Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

03 capnography

  • Als Erste(r) kommentieren

03 capnography

  1. 1. NON-INVASIVE C A PNOGRAPHY ALS Blue In-Service Part III
  2. 2. Oxygenation and Ventilation <ul><li>What is the difference? </li></ul>
  3. 3. Oxygenation and Ventilation Oxygenation (oximetry ) Cellular Metabolism Ventilation (capnography) CO 2 O 2
  4. 4. Oximetry and Capnography <ul><li>Pulse oximetry measures oxygenation </li></ul><ul><li>Capnography measures ventilation and provides a graphical waveform available for interpretation </li></ul>
  5. 5. Oxygenation <ul><li>Measured by pulse oximetry (SpO 2 ) </li></ul><ul><ul><li>Noninvasive measurement </li></ul></ul><ul><ul><li>Percentage of oxygen in red blood cells </li></ul></ul><ul><ul><li>Changes in ventilation take minutes to be detected </li></ul></ul><ul><ul><li>Affected by motion artifact, poor perfusion and some dysrhythmias </li></ul></ul>
  6. 6. Oxygenation Pulse Oximetry Sensors Pulse Oximetry Waveform
  7. 7. Ventilation <ul><li>Measured by the end-tidal CO 2 </li></ul><ul><ul><li>Partial pressure (mmHg) or volume (% vol) of CO 2 in the airway at the end of exhalation </li></ul></ul><ul><ul><li>Breath-to-breath measurement provides information within seconds </li></ul></ul><ul><ul><li>Not affected by motion artifact, poor perfusion or dysrhythmias </li></ul></ul>
  8. 8. Ventilation Capnography waveform Capnography Lines
  9. 9. Oxygenation and Ventilation <ul><li>Oxygenation </li></ul><ul><ul><li>Oxygen for metabolism </li></ul></ul><ul><ul><li>SpO 2 measures % of O 2 in RBC </li></ul></ul><ul><ul><li>Reflects change in oxygenation within 5 minutes </li></ul></ul><ul><li>Ventilation </li></ul><ul><ul><li>Carbon dioxide from metabolism </li></ul></ul><ul><ul><li>EtCO 2 measures exhaled CO 2 at point of exit </li></ul></ul><ul><ul><li>Reflects change in ventilation within 10 seconds </li></ul></ul>
  10. 10. Oxygenation versus Ventilation <ul><li>Monitor your own SpO 2 and EtCO 2 </li></ul><ul><li>SpO 2 waveform is in the second channel </li></ul><ul><li>EtCO 2 waveform is in the third channel </li></ul>
  11. 11. Oxygenation versus Ventilation <ul><li>Now hold your breath </li></ul><ul><li>Note what happens to the two waveforms </li></ul>How long did it take the EtCO 2 waveform to go flat line? How long did it take the SpO 2 to drop below 90%? SpO 2 EtCO 2
  12. 12. <ul><li>Numeric reading: HR 100 </li></ul><ul><li>Waveform: </li></ul>
  13. 13. <ul><li>Numeric reading: HR 100 </li></ul><ul><li>Waveform: </li></ul>
  14. 14. Capnography in EMS
  15. 15. Capnography in EMS <ul><li>Low-flow sidestream technology </li></ul>
  16. 16. Using Capnography <ul><li>Immediate information via breath-to-breath monitoring </li></ul><ul><li>Information on the ABCs </li></ul><ul><ul><li>Airway </li></ul></ul><ul><ul><li>Breathing </li></ul></ul><ul><ul><li>Circulation </li></ul></ul><ul><li>Documentation </li></ul>
  17. 17. Using Capnography <ul><li>Airway </li></ul><ul><ul><li>Verification of ET tube placement </li></ul></ul><ul><ul><li>Continuous monitoring of ET tube position </li></ul></ul><ul><li>Circulation </li></ul><ul><ul><li>Check effectiveness of cardiac compressions </li></ul></ul><ul><ul><li>First indicator of ROSC </li></ul></ul><ul><ul><li>Monitor low perfusion states </li></ul></ul>Airway <ul><ul><li>Circulation </li></ul></ul>
  18. 18. Using Capnography <ul><li>Breathing </li></ul><ul><ul><li>– Hyperventilation </li></ul></ul><ul><ul><li>– Hypoventilation </li></ul></ul><ul><ul><li>– Asthma </li></ul></ul><ul><ul><li>– COPD </li></ul></ul>
