0
0092.00385.00277.01157.0
0557.00326.00186.00109.0
0326.01247.00109.00416.0
3
2
3
2
f
f
e
e
V2
1
= (e2 + e2) + j (f2 + f2) = 1.0575 + j 0.0088 pu = 1.05753  0.4767 o
pu
V3
1
= (e3 + e3) + j (f3 + f3) = 1.0410 - j 0.0201 pu = 1.04119  -1.106 o
pu
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 41
NUMERICAL PROBLEM 11
In case the reactive power constraint at bus ‘2’ in the previous problem is -0.3Q20.3.
Determine the equations at the end of first iteration.
Solution:
Since the value of Q2calculated lies within the limits specified above, bus ‘2’ will
now behave as generator bus or PV bus. And its voltage is to be maintained at 1.04 pu.
|V2|2
= |V2specified|2
- |V2calculated|2
= 1.042
– 1.02
= 0.0816 pu.
The jacobian elements of the above matrix changes as the voltage at bus ‘2’ is now
changed from 1.0 pu to 1.04 pu. But putting this value of V2 = e2 + j f2 = 1.04 + j 0.0 will
not affect much the jacobian elements. Hence they are kept same as in the previous case.
i.e. the jacobian elements corresponding to rows of P2 , P3 and Q3 remain same and
those of Q2 will be now replaced by |V2|2
and its corresponding elements. i.e.
pu
f
V
puf
f
V
pu
e
V
puxe
e
V
0.0
||
;0.02
||
0.0
||
;08.204.122
||
3
2
2
2
2
2
2
3
2
2
2
2
2
2












The set of equations will be













































3
2
3
2
966.6666.11.195
00008.2
9.205366.6666.1
5975.8666.184.2
65.0
0816.0
3..0
275.0
f
f
e
e














































65.0
0816.0
3..0
275.0
966.6666.11.195
00008.2
9.205366.6666.1
5975.8666.184.2
1
3
2
3
2
f
f
e
e


























































0188.0
0145.0
0362.0
0392.0
65.0
0816.0
3..0
275.0
0141.00356.00505.00308.0
0009.01486.00310.01286.0
0471.01258.00157.00
04808.000
3
2
3
2
f
f
e
e
V2
1
= (e2 + e2) + j (f2 + f2) = 1.0392 + j 0.0145 pu = 1.0393  0.8 o
pu
V3
1
= (e3 + e3) + j (f3 + f3) = 1.0362 - j 0.0188 pu = 1.0363  -1.039 o
pu
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 42
NUMERICAL PROBLEM 12
Consider a three bus system of fig shown below. Each of the three lines has a series
impedance of 0.02 + j 0.08 pu and a total shunt admittance of j0.02 pu. The specified
quantities at the buses are tabulated below:
Bus PD QD PG QG Voltage
1 2.0 1.0 unspecified unspecified 1.04 + j 0.0
Slack
2 0.0 0.0 0.5 1.0 Unspecified
PQ
3 1.5 0.6 0.0 QG3 = ? |V3| = 1.04
(PV)
Controllable reactive power source is available at bus 3 with the constraints
0  QG3  1.5 pu. Find the load flow solution using NR method. Use nominal  method.
Solution
Admittance of each line
puj
j
yyy 764.11941.2
08.002.0
1
312312 


jQG3
SG1
SG2 = 0.5 + j1 0 + j0
210o
1.040o
2 + j1
1
3 1.040o
1.5 + j0.6
1
3
22.941 – j11.764
2.941 – j11.764
2.941 – j11.764
j0.01j0.01
j0.01
j0.01 j0.01
j0.01
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 43














508.23882.5746.11941.2746.11941.2
746.11941.2508.23882.5746.11941.2
746.11941.2746.11941.2508.23882.5
jjj
jjj
jjj
YBUS
V1 = e1 + j f1 = 1.04 + j0.0 ……………….given
V2 = e2 + j f2 = 1.0 + j 1.0 ………………..Assumed
V3 = e3 + j f3 = 1.04 + j 0.0 ……………given (PV bus)
G11 = G22 = G33 = 5.882 B11 = B22 = B33 = 23.508
G12 = G13 = G23 = -2.941 B12 = B13 = B23 = -11.746
  

n
q
pqppqqppqqpqqpp BeGffBfGeeP
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P2 = 1.04 x –2.941 + 5.882 + 1.04 x –2.941 = -0.235 pu.
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P3 = 1.04[(1.04 x –2.941) + 0] + 0.0 + 1.04[-2.941 + 0.0] + 0.0 + 1.04[1.04x 5.882 + 0.0]
= 0.122 pu.
Using
  

n
q
pqqpqqppqqpqqpp BeGfeBfGefQ
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q2 = 0 – (-1.04 x –11.746) + 0.0 – (-23.508) + 0.0 – (-1.04 x –11.746) = -0.923 pu.
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q3 = 0 – 1.04(-1.04 x –11.746) + 0 – 1.04 (-1 x –11.746) + 0 – 1.04 (-1.04 x 23.508)
= 0.506 pu.
QG3 = QD3 + Q3 = 0.6 + 0.506 = 1.106 pu.
QG3 lies within limit i.e. 0  QG3  1.5 pu therefore bus ‘3’ now act as a PV bus.
P2specified = 0.5 – 0.0 = 0.5 pu ; Q2specified = 1.0 – 0.0 = 1.0 pu
P3specified = 0.0 – 1.5 = -1.5 pu ; Q3specified = QG3 – QD3 = 1.106 – 0.6 = 0.506 pu.
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 44
P2 = P2specified - P2calculated = 0.5 – (-0.235) = 0.735 pu
P3 = P3specified - P3calculated = -1.5 – (0.122) = - 1.622 pu
Q2 = Q2specified - Q2calculated = 1.0 – (-0.923) = 1.923 pu
|V3|2
= |V3specified|2
- |V3calculated|2
= (1.04)2
– (1.0)2
= 0.0816 pu
Diagonal Elements are





 n
pq
q
pqqpqqppp
p
p
BfGeGe
e
P
1
)(2
233233211211222
2
2
2 BfGeBfGeGe
e
P



= 2 x 5.882 + 1.04(-2.941) + 0 + 1.04(-2.941) + 0 = 5.64
322322311311333
3
3
2 BfGeBfGeGe
e
P



= 2 x 1.04 x 5.882 + 1.04 x –2.941 + 0 + (-2.941) + 0 = 6.235





 n
pq
q
pqqpqqppp
p
p
BeGfGf
f
P
1
)(2
233233211211222
2
2
2 BeGfBeGfGf
f
P



= 0 + 0 – 1.04 (-11.746) + 0 – 1.04(-11.746) = 24.43
322322311311333
3
3
2 BeGfBeGfGf
f
P



= 0 + 0 – 1.04 (-11.746) + 0 - (-11.746) = 23.96
The off diagonal elements are
pqppqp
q
p
BfGe
e
P



232232
3
2
BfGe
e
P



746.11
3
2



e
P
216.12746.1104.1323323
2
3



xBfGe
e
P
pqppqp
q
p
GfBe
f
P



Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 45
746.11232232
3
2



GfBe
f
P
216.12746.1104.1323323
2
3



xGfBe
f
P
Similarly finding the partial derivatives of the reactive power.
Diagonal elements
 




 n
pq
q
pqqpqqppp
p
p
BeGfBe
e
Q
1
2
)()(2 233233211211222
2
2
BeGfBeGfBe
e
Q



58.22)746.1104.1()746.1104.1(508.232  xxx
 




 n
pq
q
pqqpqqppp
p
p
BfGeBf
f
Q
1
2
)()(2 233233211211222
2
2
BfGeBfGeBf
f
Q



= 0 + (1.04 x –2.941) + (1.04 x –2.941) = - 6.11
pqGfBe
e
Q
pqppqp
q
p



,
;746.11232232
3
2



GfBe
e
Q
pqBfGe
f
Q
pqppqp
q
p



,
941.2)941.2(232232
3
2



BfGe
f
Q
pu
f
V
puf
f
V
pu
e
V
puxe
e
V
0.0
||
;0.02
||
0.0
||
;08.204.122
||
2
2
3
3
3
2
3
2
2
3
3
3
2
3












Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 46

























































































3
2
3
2
3
2
3
2
2
3
3
2
3
2
2
3
3
2
2
2
3
2
2
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
2
3
2
3
2
||||||||
|| f
f
e
e
f
V
f
V
e
V
e
V
f
Q
f
Q
e
Q
e
Q
f
P
f
P
e
P
e
P
f
P
f
P
e
P
e
P
V
Q
P
P



























































































0816.0
923.1
622.1
735.0
0.00.008.20.0
941.211.6746.1158.22
96.23216.12235.6216.12
746.1143.24746.1164.5
0.00.008.20.0
941.211.6746.1158.22
96.23216.12235.6216.12
746.1143.24746.1164.5
0816.0
923.1
622.1
735.0
1
3
2
3
2
3
2
3
2
f
f
e
e
f
f
e
e
The result of the above equation gives the value e2 , e3, f2, f3 which when added to
their initial assumed values give new updated values. The process is repeated till the
solution converges.
























































0120.0
0173.0
0392.0
1118.0
0816.0
923.1
622.1
735.0
1432.00217.00553.00331.0
2321.00008.00266.00544.0
4808.0000
2942.00417.000104.0
3
2
3
2
f
f
e
e
V2
1
= (e2 + e2) + j (f2 + f2) = 1.1118 + j 0.0173 pu = 1.11193  0.89 o
pu
V3
1
= (e3 + e3) + j (f3 + f3) = 1.0392 - j 0.0120 pu = 1.03927  -0.66 o
pu
NUMERICAL PROBLEM 13
A sample power system is shown below. Reactances of the lines in per unit are marked in
the figure. Neglect the resistances of the element and shunt admittances. Scheduled
generation & load and assumed bus voltages in per unit are as given below.
Bus Code Assumed Voltage Generation Load
MW MVAR MW MVAR
1 1.05 + j 0 00 00 00 00
2 1 + j 0 20 10 50 00
3 1 + j 0 00 00 60 25
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 47
Bus ‘1’ is a slack bus. Perform load flow analysis by NR method. Find the Jacobian
elements after first iteration when (a) buses 2 and 3 are PQ buses. And (b) bus 2 is a PV
bus with E2specified = 1.02 pu.
Solution:
The per unit ofadmittance of each element
10
1.0
1
;40
025.0
1
;20
05.0
1
231312 j
j
yj
j
yj
j
y 














501040
103020
402060
jjj
jjj
jjj
YBUS
B11 = 60 B22 = 30 B33 = 50 B12 = -20 B13 = -40 B23 = -10
V1 = 1.05 pu ……..given V2 = V3 = 1 + j 0 pu
  

n
q
pqppqqppqqpqqpp BeGffBfGeeP
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P2 = 0 pu
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P3 = 0 pu
Using
  

n
q
pqqpqqppqqpqqpp BeGfeBfGefQ
1
)(
 
1 2
3
j0.05
j0.025 j0.1
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 48
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q2 = 0 – 1(-1.05 x –20) + 0 – 1( -1 x 30) + 0 – 1 (-1 x –10) = -1 pu
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q3 = 0 – 1(-1.05 x –40) + 0 – 1(-1 x –10) + 0 – 1(-1 x 50) = -2 pu
Assuming Base MVA = 100.
WHEN BUS 2 AND 3 ARE PQ BUSES
P2specified = 0.2 – 0.5 = -0.3 pu ; Q2specified = 0.1 – 0.2 = -0.1 pu
P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.25 = -0.25 pu
P2 = P2specified - P2calculated = -0.3 – 0 = -0.3 pu
P3 = P3specified - P3calculated = -0.6 – 0 = - 0.6 pu
Q2 = Q2specified - Q2calculated = -0.1 – (-1) = 0.9 pu
Q3 = Q3specified - Q3calculated = -0.25 – (-2) = 1.75 pu
Diagonal Elements are





 n
pq
q
pqqpqqppp
p
p
BfGeGe
e
P
1
)(2
233233211211222
2
2
2 BfGeBfGeGe
e
P



= 0 + 0 +0 +0 + 0 = 0
322322311311333
3
3
2 BfGeBfGeGe
e
P



= 0





 n
pq
q
pqqpqqppp
p
p
BeGfGf
f
P
1
)(2
233233211211222
2
2
2 BeGfBeGfGf
f
P



= 0 + 0 – 1.05 (-20) + 0 – (-10) = 31
322322311311333
3
3
2 BeGfBeGfGf
f
P



= 0 + 0 – 1.05 (-40) + 0 - (-10) = 52
The off diagonal elements are
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 49
pqppqp
q
p
BfGe
e
P



232232
3
2
BfGe
e
P



0
3
2



e
P
0323323
2
3



BfGe
e
P
pqppqp
q
p
GfBe
f
P



10232232
3
2



GfBe
f
P
10323323
2
3



GfBe
f
P
Similarly finding the partial derivatives of the reactive power.
Diagonal elements
 




 n
pq
q
pqqpqqppp
p
p
BeGfBe
e
Q
1
2
)()(2 233233211211222
2
2
BeGfBeGfBe
e
Q



29)10()2005.1(302  xx
)()(2 322322311311333
3
3
BeGfBeGfBe
e
Q



48)100.1()4005.1(502  xxx
 




 n
pq
q
pqqpqqppp
p
p
BfGeBf
f
Q
1
2
0000)()(2 322322311311333
3
3



BfGeBfGeBf
f
Q
0000)()(2 233233211211222
2
2



BfGeBfGeBf
f
Q
pqGfBe
e
Q
pqppqp
q
p



,
;10232232
3
2



GfBe
e
Q
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 50
;10323323
2
3



GfBe
e
Q
pqBfGe
f
Q
pqppqp
q
p



,
0232232
3
2



BfGe
f
Q
0323323
2
3



BfGe
f
Q























































































3
2
3
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
2
3
2
f
f
e
e
f
Q
f
Q
e
Q
e
Q
f
Q
f
Q
e
Q
e
Q
f
P
f
P
e
P
e
P
f
P
f
P
e
P
e
P
Q
Q
P
P















































3
2
3
2
004810
001029
521000
103100
75.1
9.0
6.0
3.0
f
f
e
e
After solving e2 = 0.04624 pu e3 = 0.04698 pu and
f2 = -0.014285 pu f3 = -0.014285 pu
Thus the bus voltages at the end of the first iteration are
Assumed voltages + changes
V2 = (e2 + e2) + j (f2 + f2) = 1.04624 – j0.014285 pu = 1.0463  -0.7822 o
pu
V3 = (e3 + e3) + j (f3 + f3) = 1.04698 – j0.014285 pu = 1.0470  -0.7817 o
pu
WHEN BUS 2 IS PV BUSES
Reactive power limit is not at all specified, Hence assuming calculated value of Q2 lying
within the limits. Let us assume Qmin = -1 pu & Qmax = +1 pu
|V2|2
= |V2specified|2
- |V2calculated|2
= 1.022
– 1.02
= 0.0404 pu.
pu
f
V
puf
f
V
pu
e
V
puxe
e
V
0.0
||
;0.02
||
0.0
||
;04.202.122
||
3
2
2
2
2
2
2
3
2
2
2
2
2
2












Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 51

























































































3
2
3
2
3
3
2
3
3
3
2
3
2
2
2
2
2
2
3
2
2
2
2
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
2
2
3
2
||||||||||
f
f
e
e
f
Q
f
Q
e
Q
e
Q
f
V
f
V
e
V
e
V
f
P
f
P
e
P
e
P
f
P
f
P
e
P
e
P
Q
V
P
P














































3
2
3
2
004810
00004.2
521000
103100
75.1
0404.0
6.0
3.0
f
f
e
e
After solving e2 = 0.0198 pu e3 = 0.04058 pu and
f2 = -0.014285 pu f3 = -0.014285 pu
Thus the bus voltages at the end of the first iteration are
Assumed voltages + changes
V2 = (e2 + e2) + j (f2 + f2) = 1.0198 – j0.014285 pu = 1.02  -0.8 o
pu
V3 = (e3 + e3) + j (f3 + f3) = 1.04058 – j0.014285 pu = 1.0406  -0.7865 o
pu
NUMERICAL PROBLEM 14
Load flow data for a three bus system is as shown in table 1 and 2. Taking bus ‘1’ as
slack bus and other as PQ buses, determine the bus voltages after first iterations by NR
method. (Modified decoupled method may be used) * Refer next section for this method
Table 1
Bus Bus code Impedance Line charging y1
pq
1 1-2 0.06 + j 0.18 j0.05
2 2-3 0.04 + j 0.12 j0.05
3 1-3 0.02 + j 0.06 j0.06
G G
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 52
Table 2
Bus Code Assumed Voltage Generation Load
MW MVAR MW MVAR
1 1.05 + j 0 00 00 00 00
2 1 + j 0 30 10 00 00
3 1 + j 0 00 00 60 30
SOLUTION:
155
06.002.0
1
;5.75.2
12.004.0
1
;5667.1
18.006.0
1
312312 jyj
j
yj
j
y 






Ybus can be formed by inspection














445.225.75.75.2155
5.75.245.12166.45666.1
1555666.1945.19666.6
jjj
jjj
jjj
Ybus
G11 = 6.666 G22 = 4.166 G33 = 7.5 G12 = -1.666 G13 = -5 G23 = -2.5
B11 = 19.945 B22 = 12.45 B33 = 22.445 B12 = -5 B13 = -15 B23 = -7.5
V1 = 1.05 + j 0 ; V2 = V3 = 1 + j 0 ;
  

n
q
pqppqqppqqpqqpp BeGffBfGeeP
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P2 = (1.05 x –1.666) + 0 + ( 4.166) + 0 + (-2.5) = -0.0833 pu
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGffBfGee
BeGffBfGeeBeGffBfGeeP


P3 = (1.05 x –5) + 0 + (-2.5) + 0 + (7.5) = -0.25 pu
Using
1
3
21.666 – j5
5 – j15 2.5 – j7.5
j0.025j0.03
j0.03
j0.025 j0.025
j0.025
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 53
  

n
q
pqqpqqppqqpqqpp BeGfeBfGefQ
1
)(
)()(
)()()()(
23323322332332
22222222222222211211221121122
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q2 = 0 – (-1.05 x –5) + 0 –(-1 x 12.45) + 0 – ( -1 x –7.5) = -0.3 pu
)()(
)()()()(
33333333333333
32232233223223311311331131133
BeGfeBfGef
BeGfeBfGefBeGfeBfGefQ


Q3 = 0 – (-1.05 x –15) + 0 – ( -1 x –7.5) + 0 – (-1 x 22.445) = -0.805 pu
Assuming Base MVA = 100.
WHEN BUS 2 AND 3 ARE PQ BUSES
P2specified = 0.3 – 0.0 = 0.3 pu ; Q2specified = 0.1 – 0.0 = 0.1 pu
P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.3 = -0.3 pu
P2 = P2specified - P2calculated = 0.3 – (-0.0833) = 0.3833 pu
P3 = P3specified - P3calculated = -0.6 – (-0.25) = - 0.35 pu
Q2 = Q2specified - Q2calculated = 0.1 – (-0.3) = 0.4 pu
Q3 = Q3specified - Q3calculated = -0.3 – (-0.805) = 0.505 pu























































































3
2
3
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
3
2
3
3
3
2
3
3
2
2
2
3
2
2
2
3
2
3
2
f
f
e
e
f
Q
f
Q
e
Q
e
Q
f
Q
f
Q
e
Q
e
Q
f
P
f
P
e
P
e
P
f
P
f
P
e
P
e
P
Q
Q
P
P
for decouled method the above equation reduces to







































































3
2
3
2
3
3
2
3
3
2
2
2
3
3
2
3
3
2
2
2
3
2
3
2
00
00
00
00
f
f
e
e
f
Q
f
Q
f
Q
f
Q
e
P
e
P
e
P
e
P
Q
Q
P
P
Diagonal Elements are
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 54





 n
pq
q
pqqpqqppp
p
p
BfGeGe
e
P
1
)(2
233233211211222
2
2
2 BfGeBfGeGe
e
P



= 2 x 1 x 4.166 + (1.05 x –1.666) + 0 + (-2.5) = 4.0827
322322311311333
3
3
2 BfGeBfGeGe
e
P



= 2 x 1 x 7.5 + 1.05 x –5 + 0 + (-2.5) = 7.25





 n
pq
q
pqqpqqppp
p
p
BeGfGf
f
P
1
)(2
methoddecoupled
f
P
...........................0
2
2



methoddecoupled
f
P
..........................0
3
3



The off diagonal elements are
pqppqp
q
p
BfGe
e
P



232232
3
2
BfGe
e
P



5.25.21
3
2



x
e
P
5.25.21323323
2
3



xBfGe
e
P
pqppqp
q
p
GfBe
f
P



decouplingGfBe
f
P
............0232232
3
2



decouplingGfBe
f
P
.........0323323
2
3



Similarly finding the partial derivatives of the reactive power.
Diagonal elements
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 55
 




 n
pq
q
pqqpqqppp
p
p
BeGfBe
e
Q
1
2
decoupling
e
Q
.........................0
2
2



decoupling
e
Q
.........................0
3
3



 




 n
pq
q
pqqpqqppp
p
p
BfGeBf
f
Q
1
2
75.7)5.21()505.1(0)()(2 322322311311333
3
3



xxBfGeBfGeBf
f
Q
2493.4)5.21()666.105.1(0)()(2 233233211211222
2
2



xxBfGeBfGeBf
f
Q
pqGfBe
e
Q
pqppqp
q
p



,
decouplingGfBe
e
Q
..........;0232232
3
2



decouplingGfBe
e
Q
..........;0323323
2
3



pqBfGe
f
Q
pqppqp
q
p



,
5.2232232
3
2



BfGe
f
Q
5.2323323
2
3



BfGe
f
Q














































3
2
3
2
75.75.200
5.22493.400
0025.75.2
005.20827.4
505.0
4.0
35.0
3833.0
f
f
e
e
After solving e2 = 0.08154 pu e3 = -0.0201586 pu and
f2 = -0.1635 pu f3 = -0.1179 pu
Thus the bus voltages at the end of the first iteration are
Assumed voltages + changes
V2 = (e2 + e2) + j (f2 + f2) = 1.08154 – j0.1635 pu = 1.09382  -8.59 o
pu
V3 = (e3 + e3) + j (f3 + f3) = 0.97984 – j0.1179 pu = 0.9869  -6.86 o
pu
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 56
DECOUPLED LOAD FLOW METHOD
In Newton raphson method for load flow, half of the Jacobian elements represent the weak
coupling and can therefore be ignored which further simplifies the computation.
Considering the following set of equations in polar coordinates.
We have






n
q
qpqppp
n
q
qpqppppp
VYVjQP
VYIandIVjQP
1
*
1
*
The voltage and admittance in polar coordinates are expressed as
)(exp||)(exp|| pqpqpqppp jYYandjVV  
Substituting these values in equation, we obtain
 





















n
pq
q
qppqpqqppppqqpp
n
pq
q
qppqpqqppppqqpp
n
q
qppqpqqpp
n
q
qppqpqqpp
n
q
qppqpqqp
n
q
qqpqpqpppp
YVVYVVQ
YVVYVVP
aswrittenbecanitOr
np
YVVQ
AndYVVP
jYVV
jVjYjVjQP
1
1
1
1
1
1
)(sin||sin||
)(cos||cos||
.................,2,1
)(sin||
)(cos||
)(exp||||||
)exp(||)exp(||)exp(||






These equations after linearisation can be rewritten in matrix form as






















||/|| EELM
NH
Q
P 
where H, N, M, and L are the elements of Jacobian matrix.
The first assumption under decoupled load flow method is that real power changes (P)
are less sensitive to changes in voltage magnitude and are mainly sensitive to angle.
Similarly, the reactive power changes are less sensitive to change in angle but mainly
sensitive to change in voltage magnitude. With these assumptions, equation reduces to






















||/||0
0
EEL
H
Q
P 
the above equation is decoupled equation which can be further expanded as
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 57
    
    ||/|| EELQ
HP

 
using equation Pp and Qp the elements of jacobian matrix H and L are obtained as follows:
off diagonal element are
][||
][||
qppqpqqp
q
p
pq
qppqpqqp
q
p
pq
SinYVV
P
L
SinYVV
P
H












Thus Hpq = Lpq
The diagonal elements are
pppp
p
pp
pppppp
p
p
pp BVQ
V
VQ
LBVQ
P
H
22 ||
; 







FAST DECOUPLED LOAD FLOW
In fast decoupled load flow method further approximation is done i.e.
Cos (p - q)  1
Gpq sin (p - q)  Bpq
Qp << BppVp
2
Therefore Jacobian elements now become
Lpq = Hpq = -|VpVq|Bpq for q  p
Lpp = Hpp = -Bpp|Vp|2
With these jacobian elements, the equation simplifies to
      
     










q
q
pqqpp
qpqqpp
E
E
BVVQ
andBVVP
||11
1

where B1
pq and B11
pq are the elements of [-Bpq] matrix. Further decoupling is obtained by
Omiting from B1
the representation of those network elements that predominantly affect
reactive power flow, i.e. shunt reactances and transformer off-nominal in phase taps.
Neglecting from B11
the angle shifting effects of phase shifters.
Dividing each equation [P] and [Q] by |Vi| and setting |Vj| = 1 pu.
Ignoring series resistance in calculating the elements of B1
which then becomes the dc
approximation power flow matrix.
EFFECT OF VOLTAGE REGULATING TRANSFORMER
Let the tap changing transformer of tap ratio a:1 is connected between the buses P & Q
shown in the fig.1



 
p
a:1
q
Fig 1
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 58
Where ‘a’ is known as off-nominal tap ratio. In an equivalent circuit the above tap changing
transformer can be represented by an ideal equivalent auto transformer in series with
admittance Ypq where Ypq is series admittance of tap changing transformer.
Let the equivalent  representation of this tap changing transformer is as shown in
following fig.3
From fig.1
tqt
tqt
p
p
t
t
p
iI
a
i
a
I
I
I
Ia
E
E
 )1(
1
)2(]/[)(
]/[)/(
,1
)(
2
ayaEEI
ayEaEI
Eofvaluethisputting
a
E
Eequationfrom
y
a
EE
I
pqqpp
pqqpp
t
p
t
pq
qt
p





from fig 1 Iq = (Eq – Et) ypq
putting this value of Et
)5()(
)4()(
2
)3(/)(
])/[(
CEAEEI
BEAEEI
figfrom
ayEaEI
yaEEI
qpqq
pqpp
pqpqq
pqpqq








p
t q
Ip Ep
It
Et
Itq
ypq
Fig 2
p q
Ip
Ep
Eq
Iq
Fig 3
Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 59
If fig 2 is equivalent representation of fig 3 then Ip and Iq from fig 1 and 2 must have the
same values for all values of Ep and Eq.
Let in equation 2 and 4, Ep = 0 & Eq = 1
From equation 2
a
y
I
pq
p


From equation 4
a
y
AAI
pq
p 
Let in equation 2 and 5 Ep = 0 and Eq = 1
From 3 Iq = ypq
From 5 Iq = A + C
 A + C = ypq
 C = ypq – A
= ypq – ypq/a
 C = (a – 1) ypq / a
Let in equation 2 and 4 Ep = 0 and Eq = 1
Then from eq. 2, Ip = ypq /a2
And from 4 Ip = A + B
Therefore A + B = ypq / a2
B = (ypq /a2
) – (ypq / a) = [ypq/a]((1/a) – 1)
B = (1 – a)ypq / a2
OR
B = ([1/a] – 1)ypq / a
Thus to take into account the effect of tapp changing transformer between buses ‘p’ & ‘q’,
the element ypp, yqq and ypq = yqp from original [Ybus] should be modified as follows:
)()()(
)()(
)()(
2)()()(
)1(
1
1
mqp
pq
opqmqq
pqoqqmqq
pqpq
oqqmqq
pq
opp
pqpq
oppmpp
y
a
y
yy
yyy
a
y
a
a
y
yy
a
y
y
a
y
aa
y
yy











More Related Content

What's hot

Power System Operation and Control
Power System Operation and ControlPower System Operation and Control
Power System Operation and Control
Biswajit Pratihari
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
divyanshuprakashrock
 

What's hot (20)

Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault Analysis
 
Hydrothermal scheduling
Hydrothermal schedulingHydrothermal scheduling
Hydrothermal scheduling
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
 
Gauss Siedel method of Load Flow
Gauss Siedel method of Load FlowGauss Siedel method of Load Flow
Gauss Siedel method of Load Flow
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
 
Power System Operation and Control
Power System Operation and ControlPower System Operation and Control
Power System Operation and Control
 
Power system-analysis-psr murthy
Power system-analysis-psr murthyPower system-analysis-psr murthy
Power system-analysis-psr murthy
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Reactive power compensation
Reactive power compensationReactive power compensation
Reactive power compensation
 
Structure of power system
Structure of power systemStructure of power system
Structure of power system
 
importance of reactive power in power system
importance of reactive power in power systemimportance of reactive power in power system
importance of reactive power in power system
 
Economic operation of power system
Economic operation of power systemEconomic operation of power system
Economic operation of power system
 
Introduction
IntroductionIntroduction
Introduction
 
Unit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit CommitmentUnit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit Commitment
 
Per unit representation
Per unit representationPer unit representation
Per unit representation
 
Power System Analysis unit - I
Power System Analysis unit - IPower System Analysis unit - I
Power System Analysis unit - I
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Swing equation
Swing equationSwing equation
Swing equation
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 

Similar to Load flow studies

Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...
International Journal of Power Electronics and Drive Systems
 

Similar to Load flow studies (20)

Loadflowsynopsis
LoadflowsynopsisLoadflowsynopsis
Loadflowsynopsis
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator
Transient Stability Analysis of IEEE 9 Bus System in Power World SimulatorTransient Stability Analysis of IEEE 9 Bus System in Power World Simulator
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator
 
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator
Transient Stability Analysis of IEEE 9 Bus System in Power World SimulatorTransient Stability Analysis of IEEE 9 Bus System in Power World Simulator
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
EE6501 - Power System Analysis
EE6501 - Power System AnalysisEE6501 - Power System Analysis
EE6501 - Power System Analysis
 
F010624651
F010624651F010624651
F010624651
 
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
A Novel Distribution System Power Flow Algorithm using Forward Backward Matri...
 