  19. 19. Using Capnography <ul><li>Documentation </li></ul><ul><ul><li>Waveforms </li></ul></ul><ul><ul><ul><li>Initial assessment </li></ul></ul></ul><ul><ul><ul><li>Changes with treatment </li></ul></ul></ul><ul><ul><li>EtCO 2 values </li></ul></ul><ul><ul><ul><li>Trends over time </li></ul></ul></ul><ul><ul><li>Waveforms </li></ul></ul>Trends
  20. 20. Why Measure Ventilation — Intubated Patients <ul><li>Verify and document ET tube placement </li></ul><ul><li>Immediately detect changes in ET tube position </li></ul><ul><li>Assess effectiveness of chest compressions </li></ul><ul><li>Earliest indication of ROSC </li></ul><ul><li>Indicator of probability of successful resuscitation </li></ul><ul><li>Optimally adjust manual ventilations in patients sensitive to changes in CO 2 </li></ul>
  21. 21. <ul><li>A 2005 study comparing field intubations that used capnography to confirm ETT placement vs. non-capnography use showed a 0% unrecognized misplaced ETT and 23% in the non-EtCO2 monitored group </li></ul><ul><li>Confirm ETI with waveform capnography!! </li></ul>
  22. 22. Why Measure Ventilation — Non-Intubated Patients <ul><li>Objectively assess acute respiratory disorders </li></ul><ul><ul><li>Asthma </li></ul></ul><ul><ul><li>COPD </li></ul></ul><ul><li>Possibly gauge response to treatment </li></ul>
  23. 23. Why Measure Ventilation— Non-intubated Patients <ul><li>Gauge severity of hypoventilation states </li></ul><ul><ul><li>Drug and ETOH intoxication </li></ul></ul><ul><ul><li>Congestive heart failure </li></ul></ul><ul><ul><li>Sedation and analgesia </li></ul></ul><ul><ul><li>Stroke </li></ul></ul><ul><ul><li>Head injury </li></ul></ul><ul><li>Assess perfusion status </li></ul><ul><li>Noninvasive monitoring of patients in DKA </li></ul>
  24. 24. End-tidal CO 2 (EtCO 2 ) Ventilation Perfusion Pulmonary Blood Flow Right Ventricle Left Atrium r r O x y g e n O 2 C O 2 O 2 V e i n A t e y
  25. 25. a-A Gradient r r Alveolus PaCO 2 V e i n A t e y Ventilation Perfusion a rterial to A lveolar Difference for CO 2 Right Ventricle Left Atrium EtCO 2
  26. 26. End-tidal CO 2 (EtCO 2 ) <ul><li>Normal a-A gradient </li></ul><ul><ul><li>2-5mmHg difference between the EtCO 2 and PaCO 2 in a patient with healthy lungs </li></ul></ul><ul><ul><li>Wider differences found </li></ul></ul><ul><ul><ul><li>In abnormal perfusion and ventilation </li></ul></ul></ul><ul><ul><ul><li>Incomplete alveolar emptying </li></ul></ul></ul><ul><ul><ul><li>Poor sampling </li></ul></ul></ul>
  27. 27. End-tidal CO 2 (EtCO 2 ) <ul><li>Reflects changes in </li></ul><ul><ul><li>Ventilation - movement of air in and out of the lungs </li></ul></ul><ul><ul><li>Diffusion - exchange of gases between the air-filled alveoli and the pulmonary circulation </li></ul></ul><ul><ul><li>Perfusion - circulation of blood </li></ul></ul>
  28. 28. End-tidal CO 2 (EtCO 2 ) <ul><li>Monitors changes in </li></ul><ul><ul><li>Ventilation - asthma, COPD, airway edema, foreign body, stroke </li></ul></ul><ul><ul><li>Diffusion - pulmonary edema, alveolar damage, CO poisoning, smoke inhalation </li></ul></ul><ul><ul><li>Perfusion - shock, pulmonary embolus, cardiac arrest, severe dysrhythmias </li></ul></ul>
  29. 29. Physiological Factors Affecting ETCO 2 Levels
  30. 30. Interpreting EtCO 2 and the Capnography Waveform <ul><li>Interpreting EtCO 2 </li></ul><ul><ul><li>Measuring </li></ul></ul><ul><ul><li>Physiology </li></ul></ul><ul><li>Capnography waveform </li></ul>
  31. 31. Capnographic Waveform <ul><li>Normal waveform of one respiratory cycle </li></ul><ul><li>Similar to ECG </li></ul><ul><ul><li>Height shows amount of CO 2 </li></ul></ul><ul><ul><li>Length depicts time </li></ul></ul>
  32. 32. Phase 1 <ul><li>First Upstroke of the capnogram waveform </li></ul><ul><li>Represents of gas exhaled from upper airways (I.e. anatomical dead space) </li></ul>