Three phase diode.pdf
Three phase diode.pdfThree phase diode.pdf
Three phase diode.pdf
 
IRJET-Power Flow & Voltage Stability Analysis using MATLAB
IRJET-Power Flow & Voltage Stability Analysis using MATLAB IRJET-Power Flow & Voltage Stability Analysis using MATLAB
IRJET-Power Flow & Voltage Stability Analysis using MATLAB
 
Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB Power Flow & Voltage Stability Analysis using MATLAB
Power Flow & Voltage Stability Analysis using MATLAB
 
40220140504001
4022014050400140220140504001
40220140504001
 
Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...Load flow analysis of 10 bus loop distribution network excited by a generator...
Load flow analysis of 10 bus loop distribution network excited by a generator...
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
 
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
Comparative power flow analysis of 28 and 52 buses for 330 kv power grid netw...
 
Implementation on the dSPACE 1104 of VOC-SVM based anti-windup PI Controller ...
Implementation on the dSPACE 1104 of VOC-SVM based anti-windup PI Controller ...Implementation on the dSPACE 1104 of VOC-SVM based anti-windup PI Controller ...
Implementation on the dSPACE 1104 of VOC-SVM based anti-windup PI Controller ...
 
High Performance of Matrix Converter Fed Induction Motor for IPF Compensation...
High Performance of Matrix Converter Fed Induction Motor for IPF Compensation...High Performance of Matrix Converter Fed Induction Motor for IPF Compensation...
High Performance of Matrix Converter Fed Induction Motor for IPF Compensation...
 
Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled...
Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled...Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled...
Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled...
 
Voltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSMVoltage Stability Assessment Using the Concept of GVSM
Voltage Stability Assessment Using the Concept of GVSM
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 

Recently uploaded (20)

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 

Load flow studies

  • 1. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 1 Load Flow Studies Importance of Load Flow Studies: The great importance of load flow studies is in the planning the future expansion of the power system as well as in determining the best operation of the existing systems. The principle information obtained from load flow studies are the magnitude and phase angle of the voltage at each bus and the real and reactive power flowing in each line. This information is essential for the continuous monitoring of the current state and to have a close look for the scope of the future expansion to meet the increased load demand. With the advent of the fast and large size digital computers, all kinds of the power system studies, including load flow can be carried out conveniently. The load flow solution is an essential tool for designing a new power system and modifying or improving the performance of the existing ones. Load flow solutions for a power network can be worked out under balanced and unbalanced conditions. For such a system, a single-phase representation is adequate. It requires following steps. 1) Formulation of the network equations 2) Mathematical technique for solution of the equations. Bus Classification: In a power system, each bus or node is associated with four quantities, real and reactive powers, bus voltage magnitude and its phase angle. In a load flow solution, two of the four quantities are specified and the remaining two are obtained through the solution of the equations. Depending upon which quantities have been specified, the buses are classified in the following three categories. 1) Load bus (P,Q bus) 2) Generator bus or Voltage controlled bus (P,V bus) 3) Slack or swing or reference bus (V, bus) Load bus (P,Q bus) Real and reactive powers are specified and it is desired to find out the voltage magnitude and its phase angle. At the load bus, voltage can be allowed to vary within the permissible tolerance of 5%. Generator bus or voltage controlled bus (P,V bus) Here the magnitude of the voltage corresponding to generation voltage and the real power PG are specified. It is required to find out the reactive power generation QG and the phase angle of the bus voltage. Slack Bus or reference bus or swing bus The magnitude of the voltage and its phase angle are specified. The real and reactive powers are required to be found out i.e. PG & QG respectively. The phase angle of the voltage at the slack bus is usually taken as reference. In the analysis, the real and reactive component of the voltage at a bus are taken as independent variables for the load flow equations i.e. Vi I = ei + j fi where ei & fi are the real and reactive components of the voltage at the ith bus.
  • 2. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 2 Nodal Admittance Matrix (Network Model Formulation) 133112211111312111 )()( 1 yVVyVVyVIIII nodeAt  )1(][ 13312213121111 yVyVyyyVI  1313121213121111 11 1331221111 ;; 1tanarg yYyYyyyY busofceadmitingchshunty YVYVYVI    Similarly, the nodal current equations at bus 2 and bus 3 can be written as follows: )2(2332222112 YVYVYVI  & )3(3333223113 YVYVYVI  In Matrix form )( 3 2 1 333231 232221 131211 3 2 1 A V V V YYY YYY YYY I I I                                or in compact form, these equations can be written as busesthreefortopVYI q qpqP   3 1 31,   n q qpqp npVYI busesofnumbernforgeneralIn 1 ................3,2,1, I1 I2 I3 I13 I32 I23 I22 I31 I33 I21I12 I11 1 3 2 y12 = y21 y32 = y23y13 = y31 Three Bus System
  • 3. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 3                                                     nnnnn n n n V V V YYY YYY YYY I I I formmatrixinor ' ' ''''' ''''' ' ' 2 1 21 22221 11211 2 1 A nodal admittance matrix is a square matrix i.e. a few number of elements are non-zero for an actual power system. The nodal admittance matrix for the system is as follows:                  555451 45444341 343332 232221 15141211 00 0 00 00 0 YYY YYYY YYY YYY YYYY Ypq Where 1514121111 yyyyY  21122112 yyYY  41144114 yyYY  51155115 yyYY  23212222 yyyY  32233223 yyYY  34323333 yyyY  ~ ~ 4 5 2 3 1 y12 = y21 y15 = y51 y45 = y54 y34 = y43 y23 = y32 y14 = y41
  • 4. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 4 43344334 yyYY  4541434444 yyyyY  54455445 yyYY  54515555 yyyY  NOTE: This Y bus matrix can be easily written just by inspection. NUMERICAL PROBLEM 1 Find YBUS for the system shown below when dotted line is not connected and when it is connected. Shunt admittances at all buses are neglected. The following table gives the line impedance identified by the buses on which it terminates. Solution: 62 15.005.0 111 121212 12 j jjxrz y      31 3.01.0 111 131313 13 j jjxrz y      2666.0 45.015.0 111 232323 23 j jjxrz y      31 3.01.0 111 242424 24 j jjxrz y      62 15.005.0 111 343434 34 j jjxrz y      Line Bus to Bus r, pu x, pu 1-2 0.05 0.15 1-3 0.1 0.3 2-3 0.15 0.45 2-4 0.1 0.3 3-4 0.05 0.15 1 2 3 4
  • 5. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 5 The YBUS matrix for a four-bus system in general is              44434241 34333231 24232221 14131211 YYYY YYYY YYYY YYYY YBUS                  42433424 343432312313 24232423 1313 0 0 00 yyyy yyyyyy yyyy yy YBUS                  9362310 6211666.32666.031 312666.05666.10 031031 jjj jjjj jjj jj YBUS If line 1-2 is connected, only Y11,Y22, Y12 & Y21 will change Therefore                  42433424 343432312313 242312242312 13121213 0 0 yyyy yyyyyy yyyyyy yyyy YBUS Y11(new) = Y11(old) + y12 = 1 – j 3 + (2 – j 6) = 3 – j 9. Y22(new) = Y22(old) + y12 = 1.666 – j 5 + (2 – j 6) = 3.666 – j 11 Y12(new) = Y12(old) - y12 = 0 - (2 – j 6) = -2 + j 6. The modified YBUS with line 1-2 connected is as follows: Line Bus to Bus g, pu b, pu 1-2 2 -6 1-3 1 -3 2-3 0.666 -2 2-4 1 -3 3-4 2 -6
  • 6. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 6                  9362310 6211666.32666.031 312666.011666.362 0316293 jjj jjjj jjjj jjj YBUS Numerical Problem 2 1) Find the bus incidence matrix [A] for the system shown in fig. Take ground as reference. 2) Find the primitive admittance matrix [Y]. It is given that all the lines are characterised by a series impedance of 0.1 + j 0.7 ohms per kilometer and a shunt admittance of j0.35x10-5 mho per kilometer. Lines are rated at 220 KV 3) Find the bus admittance matrix using singular transformation. Use base values 220 KV and 100 MVA. Express all impedance and admittance in per unit. 4) Also find YBUS by inspection method. Solution: Network Graph 1 2 3 4 Oriented Graph 1 2 3 4 120 km 100 km 150 km 100 km110 km 1 2 3 4
  • 7. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 7 The primitive admittance matrix for the system is given by Tree 1 2 3 41 2 3 4 5 6 7 8 9 node elements Element Element
  • 8. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 8   484 10100 )10220( )( / 6 3 2 x x VABase VoltageBase VoltageBaseVABase VoltageBase currentBase VoltageBase impedanceBase mhox pedanceBase ceAdmitBase 3 10066115.2 484 1 Im 1 tan   Line impedance per kilometer = 0.1 + j 0.7 ohms ValueBase ValueActualj unitperinkilometerperimpedanceLine    484 7.01.0 =2.066115 x 10-4 + j 1.44628 x 10-3 pu puj xjxZkmforlineforimpedanceLine 144628.00206611.0 ]1044628.110066115.2[10010021 34 12    pujZkmforlineforimpedanceLine 15909.002272.011031 13  pujZkmforlineforimpedanceLine 216942.003099165.015041 14  pujZkmforlineforimpedanceLine 144628.00206611.010042 24  pujZkmforlineforimpedanceLine 1735536.00247933.012043 34  puj j y 776.6968.0 87.81146096.0 1 144628.00206611.0 1 012      puj j y 16.688.0 87.8116070495.0 1 1590908.002272.0 1 013      puj j y 5174.464533.0 87.8121914.0 1 216942.003099165.0 1 014      puj j y 776.6968.0 87.81146096.0 1 144628.00206611.0 1 024      puj j y 6466.580665.0 87.811753156.0 1 1735536.00247933.0 1 034      Line charging admittance per km = j0.35 x 10-5 mho/km Line charging Admittance per km in per unit = j0.35 x 10-5 / 2.06615 x 10-3 = j1.6939 x 10-3 pu.
  • 9. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 9 1 pqy pu 2/1 pqy pu Line charging admittance for line 1-2 (100 km) j0.16939 j0.084695 Line charging admittance for line 1-3 (110 km) j0.186336 j0.093168 Line charging admittance for line 1-4 (150 km) j0.254 j0.127 Line charging admittance for line 2-4 (100 km) j0.16939 j0.084695 Line charging admittance for line 3-4 (120 km) j0.2032 j0.1016 Computing the parameters of Primitive admittance matrix 𝑦10 = 𝑗(0.08469 + 0.127 + 0.09316) = 𝑗0.3048 𝑦20 = 𝑗(0.08469 + 0.084695) = 𝑗0.16939 𝑦30 = 𝑗(0.09316 + 0.1016) = 𝑗0.1947 𝑦40 = 𝑗(0.1016 + 0.127 + 0.08469) = 𝑗0.31329 The primitive admittance matrix is as follows:                              14 24 34 13 12 40 30 20 10 ][ y y y y y y y y y Y 1 2 3 4 y12 = 0.908-j6.776 y14 = 0.6453-j4.5174 y34 = 0.80665-j5.6466 y24 = 0.968-j6.776 y13 = 0.88-j6.16 J0.1016 J0.093168 J0.093168 J0.084695 J0.084695 J0.127 J0.127 J0.084695 J0.084695J0.1016
  • 10. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 10                                           51.4 645.0 00000000 0 77.6 968.0 0000000 00 64.5 806.0 000000 00016.688.000000 000077.6968.00000 00000313.0000 000000194.000 0000000169.00 00000000304.0 j j j j j j j j j Y YBUS = AT YA                                  517.4645.000517.4645.0 776.6968.00776.6968.00 646.5806.0646.5806.000 016.688.0016.688.0 0077.6968.077.6968.0 313.0000 0194.000 00169.00 000304.0 ]][[ jj jj jj jj jj j j j j AY                  62.1642.2646.5806.0776.6968.051.4645.0 646.5806.061.1168.1016.688.0 776.6968.0038.1393.1774.6968.0 51.4645.016.688.0774.6968.014.1749.2 jjjj jjj jjj jjjj YBUS Load Flow Problem The complex power injected by the source into ith bus of a power system is Si = Pi + jQi = Vi Ji * i = 1, 2, ……….n (1) Where Vi is the voltage at ith bus with respect to ground and Ji is the source current injected into the bus. The load flow problem is handled more conveniently if we use Ji rather than Ji * . Therefore taking the complex conjugate of equation (1), we have Pi –jQi = Vi * Ji i = 1,2,………………n (2) As I = YV At any particular node
  • 11. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 11 I1 = V1Y11 + V2Y12 + V3Y13 In general   n k kiki niVYJ 1 ................,2,1 Substituting value of Ji in equation (2), we get   n k kikiii niVYVjQP 1 * .................,2,1 Equating real & imaginary parts )3..(........................................Re)(Re 1 *         n k kikii VYVPoweralP )4..(........................................Im)(Re 1 *         n k kikii VYVpoweractiveQ iki j ikik j i eYYeVVformpolarIn  ||&||  The real & reactive powers can be expressed as   n k ikikikkii niCosYVVpowerrealP 1 )5(................2,1)(||||||)(    n k ikikikkii niSinYVVpowerreactiveQ 1 )6(................2,1)(||||||)(  APPROXIMATE LOAD FLOW SOLUTION Assumptions: 1) The line resistance is negligible. Since line resistance is small as compared to its reactance, therefore it can be neglected. Thus the active power loss is zero. 2) This gives ik  90o & ii  -90o and i - k is small below 30o so that sin(i - k)  (i - k) Therefore equation (5) and (6) reduces to 𝑃𝑖 = |𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| 𝑐𝑜𝑠[90 − (𝛿𝑖 − 𝛿 𝑘)] + |𝑉𝑖||𝑌𝑖𝑖| 𝑐𝑜𝑠[−90 − (𝛿𝑖 − 𝛿𝑖)]} 𝑛 𝑘=1 𝑃𝑖 = |𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| sin(𝛿𝑖 − 𝛿 𝑘) − |𝑉𝑖||𝑌𝑖𝑖| 𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑖)} 𝑛 𝑘=1 𝑠𝑖𝑛𝑐𝑒 𝑠𝑖𝑛 (𝛿𝑖 − 𝛿 𝑘) ≅ (𝛿𝑖 − 𝛿 𝑘) )7(..........................,3,2;)(|||||| 1 niYVVP k n ik k iikkii     
  • 12. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 12 𝑄𝑖 = −|𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| 𝑠𝑖𝑛[90 − (𝛿𝑖 − 𝛿 𝑘)] + |𝑉𝑖||𝑌𝑖𝑖| 𝑠𝑖𝑛[−90 − (𝛿𝑖 − 𝛿𝑖)]} 𝑛 𝑘=1 𝑄𝑖 = −|𝑉𝑖| ∑{|𝑉𝑘||𝑌𝑖𝑘| cos(𝛿𝑖 − 𝛿 𝑘) − |𝑉𝑖||𝑌𝑖𝑖| cos(𝛿𝑖 − 𝛿𝑖)} 𝑛 𝑘=1 )8(...............,3,2;||||)(|||||| 2 1 niYVCosYVVQ iiik n ik k iikkii      3) All buses other than the slack are PV buses i.e. voltage magnitude of all the buses including the slack bus are specified. NUMERICAL PROBLEM 3 Consider a four-bus sample power system wherein line reactances are indicated in per unit. Line resistances are considered negligible. The magnitude of all the four bus voltages is specified to be 1.0 pu. The bus powers are specified in the table below. Bus Real Demand Reactive Demand Real Generation Reactive Generation 1 PD1 = 1.0 QD1 = 0.5 PG1 = ? QG1(unspecified) 2 PD2 = 1.0 QD2 = 0.4 PG2 = 4.0 QG2(unspecified) 3 PD3 = 2.0 QD3 = 1.0 PG3 = 0 QG3(unspecified) 4 PD4 = 2.0 QD4 = 1.0 PG4 = 0 QG4(unspecified) Solution: Generation = Demand + Losses But since resistance is negligible, it is a loss less line. Therefore PG1 + PG2 + PG3 + PG4 = PD1 + PD2 + PD3 + PD4 PG1 + 4.0 + 0 + 0 = 1.0 + 1.0 + 2.0 + 2.0 G1 G3 G2G4 S1=1.0+jQ1 S3 = -2+jQ3 S4 = -2+jQ4 S2 = 3+jQ2 1 3 4 2 |V1| = 1.0 |V3| = 1.0 |V4| = 1.0 |V2| = 1.0 J0.15 J0.2 J0.15 J0.1 J0.1
  • 13. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 13 PG1 = 2.0 pu. 67.615.0 1313 jyjz  52.0 1212 jyjz  101.0 1414 jyjz  101.0 3232 jyjz  67.615.0 2424 jyjz  Y11 = y13 + y12 + y14 = - j 6.67 – j 5 – j 10 = - j 21.67 Y22 = y23 + y21 + y24 = - j 10 – j 5 – j 6.67 = - j 21.67 Y33 = y31 + y32 = - j 6.67 – j 10 = - j 16.67 Y44 = y41 + y42 = - j 10 – j 6.67 = - j 16.67 Y12 = -y12 = j 5 Y13 = -y13 = j 6.67 Y14 = -y14 = j10 Y23 = -y23 = j10 Y24 = -y24 = j6.67 Y34 = -y34 = 0                  67.16067.610 067.161067.6 67.61067.215 1067.6567.21 jjjj jjjj jjjj jjjj YBUS Now, real power generation at various buses are: P2 = PG2 – PD2 = 4 – 1 = 3 P3 = PG3 - PD3 = 0 - 2 = -2 P4 = PG4 - PD4 = 0 - 2 = -2 .......,..........,3,2;)(|||||| 1 niYVVP ki n ik k ikkii      Thus for i = 2     )1......(..............................367.61067.215 )(67.6)(10)(50.13 )(||||)(||||)(|||||| 4321 423212 42244322331221122       YVYVYVVP for i = 3     )2......(..............................267.161067.6 )(10)(67.60.12 )(||||)(||||)(|||||| 321 2313 43344233221331133       YVYVYVVP
  • 14. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 14 for i = 4     )3......(..............................267.1667.610 )(67.6)(100.12 )(||||)(||||)(|||||| 421 2414 34433244221441144       YVYVYVVP If bus ‘1’ is considered as reference, 1 = 0. Solving equation 1, 2 & 3 we get, 2 = 0.077 rad = 4.41o ; 3 = -0.074 rad = -4.23o ; 4 = -0.089 rad = -5.11o . The bus voltages are now updated as follows: 𝑉1 = 1.0  0 𝑜 𝑝𝑢; 𝑉2 = 1.0  4.41 𝑜 𝑝𝑢; 𝑉3 = 1.0  −4.23 𝑜 𝑝𝑢; 𝑉4 = 1.0  − 5.11 𝑜 𝑝𝑢; Again .......,..........,3,2,1;||||)(|||||| 2 1 niYVCosYVVQ iiiki n ik k ikkii      The above equation is required to find the reactive power generation at each bus using QGi = Qi + QDi Thus For i = 1     .0727.067.21)11.5(10)23.4(67.6)41.4(50.1 ||||)(||||)(||||)(|||||| 1 11 2 141144311332112211 puCosCosCosQ YVCosYVCosYVCosYVVQ    for i = 2     .2202.067.21)11.541.4(67.6)23.441.4(10)41.4(50.1 ||||)(||||)(||||)(|||||| 2 22 2 242244322331221122 puCosCosCosQ YVCosYVCosYVCosYVVQ    for i = 3     .132.067.16)41.423.4(10)23.4(67.60.1 ||||)(||||)(||||)(|||||| 3 33 2 343344233221331133 puCosCosQ YVCosYVCosYVCosYVVQ    for i = 4     .132.067.16)41.411.5(67.6)11.5(100.1 ||||)(||||)(||||)(|||||| 4 44 2 434433244221441144 puCosCosQ YVCosYVCosYVCosYVVQ    Reactive Power Generation QG1 = Q1 + QD1 = 0.0727 + 0.5 = 0.5727 pu QG2 = Q2 + QD2 = 0.2202 + 0.4 = 0.6202 pu QG3 = Q3 + QD3 = 0.1320 + 1.0 = 1.1320 pu QG4 = Q4 + QD4 = 0.1320 + 1.0 = 1.1320 pu
  • 15. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 15 Reactive Line Losses = [QG1+QG2+QG3+QG4] - [QD1+QD2+QD3+QD4] = 0.5569 pu. Since |Z|  X therefore  = 90o , the line flows can be written as )( |||| ki ik ki kiik Sin X VV PP   where Pik is the real power flow from bus ‘i’ to bus ‘k’ Using Approximate load flow solution .492.0))23.4(0( 15.0 1 )( |||| 31 13 31 3113 puSinSin X VV PP   .3844.0))41.40( 2.0 1 )( |||| 21 12 21 2112 puSinSin X VV PP   .8906.0))11.5(0( 1.0 1 )( |||| 41 14 41 4114 puSinSin X VV PP   .502.1)41.423.4( 1.0 1 )( |||| 23 32 23 2332 puSinSin X VV PP   .103.1))11.5(41.4( 15.0 1 )( |||| 42 24 42 4224 puSinSin X VV PP   From sending end reactive power as derived earlier in power circle diagram 𝑄𝑠 = |𝑉𝑠|2 |𝑍| sin  − |𝑉𝑠||𝑉𝑟| |𝑍| 𝑠𝑖𝑛(𝜃 + 𝛿) The reactive power flow for |Z| = X &  = 90o Using Approximate load flow solution )( |||||| 2 ki ik ki ik i kiik Cos X VV X V QQ   where, Qik is the reactive power flow from bus ‘i’ to bus ‘k’. .018.0 15.0 )23.4( 15.0 1 )( |||||| 31 13 31 13 2 1 3113 pu Cos Cos X VV X V QQ   .015.0 2.0 )41.4( 2.0 1 )( |||||| 21 12 21 12 2 1 2112 pu Cos Cos X VV X V QQ     .04.0 1.0 )11.5( 1.0 1 )( |||||| 41 14 41 14 2 1 4114 pu Cos Cos X VV X V QQ   .1135.0 1.0 )41.423.4( 1.0 1 )( |||||| 23 32 23 32 2 3 2332 pu Cos Cos X VV X V QQ     .0918.0 15.0 )11.541.4( 15.0 1 )( |||||| 42 24 42 24 2 2 4224 pu Cos Cos X VV X V QQ    
  • 16. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 16 S13 = P13 + j Q13 = 0.492 + j 0.018 (Power flows from bus 1 to bus 3) S12 = P12 + j Q12 = -0.3844 + j 0.015 (Power flows from bus 2 to bus 1) S14 = P14 + j Q14 = 0.8906 + j 0.04 (Power flows from bus 1 to bus 4) S32 = P32 + j Q32 = -1.502 + j 0.1135 (Power flows from bus 2 to bus 3) S24 = P24 + j Q24 = 1.103 + j 0.0918 (Power flows from bus 2 to bus 4) Line Flows can be indicated on the system as follows: Gauss Seidel Method It is an iterative algorithm for solving a set of non-linear algebraic equations. The iterative process is then repeated till the solution vector converges. It is assumed that all the buses other than slack bus are PQ buses. This method is also applicable to PV buses as well. In a GS method, the slack bus voltages are specified, suppose there are ‘n’ number of buses in a power system, there will be (n-1) bus voltages, starting values of whose magnitude and angles are assumed. These values are then updated through the iterative process. The complex power injected by a source into ith bus of a power system is Si = Pi + jQi = Vi Ji * i = 1, 2, ……….n (1) Vi = voltage at ith bus Ji = source current injected. Load flow study is convenient by the use of Ji rather than Ji * Taking Complex Conjugate of equation (1) Pi – jQi = Vi * Ji i = 1, 2, ………n (2) Where   n k kiki VYJ 1 1 2 3 4 0.3844+j0.015 0.492+j0.018 0.8906+j0.04 8 1.502+j0.1135 1.103+j0.0918 1+j0.5 2+j1 2+j1 1+j0.4 j1.1322+j0.57 4+j0.62j1.132
  • 17. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 17 Expanding & Rewriting, we get     n ik k kiki ii i VYJ Y V 1 ][ 1 But from equation (2), * i ii i V jQP J   )3(......................,3,2 1 1 * niVY V jQP Y V n ik k kik i ii ii i                  Where, the voltages substituted on right hand side of equation (3) are the most recently calculated (updated) values for the corresponding buses. But slack bus voltage is fixed and hence it is not updated. The iterations are repeated till no bus voltage magnitude changes. Such a computation process is called as convergence of the solution. If PV Buses are also present At PV bus, P & V are specified whereas Q &  are unspecified. Here Q and  are updated using GS method. It includes the following steps aswrittenbecanequationaboveiteration rforSideHandRightonvoltagesofvaluerecentmostputtingbyupdatedisQ VYVQ Step th i n k kikii , )1( Im 1 1 *                               1 1 *)1(* Im i k n ik r kik r i r kik r ii VYVVYVQ   ii r iir i i k n ik r kik r kik r i r i r i r i Y jQP A where VBVB V A ofAngle VThusstepfromobtainedisofvaluerevisedThe Step )1( )1( 1 1 1 )()1( *)( )1( )1()1( .1 2                        This gives a range of reactive generation, i.e. Qmin to Qmax , If Qi is not within this limit, that particular ith bus is then treated as ‘PQ’ bus. NUMERICAL PROBLEM 4 For the network shown in figure, obtain the complex bus bar voltage at bus 2 at the end of first iteration. Use GS method. Line impedances shown in figure are in per unit. Bus 1 is a
  • 18. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 18 slack bus with V1 = 1.00o ; P2 + j Q2 = -5.96 + j 1.46 ; |V3| = 1.02 pu. Assume V3 o = 1.02 0o ; and V2 o = 1.00o Solution 53.1169.7 06.004.0 1 12 j j y    ; 07.2338.15 03.002.0 1 23 j j y    Y11 = y12 = 7.69 – j 11.53; Y12 = -y12 = -7.69 + j 11.53 ; Y13 = 0; Y22 = y21 + y23 = 23.07 – j 34.61; Y23 = -y23 = -15.38 + j 23.07; Y33 = y32 = 15.38 – j 23.07.               07.2338.1507.2338.150 07.2338.1561.3407.2353.1169.7 053.1169.753.1169.7 jj jjj jj YBUS              0 323 0 121*0 2 22 22 1 2 1 VYVY V jQP Y V            02.1)07.2338.15()53.1169.7( )01( 46.196.5 61.3407.23 11 2 jj j j j V V2 1 = 0.973 -8.1934o pu OR 0.963 –j 0.1386 pu. NUMERICAL PROBLEM 5 For the sample system, the generators are connected to all four buses while loads are at buses 2 & 3. All buses other than slack bus are PQ type. Assume flat voltage start, find the voltage and bus angles at other three buses at the end of third GS iteration. Bus Pi pu Qi pu Vi pu. Remarks 1 - - 1.04  0o Slack bus 2 0.5 -0.2 - PQ bus 3 -1.0 0.5 - PQ bus 4 0.3 -0.1 - PQ bus Line Bus to Bus r, pu x, pu 1-2 0.05 0.15 1-3 0.1 0.3 2-3 0.15 0.45 2-4 0.1 0.3 3-4 0.05 0.15 0.04+j0.06 0.02+j0.03 1 2 3 1 2 3 4
  • 19. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 19 Solution: 62 15.005.0 111 121212 12 j jjxrz y      31 3.01.0 111 131313 13 j jjxrz y      2666.0 45.015.0 111 232323 23 j jjxrz y      31 3.01.0 111 242424 24 j jjxrz y      62 15.005.0 111 343434 34 j jjxrz y                       42433424 343432312313 242312242312 13121213 0 0 yyyy yyyyyy yyyyyy yyyy YBUS                  9362310 6211666.32666.031 312666.011666.362 0316293 jjj jjjj jjjj jjj YBUS Using Formula     n ik k kiki ii i VYJ Y V 1 ][ 1 where * i ii i V jQP J   bus 1 is a slack bus V1 = 1.04  0 o = 1.04 + j0. Initially we shall assume V2 0 = V3 0 = V4 0 = 1 + j 0 and later on after each iteration, they will be updated. FIRST ITERATION              0 424 0 323 0 121*0 2 22 22 ' 2 1 VYVYVY V jQP Y V Line Bus to Bus g, pu b, pu 1-2 2 -6 1-3 1 -3 2-3 0.666 -2 2-4 1 -3 3-4 2 -6
  • 20. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 20 pujpu jjj j j j V o 046.00186.1.59.2019.1 )31()266.0(04.1)62( 01 2.05.0 1166.3 1' 2             Note: initially we assumed V2 o = 1 + j 0 but with the value V2 1 obtained we shall put it in our upcoming equations.              0 434 ' 232 0 131*0 3 33 33 ' 3 1 VYVYVY V jQP Y V pujpu jjjj j j j V o 087.00273.1.851.4031.1 )62()046.00186.1)(266.0(04.1)31( 01 5.01 1166.3 1' 3             Note: initially we assumed V3 o = 1 + j 0 but with the value V3 1 obtained we shall put it in upcoming equations.              ' 343 ' 242 0 141*0 4 44 44 ' 4 1 VYVYVY V jQP Y V puj jjjj j j j V 00948.002443.1 )087.00273.1)(62()046.00186.1)(31( 01 1.03.0 93 1' 4             SECOND ITERATION              ' 424 ' 323 0 121*' 2 22 22 '' 2 1 VYVYVY V jQP Y V pujpu j jjjj j j j V o 026.002815.1.49.10285.1 )00948.00244.1( )31()087.00273.1)(266.0(04.1)62( 046.00186.1 2.05.0 1166.3 1'' 2                               ' 434 '' 232 0 131*' 3 33 33 '' 3 1 VYVYVY V jQP Y V pujpu j jjjj j j j V o 1022.0030.1.662.5036.1 )00948.00244.1( )62()026.002815.1)(266.0(04.1)31( 087.0027.1 5.01 1166.3 1'' 3                               '' 343 '' 242 0 141*' 4 44 44 '' 4 1 VYVYVY V jQP Y V
  • 21. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 21 .488.1031.1026.00311.1 )1022.003.1)(62()026.002815.1)(31( 00948.0024.1 1.03.0 93 1'' 4 pupuj jjjj j j j V             THIRD ITERATION              '' 424 '' 323 0 121*'' 2 22 22 ''' 2 1 VYVYVY V jQP Y V pujpu j jjjj j j j V o 0195.0031.1.083.10319.1 )026.00311.1( )31()1022.003.1)(266.0(04.1)62( 026.00322.1 2.05.0 1166.3 1''' 2                               '' 434 ''' 232 0 131*'' 3 33 33 ''' 3 1 VYVYVY V jQP Y V pujpu j jjjj j j j V o 104.00368.1.724.5042.1 )026.00311.1( )62()0195.0031.1)(266.0(04.1)31( 1022.003.1 5.01 1166.3 1''' 3                               ''' 343 ''' 242 0 141*'' 4 44 44 ''' 4 1 VYVYVY V jQP Y V .7.1031.103.00358.1 )104.00368.1)(62()0195.0031.1)(31( 026.00311.1 1.03.0 93 1''' 4 pupuj jjjj j j j V             Acceleration of Convergence Convergence in GS solution can sometimes be speeded up by the use of the acceleration factor. For the ith bus, the accelerated value of voltage at the (r + 1)th iteration is given by )()( )()1()()1( r i r i r i r i VVVdaccelerateV    where  is a real number called the acceleration factor. A suitable value of  for any system can be obtained by trial load flow studies. A generally recommended value is  = 1.6. A wrong choice of  may indeed slow down convergence or even cause the method to diverge. This concludes the load flow analysis for the case of PQ buses only. NOTE: Powers at load bus are taken as negative and at generator bus they are taken as positive.
  • 22. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 22 NUMERICAL PROBLEM 6 The load flow data for a four-bus system is given in the table 1 & 2. Table 1 Table 2 Bus code P Q V Remarks 1 - - 1.06 Slack 2 -0.5 -0.2 1+j0 PQ 3 -0.4 -0.3 1+j0 PQ 4 -0.3 -0.1 1+j0 PQ i) Determine the voltages at the end of first iteration using GS method. Take  = 1.6. ii) If Bus ‘2’ is taken as a generator bus with |V2| = 1.04 and reactive power constraint is 0.1  Q2  1.0 Determine the voltages starting with a flat profile and assuming accelerating factor as 1.0. (Take P2 = +0.5 pu when bus 2 is a generator bus) iii) If the reactive power constraint on generator 2 is 0.2  Q2  1.0. Determine the voltages starting with a flat profile and assuming accelerating factor as 1.0. (Take P2 = +0.5 pu when bus 2 is a generator bus) Solution: ;82;41 ;664.2666.0;0;41;82;123 664.14666.3;664.14666.3;123 3424 2314131244 3322131211 pujYpujY pujYYpujYpujYpujY pujYpujYpujyyY                     12382410 82664.14666.3664.2666.041 41664.2666.0664.14666.382 04182123 :tan jjj jjjj jjjj jjj Y followsasissystemtheforMatrixceAdmitBusThe BUS Bus code Admittance 1-2 2-j8 1-3 1-j4 2-3 0.666-j2.664 2-4 1-j4 3-4 2-j8 1 2 4 y23 = 0.666-j2.664 y12 = 2-j8 y34 = 2-j8 y24 = 1-j4y13 = 1-j4 3
  • 23. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 23 Computing voltages at different buses other than slack bus              0 424 0 323 0 121*0 2 22 22 ' 2 1 VYVYVY V jQP Y V puj jjj j j j V 02888.001187.1 )41()664.2666.0(06.1)82( 01 2.05.0 664.1466.3 1' 2             V2 1 acc = (1.0 + j 0.0) + 1.6 {(1.01187 – j 0.02888) - (1.0 + j0)} = 1.01899 – j 0.046208 pu.              0 434 1 232 0 131*0 3 33 33 ' 3 1 VYVYVY V jQP Y V acc puj jj jjj j j j V 029248.0994119.0 )01)(82( )046208.001899.1)(664.2666.0(06.1)41( 01 3.04.0 664.1466.3 1' 3                  V3 1 acc = (1 + j 0) + 1.6 {(0.994119 – j 0.029248) – (1 + j 0)} = 0.99059 - j 0.0467968 pu.              accacc VYVYVY V jQP Y V 1 343 1 242 0 141*0 4 44 44 ' 4 1 puj jjjj j j j V 064684.09716032.0 )0467968.099059.0)(82()046208.001899.1)(41( 01 1.03.0 123 1' 4             V4 1 acc = (1 + j 0) + 1.6{(0.9716032 – j 0.064684) – (1 + j 0)} = 0.954565 – j 0.1034944 pu. If bus ‘2’ is a PV bus     )1(Im 1 1 *)1(*              i k n ik r kik r i r kik r ii VYVVYVQ Thus for i = 2 ; r = 0;   )2()()()()(Im 0 424 0 323 0 222 *0 2 1 121 *0 22 VYVYVYVVYVQ  It should be noted that V1 1 is equal to V1 0 since it is a slack bus, its voltage is fixed at 1.06 pu. Therefore the above expansion can be simplified as     )3()(Im 0 424 0 323 0 222 0 121 *0 22 VYVYVYVYVQ  Voltage at bus ‘2’ is specified as |V2| = 1.04 pu. Initial value of 2 = 0o (Assumed) it will be updated after iterations. Therefore V2 in its polar form can be written as V2  2 = 1.04 0o
  • 24. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 24 In Rectangular form V2 = 1.04 + j 0 pu.  V2 * = 1.04 – j 0 pu. Flat Voltage profile is given therefore all the bus voltages are 1 + j 0 i.e. V3 = V4 = 1 + j 0. Putting values in equation (3)                0.1)41( 0.1)664.2666.0()004.1)(664.14666.3()06.1)(82( )004.1(Im2 j jjjj jQ Q2 = 0.1108 pu. The reactive power limit is specified as 0.1  Q2  1.0 The calculated value of Q2 using equation (3) lies within the specified limit. Therefore bus ‘2’ is a PV bus i.e. bus ‘2’ is a voltage controlled or generator bus. Since bus ‘2’ is concluded to be a generator bus, the powers will now be taken as positive at this bus. i.e. P2 = 0.5 pu (given) ; Q2 = 0.1108 pu (calculated) .   ii r iir i i k n ik r kik r kik r i r i r i r i Y jQP A where VBVB V A ofAngle VThusobtainedisofvaluerevisedThe )1( )1( 1 1 1 )()1( *)( )1( )1()1( .                                         424323121*0 2 22 22 2 )( 1 VYVYVY V jQP Y new                  0.1)41(0.1)664.2666.0(06.1)82( 004.1 1108.05.0 664.14666.3 1 2 jjj j j j new = 1.0472846 + j0.0291476 pu = 1.04769  1.59o pu Thus 2 new = 1.59 o Therefore voltage at bus ‘2’ in its polar form V2 = 1.04 1.59o pu In rectangular form V2 = 1.0395985 + j 0.02891158 pu. However V3 & V4 can be calculated using conventional method but with new updated value of V2.          0 434232 0 131*0 3 33 33 1 3 )( 1 VYVYVY V jQP Y V                 )01)(82( )02891158.00395985.1)(664.2666.0(06.1)41( 01 3.04.0 664.14666.3 11 3 jj jjj j j j V pujV 015607057.09978866.01 3 
  • 25. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 25          1 343242 0 141*0 4 44 44 1 4 )( 1 VYVYVY V jQP Y V                 )015607057.09978866.0)(82( )02891158.00395985.1)(41( )01( 1.03.0 123 11 4 jj jj j j j V .022336.0998065.01 4 pujV  If reactive power limit on generator 2 is 0.2  Q2  1.0. In the second part of the problem, Q2 has been calculated as 0.1108 pu which does not lie within limits specified above. For this, voltage at bus ‘2’ is assumed to be 1 + j0 (Using flat voltage profile) and will be updated through iterations assuming V3 0 = V4 0 = 1 + j 0 pu. It should also be noted that for a generators bus, powers are taken positive whereas for a load or PQ bus, powers are taken as negative. Therefore P2 = 0.5 pu and setting Q2 to its minimum limit i.e. Q2 min = 0.2 pu.          0 424 0 323 0 121*0 2 min22 22 1 2 )( 1 VYVYVY V jQP Y V            )41()664.2666.0(06.1)82( )01( 2.05.0 664.14666.3 11 2 jjj j j j V 𝑉2 ′ = 1.09822 + 𝑗0.03010 𝑝𝑢          0 434 1 232 0 131*0 3 33 33 1 3 )( 1 VYVYVY V jQP Y V                 )82( )03010.0098221.1)(664.2666.0(06.1)41( )01( 3.04.0 664.14666.3 11 3 j jjj j j j V 𝑉3 ′ = 1.00853 − 𝑗0.01545 𝑝𝑢 = 1.00865  − 0.878 𝑜 𝑝𝑢          1 343 1 242 0 141*0 4 44 44 1 4 )( 1 VYVYVY V jQP Y V                 )015456.000853.1( )82()030105662.0098221.1)(41( 01 1.03.0 123 11 4 j jjj j j j V 𝑉4 ′ = 1.0276 − 𝑗0.020082 𝑝𝑢 = 1.0278 − 1.1196 𝑜 𝑝𝑢 NUMERICAL PROBLEM 7 1) For the sample system, the generators are connected to all four buses while loads are at buses 2 & 3. All buses other than slack bus are PQ type. Assume flat voltage start, find the
  • 26. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 26 voltage and bus angles at other three buses at the end of first GS iteration. Assume Base MVA 1000 Bus Real Power Generation PGi (MW) Real Power Demand PDi (MW) Reactive Power Generation QGi (MVAR) Reactive Power Demand QDi (MVAR) Vi Remarks 1 - - - - 1.040o Slack 2 700 200 200 400 - PQ 3 200 300 600 100 - PQ 4 400 100 200 300 - PQ 2) Let bus 2 be a PV bus with |V2| = 1.04 pu. Assuming a flat voltage start, find Q2, 2, V3, V4 at the end of first GS iteration. Given : 0.2  Q2  1. 3) Repeat part 2 for reactive power limits as : 0.25  Q2  1. Solution: 62 15.005.0 111 121212 12 j jjxrz y      31 3.01.0 111 131313 13 j jjxrz y      2666.0 45.015.0 111 232323 23 j jjxrz y      31 3.01.0 111 242424 24 j jjxrz y      62 15.005.0 111 343434 34 j jjxrz y      Line Bus to Bus r, pu x, pu 1-2 0.05 0.15 1-3 0.1 0.3 2-3 0.15 0.45 2-4 0.1 0.3 3-4 0.05 0.15 Line Bus to Bus g, pu b, pu 1-2 2 -6 1-3 1 -3 2-3 0.666 -2 2-4 1 -3 3-4 2 -6 1 2 3 4
  • 27. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 27                  42433424 343432312313 242312242312 13121213 0 0 yyyy yyyyyy yyyyyy yyyy YBUS                  9362310 6211666.32666.031 312666.011666.362 0316293 jjj jjjj jjjj jjj YBUS Using Formula     n k k kiki ii i VYJ Y V 1 1 ][ 1 where * i ii i V jQP J   bus 1 is a slack bus V1 = 1.04  0 o = 1.04 + j0. Initially we shall assume V2 0 = V3 0 = V4 0 = 1 + j 0 and later on after each iteration, they will be updated. FIRST ITERATION              0 424 0 323 0 121*0 2 22 22 ' 2 1 VYVYVY V jQP Y V pujpu jjj j j j V o 046.00186.1.59.2019.1 )31()266.0(04.1)62( 01 2.05.0 1166.3 1' 2                          0 434 ' 232 0 131*0 3 33 33 ' 3 1 VYVYVY V jQP Y V pujpu jjjj j j j V o 087.00273.1.851.4031.1 )62()046.00186.1)(266.0(04.1)31( 01 5.01 1166.3 1' 3                          ' 343 ' 242 0 141*0 4 44 44 ' 4 1 VYVYVY V jQP Y V puj jjjj j j j V 00948.002443.1 )087.00273.1)(62()046.00186.1)(31( 01 1.03.0 93 1' 4            
  • 28. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 28 If Bus ‘2’ is a PV bus Initially we assume 2 o = 0o ; |V2| = 1.04 pu. ; therefore V2 = 1.04 + j 0 pu. For flat voltage start V3 o = V4 o = 1 + j 0 p u ;    0 424 0 323 0 222 0 121 *0 2 1 2 )(Im VYVYVYVYVQ    )31()2666.0(04.1)11666.3()04.1)(62()004.1(Im1 2 jjjjjQ  .2079.01 2 puQ  Q2 1 lies within specified limits hence it is a PV bus                  0 424 0 323 0 121*0 2 1 22 22 1 2 )( 1 VYVYVY V jQP Y                   )31()2666.0()004.1)(62( 004.1 2079.05.0 11666.3 11 2 jjjj j j j    .032.084658.10339.00512.1 01 2 radj  Therefore voltage at bus ‘2’ becomes V2 = 1.04  1.84658o pu = 1.03946 + j 0.03351 pu          0 434232 0 131*0 3 33 33 1 3 )( 1 VYVYVY V jQP Y V            )62()03351.003946.1)(2666.0(04.1)31( 01 5.01 11666.3 11 3 jjjj j j j V .08937.00317.11 3 pujV           1 343242 0 141*0 4 44 44 1 4 )( 1 VYVYVY V jQP Y V            )08937.00317.1)(62()03351.003946.1)(31( 01 1.03.0 93 11 4 jjjj j j j V pujV 0031.09985.01 4  If reactive power limit on generator 2 is 0.25  Q2  1.0. Q2 is not within limit, therefore bus 2 is now a PQ bus. Starting with flat voltage profile, V2 o = V3 o = V4 o = 1 + j 0 pu. Setting Q2 to its minimum limit i.e. Q2 min = 0.25 pu.              0 424 0 323 0 121*0 2 min22 22 ' 2 1 VYVYVY V jQP Y V            )31()2666.0(04.1)62( 01 25.05.0 11666.3 11 2 jjj j j j V pujV 0341.00559.11 2 
  • 29. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 29              0 434 1 232 0 131*0 3 33 33 1 3 1 VYVYVY V jQP Y V            )62()0341.00559.1)(2666.0(04.1)31( 01 5.01.0 11666.3 11 3 jjjj j j j V pujV 0893.00347.11 3               1 343 1 242 0 141*0 4 44 44 1 4 1 VYVYVY V jQP Y V            )0893.00347.1)(62()0341.00559.1)(31( 01 1.03.0 93 11 4 jjjj j j j V pujV 0923.00775.11 4  NUMERICAL PROBLEM 8 For the system shown in fig. Compute the bus voltages using GS method. Assuming bus 1 as slack bus, the data for load flow studies are given in table 1 & 2 Table 1 Bus Code Assumed Voltage Generation Load MW MVAR MW MVAR 1 1.06 + j 0 - - - - 2 1 + j 0 - - 500 200 3 1 + j 0 300 200 700 500 4 1 + j 0 - - 300 100 Table 2 Bus code Admittance ypq (pu) Line charging y1 pq (pu) 1-2 -j8 j0.06 1-3 -j4 j0.05 2-3 -j2.664 j0.04 2-4 -j4 j0.04 3-4 -j8 j0.06 Solution: Assuming Base MVA = 1000 Y11 = -j8 –j4 + j 0.06/2 + j0.05/2 = -j11.945 Y22 = -j8 –j2.664 –j4 +j0.06/2 +j0.04/2 +j0.04/2 = -j 14.594 1 2 3 4
  • 30. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 30 Y33 = -j4-j2.664-j8+j0.05/2 +j0.04/2 + j0.06/2 = -j14.589 Y44 = -j4 –j8+j0.06/2+j0.04/2 = -j11.95 Y12 = j8 ; Y13 = j4 ; Y14 = 0 ; Y23 = j2.664 ; Y24 = j4 ; Y34 = j8;                  95.11840 8589.14664.24 4664.2594.148 048945.11 jjj jjjj jjjj jjj YBUS P2 = 0 - 500 = -500 MW = -0.5 pu & Q2 = 0 – 200 = - 200MW = -0.2 pu. P3 = 300 – 700 = -400MW = -0.4 pu & Q3 = 200 – 500 = -300 MW = -0.3 pu P4 = 0 – 300 = -300 MW = -0.3 pu & Q4 = 0 – 100 = -100 MW = -0.1 pu              0 424 0 323 0 121*0 2 22 22 1 2 1 VYVYVY V jQP Y V            4664.2)06.1(8 01 2.05.0 594.14 11 2 jjj j j j V    994.145.0 594.14 1 4664.248.82.05.0 594.14 11 2 j j jjjj j V      pujpuV 03426.00274.191.1027979.1 01 2               0 434 1 232 0 131*0 3 33 33 1 3 1 VYVYVY V jQP Y V            8)03426.00274.1(664.2)06.1(4 01 3.04.0 589.14 11 3 jjjj j j j V    677.14491268.0 589.14 1 8091268.0737.224.43.04.0 589.14 11 3 j j jjjj j V      pupujV 01 3 917.10066.103367.000603.1               1 343 1 242 0 141*0 4 44 44 1 4 1 VYVYVY V jQP Y V            )03367.000603.1(8)03426.00274.1(40 01 1.03.0 95.11 11 4 jjjj j j j V  26936.004824.813704.01094.41.03.0 95.11 11 4    jjj j V
  • 31. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 31   .05906.0009.135.3010736.105764.127064.0 95.11 1 01 4 pujpuj j V    NUMERICAL PROBLEM 9 The load flow data for a three-bus system is given in table I and table II. The voltage magnitude at bus ‘2’ is to be maintained at 1.04 pu. The maximum and minimum reactive power limits for bus ‘2’ are 30 and 0 MVAR respectively. Taking bus ‘1’ as slack bus, determine the voltages at various buses at the end of the first iteration starting with a flat voltage profile for all buses except slack bus using GS method. Table I Bus code Impedance Line charging admittance y1 pq/2 1-2 0.06 + j0.18 j0.05 1-3 0.02 + j0.06 j0.06 2-3 0.04 + j0.12 j0.05 Table II Bus Code Assumed Voltage Generation Load MW MVAR MW MVAR 1 1.06 + j 0 0.0 0.0 0.0 0.0 2 1 + j 0 0.2 0.0 0.0 0.0 3 1 + j 0 0.0 0.0 0.6 0.25 Solution: ;155 06.002.0 1 ;5.75.2 12.004.0 1 ;567.1 18.006.0 1 312312 j j yj j yj j y        The bus admittance matrix for the system shown above can be obtained by inspection               39.225.75.75.2155 5.75.24.1217.4567.1 155567.189.1967.6 jjj jjj jjj YBUS P2 = 0.2 – 0.0 = 0.2 pu & Q2 = 0.0 – 0.0 = 0.0 pu. P3 = 0.0 – 0.6 = -0.6 pu & Q3 = 0.0 – 0.25 = -0.25 pu. 1.67 - j5 1 2 3 j0.05 j0.05 j0.06 j0.06 j0.05 j0.05 2.5 – j7.55 – j15
  • 32. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 32          0 323 0 121*0 2 22 22 1 2 )( 1 VYVY V jQP Y V            )5.75.2(06.1)567.1( 01 02.0 4.1217.4 11 2 jj j j j V .6627.003637.10119867.00363.11 2 pupujV o           1 232 0 131*0 3 33 33 1 3 )( 1 VYVY V jQP Y V .008.10388.101827.00388.1 )0119867.00363.1)(5.75.2(06.1)155( 01 25.06.0 39.225.7 11 3 pupuj jjj j j j V o             If bus ‘2’ is a PV bus V2 = 1.04 pu ; initial value of angle assumed 2 = 0o ; V3 = 1 + j 0 pu.  )()()()(Im 0 323 0 222 *0 2 1 121 *0 2 1 2 VYVYVVYVQ     0 323 0 222 0 121 *0 2 1 2 )(Im VYVYVYVQ    )5.75.2(04.1)4.1217.4(06.1)567.1()004.1(Im1 2 jjjjQ  Q2 1 = 0.096 pu. The reactive power limit is 0.0 pu to 0.3 pu. Q2 lies within this limit hence bus ‘2’ is a PV bus.                  0 323 0 121*0 2 1 22 22 1 2 )( 1 VYVY V jQP Y                   )5.75.2(06.1)567.1( 004.1 096.02.0 4.1217.4 11 2 jj j j j  2 1 = 0.50470 therefore V2 1 = 1.04  0.50470 pu = 1.04 + j 0.00916 pu.            )00916.004.1)(5.75.2(06.1)155( 01 25.06.0 39.225.7 11 3 jjj j j j V pujpuV o 02594.006.1402.106027.11 3 
  • 33. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 33 NEWTON RAPHSON METHOD FOR LOAD FLOW STUDY At any bus ‘p’   n q qpqppppp VYVIVjQP 1 ** Let Vp = ep + j fp And Ypq = Gpq - jBpq   n q qqpqpqpppp jfejBGjfejQP 1 * ))(()(   n q qqpqpqpp jfejBGjfe 1 ))(()( Separating real and imaginary parts we have    And BeGffBfGeeP n q pqqpqqppqqpqqpp )1()( 1      )3(|| )2()( 222 1 ppp n q pqqpqqppqqpqqpp feV Also BeGfeBfGefQ    Equation 1, 2, & 3 are non linear equations. For n number of buses, there are 2(n-1) unknowns. NR method is an iterative method to solve load flow problem of a power system. Let unknown variables are (x1, x2, ……….., xn) & the specified quantities are y1, y2, ………..,yn. They are related by the set of non-linear equations. ).....,..........,,( .. .. .. )....,..........,,( )......,..........,,( 21 2122 2111 nnn n n xxxfy xxxfy xxxfy    (4) The equations are linearized about the initial guess. Assume x1 o , x2 o , ……., xn o are the corrections required for the next better solution. The equation y1 will be                000 1 2 1 2 1 1 1211 221111 .......................,,........., .........,,........., xn o n x o x oo n oo o n o n oooo x f x x f x x f xxxxf xxxxxxfy where 1 is function of higher order of  xs and higher derivatives which are neglected according to Newton Raphson method. It can be written in matrix form as:
  • 34. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 34       CJB x x x x f x f x f x f x f x f x f x f x f xxxfy xxxfy xxxfy o n o o n nnn n n o n oo nn o n oo o n oo . ' ' ' ......... '''''' '''''' '''''' ....... ......... ,......, ' ' ' ,......, ,......, 2 1 21 2 2 2 1 2 1 2 1 1 1 21 2122 2111                                                                                             where J is the first derivative known as Jacobian matrix. The solution of matrix gives (x1 o , x2 o ,……., xn o ) and the next better solution is obtained as follows: o n o nn oo oo xxx xxx xxx    1 22 1 2 11 1 1 ' ' The better solution is (x1 1 ,x2 1 ,………xn 1 ) When referred to a power system problem (assuming one bus as slack bus and the other buses as load bus), above set of linearized equations become                                                                                                                                                                                              n n n nnn n nnn nn nn n nnn n nnn nn nn n n f f f e e e f Q f Q f Q e Q e Q e Q f Q f Q f Q e Q e Q e Q f Q f Q f Q e Q e Q e Q f P f P f P e P e P e P f P f P f P e P e P e P f P f P f P e P e P e P Q Q Q P P P ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' .... ........ ....... ' ' ... ' ' ' ' ' ' ... ' ' ' ' ....... ......... ' ' 3 2 3 2 3232 3 3 3 2 33 3 3 2 3 2 3 2 2 22 3 2 2 2 3232 3 3 3 2 33 3 3 2 3 2 3 2 2 22 3 2 2 2 3 2 3 2
  • 35. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 35 In short form it can be written as                       f e JJ JJ Q P 43 21 If all types of buses are present, the above set of equation becomes                                 f e JJ JJ JJ V Q P p 65 43 21 2 The elements of Jacobian matrix can be derived from equation 1, 2, 3.            n pq q pqqpqqppp p p pqppqp q p BfGeGe e P areJofelementsdiagonaltheAnd pqBfGe e P areJofelementsdiagonaloffThe 1 1 1 2 ,            n pq q pqqpqqppp p p pqppqp q p BeGfGf f P areJofelementsdiagonaltheAnd pqBfGe f P areJofelementsdiagonaloffThe 1 2 2 2 ,            n pq q pqqpqqppp p p pqppqp q p BeGfBe e Q areJofelementsdiagonaltheAnd pqGfBe e Q areJofelementsdiagonaloffThe 1 3 3 2 ,            n pq q pqqpqqppp p p pqppqp q p BfGeBf f Q areJofelementsdiagonaltheAnd pqBfGe f Q areJofelementsdiagonaloffThe 1 4 4 2 ,
  • 36. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 36 p p p q p e e V areJofelementsdiagonaltheAnd pq e V areJofelementsdiagonaloffThe 2 || ,0 || 2 5 2 5        p p p q p f f V areJofelementsdiagonaltheAnd pq f V areJofelementsdiagonaloffThe 2 || ,0 || 2 6 2 6        Next we calculate the vectors consisting of P, Q, and |V|2 . Let Psp, Qsp, and |Vsp| be the specified quantities at bus ‘p’ Assuming a suitable value of the solution (i.e. flat voltage profile) the value of P, Q, and |V| at various buses are calculated. Then 222 |||||| o pspp o pspp o pspp VVV QQQ PPP    where the superscripts zero means the value calculated corresponding to initial guess i.e. zeroth iteration. Having calculated the jacobian matrix and the residual column vector corresponding to the initial guess (initial solution) the desired increment voltage vector         f e can be calculated by using any standard technique. The next better solution will be o p o pp o p o pp fff eee   1 1 These values of voltages will be used in the next iteration. The process will be repeated and in general the new better estimates for bus voltages will be k p k p k p k p k p k p fff eee     1 1 The process is repeated till the magnitude of the largest element in the residual column vector is less than the prescribed value.
  • 37. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 37 NUMERICAL PROBLEM 10 The load flow data for the sample power system are given below. Determine the set of load flow equations at the end of first iteration by using NR method. Impedance for the sample system: Bus Code Impedance Line charging admittance 1-2 0.08+j0.24 0.0 1-3 0.02+j0.06 0.0 2-3 0.06+j0.18 0.0 Schedule of generation and loads: Bus Code Assumed Voltage Generation Load MW MVAR MW MVAR 1 1.06 + j 0 0.0 0.0 0.0 0.0 2 1 + j 0 0.2 0.0 0.0 0.0 3 1 + j 0 0.0 0.0 0.6 0.25 Solution ;0.567.1 18.006.0 1 ;155 06.002.0 1 ;75.325.1 24.008.0 1 231312 j j yj j yj j y                      20666.65666.1155 5666.175.8916.275.325.1 15575.325.175.1825.6 jjj jjj jjj YBUS Assuming a flat voltage profile for bus 2 and 3 and for bus ‘1’ V1 = 1.06 + j 0.0 pu. From the YBUS matrix and the assumed voltage solution. G11 = 6.25 B11 = 18.75 e1 = 1.06 f1 = 0.0 G12 = -1.25 B12 = -3.75 e2 = 1.0 f2 = 0.0 G13 = -5.0 B13 = -15.0 e3 = 1.0 f3 = 0.0 G22 = 2.916 B22 = 8.75 G23 = -1.666 B23 = -5.0 G33 = 6.666 B33 = 20.0     n q pqppqqppqqpqqpp BeGffBfGeeP 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P2 = [(1.06 x –1.25) + 0] + 0.0 + [2.916 + 0.0] + 0.0 + [-1.666 + 0.0] + 0.0 = -0.075 pu. )()( )()()()( 33333333333333 32232233223223311311331131133 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P3 = [(1.06 x –5) + 0] + 0.0 + [-1.666 + 0.0] + 0.0 + [6.666 + 0.0] + 0.0 = -0.3 pu.
  • 38. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 38 Using     n q pqqpqqppqqpqqpp BeGfeBfGefQ 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q2 = 0 – (-1.06 x –3.75) + 0.0 – (-8.75) + 0.0 – (5) = - 0.225 pu. )()( )()()()( 33333333333333 32232233223223311311331131133 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q3 = 0.0 – (-1.06 x –15) + 0.0 – (5) –(-20) = -0.9 pu. P2specified = 0.2 – 0.0 = 0.2 pu ; Q2specified = 0.0 – 0.0 = 0.0 pu P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.25 = -0.25 pu P2 = P2specified - P2calculated = 0.2 – (-0.075) = 0.275 pu P3 = P3specified - P3calculated = -0.6 – (-0.3) = - 0.3 pu Q2 = Q2specified - Q2calculated = 0.0 – (-0.225) = 0.225 pu Q3 = Q3specified - Q3calculated = -0.25 – (-0.9) = 0.65 pu Diagonal Elements are       n pq q pqqpqqppp p p BfGeGe e P 1 )(2 233233211211222 2 2 2 BfGeBfGeGe e P    = 2 x 2.916 + 1.06(-1.25) + 0 + (-1.666) = 2.84 322322311311333 3 3 2 BfGeBfGeGe e P    = 2 x 6.666 + 1.06 x –5 + 0 + (-1.666) + 0 = 6.366       n pq q pqqpqqppp p p BeGfGf f P 1 )(2 233233211211222 2 2 2 BeGfBeGfGf f P    = 0 + 0 – 1.06 (-3.75) + 0 – (-5) = 8.975 322322311311333 3 3 2 BeGfBeGfGf f P   
  • 39. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 39 = 0 + 0 – 1.06 (-15) + 0 - (-5) = 20.90 The off diagonal elements are pqppqp q p BfGe e P    232232 3 2 BfGe e P    666.1 3 2    e P 666.1323323 2 3    BfGe e P pqppqp q p GfBe f P    0.5232232 3 2    GfBe f P 0.5323323 2 3    GfBe f P Similarly finding the partial derivatives of the reactive power. Diagonal elements        n pq q pqqpqqppp p p BeGfBe e Q 1 2 )()(2 233233211211222 2 2 BeGfBeGfBe e Q    525.8)5()75.306.1(75.82  xx )()(2 322322311311333 3 3 BeGfBeGfBe e Q    1.19)50.1()1506.1(202  xxx        n pq q pqqpqqppp p p BfGeBf f Q 1 2 991.2)666.1(25.106.1)()(2 233233211211222 2 2    xBfGeBfGeBf f Q 966.6)666.1(506.1)()(2 322322311311333 3 3    xBfGeBfGeBf f Q pqGfBe e Q pqppqp q p    ,
  • 40. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 40 ;5232232 3 2    GfBe e Q ;5323323 2 3    GfBe e Q pqBfGe f Q pqppqp q p    , 666.1)666.1(232232 3 2    BfGe f Q 666.1)666.1(323323 2 3    BfGe f Q                                                                                        3 2 3 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 2 3 2 f f e e f Q f Q e Q e Q f Q f Q e Q e Q f P f P e P e P f P f P e P e P Q Q P P                                               3 2 3 2 966.6666.11.195 666.1991.25525.8 9.205366.6666.1 0.5975.8666.184.2 65.0 225.0 3.0 275.0 f f e e                                                65.0 225.0 3.0 275.0 966.6666.11.195 666.1991.25525.8 9.205366.6666.1 0.5975.8666.184.2 1 3 2 3 2 f f e e                                                           0201.0 0088.0 0410.0 0575.0 65.0 225.0 3.0 275.0 0166.00092.00497.00277.0 0092.00385.00277.01157.0 0557.00326.00186.00109.0 0326.01247.00109.00416.0 3 2 3 2 f f e e V2 1 = (e2 + e2) + j (f2 + f2) = 1.0575 + j 0.0088 pu = 1.05753  0.4767 o pu V3 1 = (e3 + e3) + j (f3 + f3) = 1.0410 - j 0.0201 pu = 1.04119  -1.106 o pu
  • 41. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 41 NUMERICAL PROBLEM 11 In case the reactive power constraint at bus ‘2’ in the previous problem is -0.3Q20.3. Determine the equations at the end of first iteration. Solution: Since the value of Q2calculated lies within the limits specified above, bus ‘2’ will now behave as generator bus or PV bus. And its voltage is to be maintained at 1.04 pu. |V2|2 = |V2specified|2 - |V2calculated|2 = 1.042 – 1.02 = 0.0816 pu. The jacobian elements of the above matrix changes as the voltage at bus ‘2’ is now changed from 1.0 pu to 1.04 pu. But putting this value of V2 = e2 + j f2 = 1.04 + j 0.0 will not affect much the jacobian elements. Hence they are kept same as in the previous case. i.e. the jacobian elements corresponding to rows of P2 , P3 and Q3 remain same and those of Q2 will be now replaced by |V2|2 and its corresponding elements. i.e. pu f V puf f V pu e V puxe e V 0.0 || ;0.02 || 0.0 || ;08.204.122 || 3 2 2 2 2 2 2 3 2 2 2 2 2 2             The set of equations will be                                              3 2 3 2 966.6666.11.195 00008.2 9.205366.6666.1 5975.8666.184.2 65.0 0816.0 3..0 275.0 f f e e                                               65.0 0816.0 3..0 275.0 966.6666.11.195 00008.2 9.205366.6666.1 5975.8666.184.2 1 3 2 3 2 f f e e                                                           0188.0 0145.0 0362.0 0392.0 65.0 0816.0 3..0 275.0 0141.00356.00505.00308.0 0009.01486.00310.01286.0 0471.01258.00157.00 04808.000 3 2 3 2 f f e e V2 1 = (e2 + e2) + j (f2 + f2) = 1.0392 + j 0.0145 pu = 1.0393  0.8 o pu V3 1 = (e3 + e3) + j (f3 + f3) = 1.0362 - j 0.0188 pu = 1.0363  -1.039 o pu
  • 42. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 42 NUMERICAL PROBLEM 12 Consider a three bus system of fig shown below. Each of the three lines has a series impedance of 0.02 + j 0.08 pu and a total shunt admittance of j0.02 pu. The specified quantities at the buses are tabulated below: Bus PD QD PG QG Voltage 1 2.0 1.0 unspecified unspecified 1.04 + j 0.0 Slack 2 0.0 0.0 0.5 1.0 Unspecified PQ 3 1.5 0.6 0.0 QG3 = ? |V3| = 1.04 (PV) Controllable reactive power source is available at bus 3 with the constraints 0  QG3  1.5 pu. Find the load flow solution using NR method. Use nominal  method. Solution Admittance of each line puj j yyy 764.11941.2 08.002.0 1 312312    jQG3 SG1 SG2 = 0.5 + j1 0 + j0 210o 1.040o 2 + j1 1 3 1.040o 1.5 + j0.6 1 3 22.941 – j11.764 2.941 – j11.764 2.941 – j11.764 j0.01j0.01 j0.01 j0.01 j0.01 j0.01
  • 43. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 43               508.23882.5746.11941.2746.11941.2 746.11941.2508.23882.5746.11941.2 746.11941.2746.11941.2508.23882.5 jjj jjj jjj YBUS V1 = e1 + j f1 = 1.04 + j0.0 ……………….given V2 = e2 + j f2 = 1.0 + j 1.0 ………………..Assumed V3 = e3 + j f3 = 1.04 + j 0.0 ……………given (PV bus) G11 = G22 = G33 = 5.882 B11 = B22 = B33 = 23.508 G12 = G13 = G23 = -2.941 B12 = B13 = B23 = -11.746     n q pqppqqppqqpqqpp BeGffBfGeeP 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P2 = 1.04 x –2.941 + 5.882 + 1.04 x –2.941 = -0.235 pu. )()( )()()()( 33333333333333 32232233223223311311331131133 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P3 = 1.04[(1.04 x –2.941) + 0] + 0.0 + 1.04[-2.941 + 0.0] + 0.0 + 1.04[1.04x 5.882 + 0.0] = 0.122 pu. Using     n q pqqpqqppqqpqqpp BeGfeBfGefQ 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q2 = 0 – (-1.04 x –11.746) + 0.0 – (-23.508) + 0.0 – (-1.04 x –11.746) = -0.923 pu. )()( )()()()( 33333333333333 32232233223223311311331131133 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q3 = 0 – 1.04(-1.04 x –11.746) + 0 – 1.04 (-1 x –11.746) + 0 – 1.04 (-1.04 x 23.508) = 0.506 pu. QG3 = QD3 + Q3 = 0.6 + 0.506 = 1.106 pu. QG3 lies within limit i.e. 0  QG3  1.5 pu therefore bus ‘3’ now act as a PV bus. P2specified = 0.5 – 0.0 = 0.5 pu ; Q2specified = 1.0 – 0.0 = 1.0 pu P3specified = 0.0 – 1.5 = -1.5 pu ; Q3specified = QG3 – QD3 = 1.106 – 0.6 = 0.506 pu.
  • 44. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 44 P2 = P2specified - P2calculated = 0.5 – (-0.235) = 0.735 pu P3 = P3specified - P3calculated = -1.5 – (0.122) = - 1.622 pu Q2 = Q2specified - Q2calculated = 1.0 – (-0.923) = 1.923 pu |V3|2 = |V3specified|2 - |V3calculated|2 = (1.04)2 – (1.0)2 = 0.0816 pu Diagonal Elements are       n pq q pqqpqqppp p p BfGeGe e P 1 )(2 233233211211222 2 2 2 BfGeBfGeGe e P    = 2 x 5.882 + 1.04(-2.941) + 0 + 1.04(-2.941) + 0 = 5.64 322322311311333 3 3 2 BfGeBfGeGe e P    = 2 x 1.04 x 5.882 + 1.04 x –2.941 + 0 + (-2.941) + 0 = 6.235       n pq q pqqpqqppp p p BeGfGf f P 1 )(2 233233211211222 2 2 2 BeGfBeGfGf f P    = 0 + 0 – 1.04 (-11.746) + 0 – 1.04(-11.746) = 24.43 322322311311333 3 3 2 BeGfBeGfGf f P    = 0 + 0 – 1.04 (-11.746) + 0 - (-11.746) = 23.96 The off diagonal elements are pqppqp q p BfGe e P    232232 3 2 BfGe e P    746.11 3 2    e P 216.12746.1104.1323323 2 3    xBfGe e P pqppqp q p GfBe f P   
  • 45. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 45 746.11232232 3 2    GfBe f P 216.12746.1104.1323323 2 3    xGfBe f P Similarly finding the partial derivatives of the reactive power. Diagonal elements        n pq q pqqpqqppp p p BeGfBe e Q 1 2 )()(2 233233211211222 2 2 BeGfBeGfBe e Q    58.22)746.1104.1()746.1104.1(508.232  xxx        n pq q pqqpqqppp p p BfGeBf f Q 1 2 )()(2 233233211211222 2 2 BfGeBfGeBf f Q    = 0 + (1.04 x –2.941) + (1.04 x –2.941) = - 6.11 pqGfBe e Q pqppqp q p    , ;746.11232232 3 2    GfBe e Q pqBfGe f Q pqppqp q p    , 941.2)941.2(232232 3 2    BfGe f Q pu f V puf f V pu e V puxe e V 0.0 || ;0.02 || 0.0 || ;08.204.122 || 2 2 3 3 3 2 3 2 2 3 3 3 2 3            
  • 46. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 46                                                                                          3 2 3 2 3 2 3 2 2 3 3 2 3 2 2 3 3 2 2 2 3 2 2 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 2 3 2 3 2 |||||||| || f f e e f V f V e V e V f Q f Q e Q e Q f P f P e P e P f P f P e P e P V Q P P                                                                                            0816.0 923.1 622.1 735.0 0.00.008.20.0 941.211.6746.1158.22 96.23216.12235.6216.12 746.1143.24746.1164.5 0.00.008.20.0 941.211.6746.1158.22 96.23216.12235.6216.12 746.1143.24746.1164.5 0816.0 923.1 622.1 735.0 1 3 2 3 2 3 2 3 2 f f e e f f e e The result of the above equation gives the value e2 , e3, f2, f3 which when added to their initial assumed values give new updated values. The process is repeated till the solution converges.                                                         0120.0 0173.0 0392.0 1118.0 0816.0 923.1 622.1 735.0 1432.00217.00553.00331.0 2321.00008.00266.00544.0 4808.0000 2942.00417.000104.0 3 2 3 2 f f e e V2 1 = (e2 + e2) + j (f2 + f2) = 1.1118 + j 0.0173 pu = 1.11193  0.89 o pu V3 1 = (e3 + e3) + j (f3 + f3) = 1.0392 - j 0.0120 pu = 1.03927  -0.66 o pu NUMERICAL PROBLEM 13 A sample power system is shown below. Reactances of the lines in per unit are marked in the figure. Neglect the resistances of the element and shunt admittances. Scheduled generation & load and assumed bus voltages in per unit are as given below. Bus Code Assumed Voltage Generation Load MW MVAR MW MVAR 1 1.05 + j 0 00 00 00 00 2 1 + j 0 20 10 50 00 3 1 + j 0 00 00 60 25
  • 47. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 47 Bus ‘1’ is a slack bus. Perform load flow analysis by NR method. Find the Jacobian elements after first iteration when (a) buses 2 and 3 are PQ buses. And (b) bus 2 is a PV bus with E2specified = 1.02 pu. Solution: The per unit ofadmittance of each element 10 1.0 1 ;40 025.0 1 ;20 05.0 1 231312 j j yj j yj j y                501040 103020 402060 jjj jjj jjj YBUS B11 = 60 B22 = 30 B33 = 50 B12 = -20 B13 = -40 B23 = -10 V1 = 1.05 pu ……..given V2 = V3 = 1 + j 0 pu     n q pqppqqppqqpqqpp BeGffBfGeeP 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P2 = 0 pu )()( )()()()( 33333333333333 32232233223223311311331131133 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P3 = 0 pu Using     n q pqqpqqppqqpqqpp BeGfeBfGefQ 1 )(   1 2 3 j0.05 j0.025 j0.1
  • 48. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 48 )()( )()()()( 23323322332332 22222222222222211211221121122 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q2 = 0 – 1(-1.05 x –20) + 0 – 1( -1 x 30) + 0 – 1 (-1 x –10) = -1 pu )()( )()()()( 33333333333333 32232233223223311311331131133 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q3 = 0 – 1(-1.05 x –40) + 0 – 1(-1 x –10) + 0 – 1(-1 x 50) = -2 pu Assuming Base MVA = 100. WHEN BUS 2 AND 3 ARE PQ BUSES P2specified = 0.2 – 0.5 = -0.3 pu ; Q2specified = 0.1 – 0.2 = -0.1 pu P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.25 = -0.25 pu P2 = P2specified - P2calculated = -0.3 – 0 = -0.3 pu P3 = P3specified - P3calculated = -0.6 – 0 = - 0.6 pu Q2 = Q2specified - Q2calculated = -0.1 – (-1) = 0.9 pu Q3 = Q3specified - Q3calculated = -0.25 – (-2) = 1.75 pu Diagonal Elements are       n pq q pqqpqqppp p p BfGeGe e P 1 )(2 233233211211222 2 2 2 BfGeBfGeGe e P    = 0 + 0 +0 +0 + 0 = 0 322322311311333 3 3 2 BfGeBfGeGe e P    = 0       n pq q pqqpqqppp p p BeGfGf f P 1 )(2 233233211211222 2 2 2 BeGfBeGfGf f P    = 0 + 0 – 1.05 (-20) + 0 – (-10) = 31 322322311311333 3 3 2 BeGfBeGfGf f P    = 0 + 0 – 1.05 (-40) + 0 - (-10) = 52 The off diagonal elements are
  • 49. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 49 pqppqp q p BfGe e P    232232 3 2 BfGe e P    0 3 2    e P 0323323 2 3    BfGe e P pqppqp q p GfBe f P    10232232 3 2    GfBe f P 10323323 2 3    GfBe f P Similarly finding the partial derivatives of the reactive power. Diagonal elements        n pq q pqqpqqppp p p BeGfBe e Q 1 2 )()(2 233233211211222 2 2 BeGfBeGfBe e Q    29)10()2005.1(302  xx )()(2 322322311311333 3 3 BeGfBeGfBe e Q    48)100.1()4005.1(502  xxx        n pq q pqqpqqppp p p BfGeBf f Q 1 2 0000)()(2 322322311311333 3 3    BfGeBfGeBf f Q 0000)()(2 233233211211222 2 2    BfGeBfGeBf f Q pqGfBe e Q pqppqp q p    , ;10232232 3 2    GfBe e Q
  • 50. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 50 ;10323323 2 3    GfBe e Q pqBfGe f Q pqppqp q p    , 0232232 3 2    BfGe f Q 0323323 2 3    BfGe f Q                                                                                        3 2 3 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 2 3 2 f f e e f Q f Q e Q e Q f Q f Q e Q e Q f P f P e P e P f P f P e P e P Q Q P P                                                3 2 3 2 004810 001029 521000 103100 75.1 9.0 6.0 3.0 f f e e After solving e2 = 0.04624 pu e3 = 0.04698 pu and f2 = -0.014285 pu f3 = -0.014285 pu Thus the bus voltages at the end of the first iteration are Assumed voltages + changes V2 = (e2 + e2) + j (f2 + f2) = 1.04624 – j0.014285 pu = 1.0463  -0.7822 o pu V3 = (e3 + e3) + j (f3 + f3) = 1.04698 – j0.014285 pu = 1.0470  -0.7817 o pu WHEN BUS 2 IS PV BUSES Reactive power limit is not at all specified, Hence assuming calculated value of Q2 lying within the limits. Let us assume Qmin = -1 pu & Qmax = +1 pu |V2|2 = |V2specified|2 - |V2calculated|2 = 1.022 – 1.02 = 0.0404 pu. pu f V puf f V pu e V puxe e V 0.0 || ;0.02 || 0.0 || ;04.202.122 || 3 2 2 2 2 2 2 3 2 2 2 2 2 2            
  • 51. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 51                                                                                          3 2 3 2 3 3 2 3 3 3 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 2 2 3 2 |||||||||| f f e e f Q f Q e Q e Q f V f V e V e V f P f P e P e P f P f P e P e P Q V P P                                               3 2 3 2 004810 00004.2 521000 103100 75.1 0404.0 6.0 3.0 f f e e After solving e2 = 0.0198 pu e3 = 0.04058 pu and f2 = -0.014285 pu f3 = -0.014285 pu Thus the bus voltages at the end of the first iteration are Assumed voltages + changes V2 = (e2 + e2) + j (f2 + f2) = 1.0198 – j0.014285 pu = 1.02  -0.8 o pu V3 = (e3 + e3) + j (f3 + f3) = 1.04058 – j0.014285 pu = 1.0406  -0.7865 o pu NUMERICAL PROBLEM 14 Load flow data for a three bus system is as shown in table 1 and 2. Taking bus ‘1’ as slack bus and other as PQ buses, determine the bus voltages after first iterations by NR method. (Modified decoupled method may be used) * Refer next section for this method Table 1 Bus Bus code Impedance Line charging y1 pq 1 1-2 0.06 + j 0.18 j0.05 2 2-3 0.04 + j 0.12 j0.05 3 1-3 0.02 + j 0.06 j0.06 G G
  • 52. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 52 Table 2 Bus Code Assumed Voltage Generation Load MW MVAR MW MVAR 1 1.05 + j 0 00 00 00 00 2 1 + j 0 30 10 00 00 3 1 + j 0 00 00 60 30 SOLUTION: 155 06.002.0 1 ;5.75.2 12.004.0 1 ;5667.1 18.006.0 1 312312 jyj j yj j y        Ybus can be formed by inspection               445.225.75.75.2155 5.75.245.12166.45666.1 1555666.1945.19666.6 jjj jjj jjj Ybus G11 = 6.666 G22 = 4.166 G33 = 7.5 G12 = -1.666 G13 = -5 G23 = -2.5 B11 = 19.945 B22 = 12.45 B33 = 22.445 B12 = -5 B13 = -15 B23 = -7.5 V1 = 1.05 + j 0 ; V2 = V3 = 1 + j 0 ;     n q pqppqqppqqpqqpp BeGffBfGeeP 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P2 = (1.05 x –1.666) + 0 + ( 4.166) + 0 + (-2.5) = -0.0833 pu )()( )()()()( 33333333333333 32232233223223311311331131133 BeGffBfGee BeGffBfGeeBeGffBfGeeP   P3 = (1.05 x –5) + 0 + (-2.5) + 0 + (7.5) = -0.25 pu Using 1 3 21.666 – j5 5 – j15 2.5 – j7.5 j0.025j0.03 j0.03 j0.025 j0.025 j0.025
  • 53. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 53     n q pqqpqqppqqpqqpp BeGfeBfGefQ 1 )( )()( )()()()( 23323322332332 22222222222222211211221121122 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q2 = 0 – (-1.05 x –5) + 0 –(-1 x 12.45) + 0 – ( -1 x –7.5) = -0.3 pu )()( )()()()( 33333333333333 32232233223223311311331131133 BeGfeBfGef BeGfeBfGefBeGfeBfGefQ   Q3 = 0 – (-1.05 x –15) + 0 – ( -1 x –7.5) + 0 – (-1 x 22.445) = -0.805 pu Assuming Base MVA = 100. WHEN BUS 2 AND 3 ARE PQ BUSES P2specified = 0.3 – 0.0 = 0.3 pu ; Q2specified = 0.1 – 0.0 = 0.1 pu P3specified = 0.0 – 0.6 = -0.6 pu ; Q3specified = 0.0 – 0.3 = -0.3 pu P2 = P2specified - P2calculated = 0.3 – (-0.0833) = 0.3833 pu P3 = P3specified - P3calculated = -0.6 – (-0.25) = - 0.35 pu Q2 = Q2specified - Q2calculated = 0.1 – (-0.3) = 0.4 pu Q3 = Q3specified - Q3calculated = -0.3 – (-0.805) = 0.505 pu                                                                                        3 2 3 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2 2 3 2 3 2 f f e e f Q f Q e Q e Q f Q f Q e Q e Q f P f P e P e P f P f P e P e P Q Q P P for decouled method the above equation reduces to                                                                        3 2 3 2 3 3 2 3 3 2 2 2 3 3 2 3 3 2 2 2 3 2 3 2 00 00 00 00 f f e e f Q f Q f Q f Q e P e P e P e P Q Q P P Diagonal Elements are
  • 54. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 54       n pq q pqqpqqppp p p BfGeGe e P 1 )(2 233233211211222 2 2 2 BfGeBfGeGe e P    = 2 x 1 x 4.166 + (1.05 x –1.666) + 0 + (-2.5) = 4.0827 322322311311333 3 3 2 BfGeBfGeGe e P    = 2 x 1 x 7.5 + 1.05 x –5 + 0 + (-2.5) = 7.25       n pq q pqqpqqppp p p BeGfGf f P 1 )(2 methoddecoupled f P ...........................0 2 2    methoddecoupled f P ..........................0 3 3    The off diagonal elements are pqppqp q p BfGe e P    232232 3 2 BfGe e P    5.25.21 3 2    x e P 5.25.21323323 2 3    xBfGe e P pqppqp q p GfBe f P    decouplingGfBe f P ............0232232 3 2    decouplingGfBe f P .........0323323 2 3    Similarly finding the partial derivatives of the reactive power. Diagonal elements
  • 55. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 55        n pq q pqqpqqppp p p BeGfBe e Q 1 2 decoupling e Q .........................0 2 2    decoupling e Q .........................0 3 3           n pq q pqqpqqppp p p BfGeBf f Q 1 2 75.7)5.21()505.1(0)()(2 322322311311333 3 3    xxBfGeBfGeBf f Q 2493.4)5.21()666.105.1(0)()(2 233233211211222 2 2    xxBfGeBfGeBf f Q pqGfBe e Q pqppqp q p    , decouplingGfBe e Q ..........;0232232 3 2    decouplingGfBe e Q ..........;0323323 2 3    pqBfGe f Q pqppqp q p    , 5.2232232 3 2    BfGe f Q 5.2323323 2 3    BfGe f Q                                               3 2 3 2 75.75.200 5.22493.400 0025.75.2 005.20827.4 505.0 4.0 35.0 3833.0 f f e e After solving e2 = 0.08154 pu e3 = -0.0201586 pu and f2 = -0.1635 pu f3 = -0.1179 pu Thus the bus voltages at the end of the first iteration are Assumed voltages + changes V2 = (e2 + e2) + j (f2 + f2) = 1.08154 – j0.1635 pu = 1.09382  -8.59 o pu V3 = (e3 + e3) + j (f3 + f3) = 0.97984 – j0.1179 pu = 0.9869  -6.86 o pu
  • 56. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 56 DECOUPLED LOAD FLOW METHOD In Newton raphson method for load flow, half of the Jacobian elements represent the weak coupling and can therefore be ignored which further simplifies the computation. Considering the following set of equations in polar coordinates. We have       n q qpqppp n q qpqppppp VYVjQP VYIandIVjQP 1 * 1 * The voltage and admittance in polar coordinates are expressed as )(exp||)(exp|| pqpqpqppp jYYandjVV   Substituting these values in equation, we obtain                        n pq q qppqpqqppppqqpp n pq q qppqpqqppppqqpp n q qppqpqqpp n q qppqpqqpp n q qppqpqqp n q qqpqpqpppp YVVYVVQ YVVYVVP aswrittenbecanitOr np YVVQ AndYVVP jYVV jVjYjVjQP 1 1 1 1 1 1 )(sin||sin|| )(cos||cos|| .................,2,1 )(sin|| )(cos|| )(exp|||||| )exp(||)exp(||)exp(||       These equations after linearisation can be rewritten in matrix form as                       ||/|| EELM NH Q P  where H, N, M, and L are the elements of Jacobian matrix. The first assumption under decoupled load flow method is that real power changes (P) are less sensitive to changes in voltage magnitude and are mainly sensitive to angle. Similarly, the reactive power changes are less sensitive to change in angle but mainly sensitive to change in voltage magnitude. With these assumptions, equation reduces to                       ||/||0 0 EEL H Q P  the above equation is decoupled equation which can be further expanded as
  • 57. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 57          ||/|| EELQ HP    using equation Pp and Qp the elements of jacobian matrix H and L are obtained as follows: off diagonal element are ][|| ][|| qppqpqqp q p pq qppqpqqp q p pq SinYVV P L SinYVV P H             Thus Hpq = Lpq The diagonal elements are pppp p pp pppppp p p pp BVQ V VQ LBVQ P H 22 || ;         FAST DECOUPLED LOAD FLOW In fast decoupled load flow method further approximation is done i.e. Cos (p - q)  1 Gpq sin (p - q)  Bpq Qp << BppVp 2 Therefore Jacobian elements now become Lpq = Hpq = -|VpVq|Bpq for q  p Lpp = Hpp = -Bpp|Vp|2 With these jacobian elements, the equation simplifies to                        q q pqqpp qpqqpp E E BVVQ andBVVP ||11 1  where B1 pq and B11 pq are the elements of [-Bpq] matrix. Further decoupling is obtained by Omiting from B1 the representation of those network elements that predominantly affect reactive power flow, i.e. shunt reactances and transformer off-nominal in phase taps. Neglecting from B11 the angle shifting effects of phase shifters. Dividing each equation [P] and [Q] by |Vi| and setting |Vj| = 1 pu. Ignoring series resistance in calculating the elements of B1 which then becomes the dc approximation power flow matrix. EFFECT OF VOLTAGE REGULATING TRANSFORMER Let the tap changing transformer of tap ratio a:1 is connected between the buses P & Q shown in the fig.1      p a:1 q Fig 1
  • 58. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 58 Where ‘a’ is known as off-nominal tap ratio. In an equivalent circuit the above tap changing transformer can be represented by an ideal equivalent auto transformer in series with admittance Ypq where Ypq is series admittance of tap changing transformer. Let the equivalent  representation of this tap changing transformer is as shown in following fig.3 From fig.1 tqt tqt p p t t p iI a i a I I I Ia E E  )1( 1 )2(]/[)( ]/[)/( ,1 )( 2 ayaEEI ayEaEI Eofvaluethisputting a E Eequationfrom y a EE I pqqpp pqqpp t p t pq qt p      from fig 1 Iq = (Eq – Et) ypq putting this value of Et )5()( )4()( 2 )3(/)( ])/[( CEAEEI BEAEEI figfrom ayEaEI yaEEI qpqq pqpp pqpqq pqpqq         p t q Ip Ep It Et Itq ypq Fig 2 p q Ip Ep Eq Iq Fig 3
  • 59. Akhilesh A Nimje, Associate Professor, Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad 59 If fig 2 is equivalent representation of fig 3 then Ip and Iq from fig 1 and 2 must have the same values for all values of Ep and Eq. Let in equation 2 and 4, Ep = 0 & Eq = 1 From equation 2 a y I pq p   From equation 4 a y AAI pq p  Let in equation 2 and 5 Ep = 0 and Eq = 1 From 3 Iq = ypq From 5 Iq = A + C  A + C = ypq  C = ypq – A = ypq – ypq/a  C = (a – 1) ypq / a Let in equation 2 and 4 Ep = 0 and Eq = 1 Then from eq. 2, Ip = ypq /a2 And from 4 Ip = A + B Therefore A + B = ypq / a2 B = (ypq /a2 ) – (ypq / a) = [ypq/a]((1/a) – 1) B = (1 – a)ypq / a2 OR B = ([1/a] – 1)ypq / a Thus to take into account the effect of tapp changing transformer between buses ‘p’ & ‘q’, the element ypp, yqq and ypq = yqp from original [Ybus] should be modified as follows: )()()( )()( )()( 2)()()( )1( 1 1 mqp pq opqmqq pqoqqmqq pqpq oqqmqq pq opp pqpq oppmpp y a y yy yyy a y a a y yy a y y a y aa y yy          