  33. 33. Phase 2 <ul><li>Transitional Phase from upper to lower airway ventilation, and tends to depict changes in perfusion </li></ul>
  34. 34. Phase 3 <ul><li>Represents alveolar gas exchange, which indicates changes in gas distribution </li></ul><ul><li>All increases of the slope of Phase 3 indicates increased maldistribution of gas delivery </li></ul>
  35. 35. Capnographic Waveform <ul><li>Waveforms on screen and printout may differ in duration </li></ul><ul><ul><li>On-screen capnography waveform is condensed to provide adequate information the in 4-second view </li></ul></ul><ul><ul><li>Printouts are in real-time </li></ul></ul><ul><ul><li>Observe RR on device </li></ul></ul>
  36. 36. Capnographic Waveform <ul><li>Capnograph detects only CO 2 from ventilation </li></ul><ul><li>No CO 2 present during inspiration </li></ul><ul><ul><li>Baseline is normally zero </li></ul></ul>Baseline
  37. 37. Capnogram Phase I Dead Space Ventilation <ul><li>Beginning of exhalation </li></ul><ul><li>No CO 2 present </li></ul><ul><li>Air from trachea, posterior pharynx, mouth and nose </li></ul><ul><ul><li>No gas exchange occurs there </li></ul></ul><ul><ul><li>Called “dead space” </li></ul></ul>
  38. 38. Deadspace
  39. 39. Capnogram Phase I Baseline Beginning of exhalation A B I Baseline
  40. 40. Capnogram Phase II Ascending Phase <ul><li>CO 2 from the alveoli begins to reach the upper airway and mix with the dead space air </li></ul><ul><ul><li>Causes a rapid rise in the amount of CO 2 </li></ul></ul><ul><li>CO 2 now present and detected in exhaled air </li></ul>
  41. 41. Capnogram Phase II Ascending Phase CO 2 present and increasing in exhaled air II A B C Ascending Phase Early Exhalation
  42. 42. Capnogram Phase III Alveolar Plateau <ul><li>CO 2 rich alveolar gas now constitutes the majority of the exhaled air </li></ul><ul><li>Uniform concentration of CO 2 from alveoli to nose/mouth </li></ul>
  43. 43. Capnogram Phase III Alveolar Plateau <ul><li>CO 2 exhalation wave plateaus </li></ul>Alveolar Plateau A B C D I I I
  44. 44. Capnogram Phase III End-Tidal <ul><li>End of exhalation contains the highest concentration of CO 2 </li></ul><ul><ul><li>The “end-tidal CO 2 ” </li></ul></ul><ul><ul><li>The number seen on your monitor </li></ul></ul><ul><li>Normal EtCO 2 is 35-45mmHg </li></ul>
  45. 45. Capnogram Phase III End-Tidal <ul><li>End of the the wave of exhalation </li></ul>A B C D End-tidal
  46. 46. Capnogram Phase IV Descending Phase <ul><li>Inhalation begins </li></ul><ul><li>Oxygen fills airway </li></ul><ul><li>CO 2 level quickly drops to zero </li></ul>
  47. 47. Capnogram Phase IV Descending Phase <ul><li>Inspiratory downstroke returns to baseline </li></ul>A B C D E I V Descending Phase Inhalation
  48. 48. Capnography Waveform <ul><li>Normal range is 35-45mm Hg (5% vol) </li></ul>Normal Waveform
  49. 49. Capnography Waveform Question <ul><li>How would your capnogram change if you intentionally started to breathe at a rate of 30? </li></ul><ul><ul><li>Frequency </li></ul></ul><ul><ul><li>Duration </li></ul></ul><ul><ul><li>Height </li></ul></ul><ul><ul><li>Shape </li></ul></ul>
  50. 50. Hyperventilation <ul><li>RR : EtCO 2 </li></ul>4 5 0 Normal Hyperventilation
  51. 51. Waveform: Regular Shape, Plateau Below Normal <ul><li>Indicates CO 2 deficiency </li></ul><ul><ul><li>Hyperventilation </li></ul></ul><ul><ul><li>Decreased pulmonary perfusion </li></ul></ul><ul><ul><li>Hypothermia </li></ul></ul><ul><ul><li>Decreased metabolism </li></ul></ul><ul><li>Interventions </li></ul><ul><ul><li>Adjust ventilation rate </li></ul></ul><ul><ul><li>Evaluate for adequate sedation </li></ul></ul><ul><ul><li>Evaluate anxiety </li></ul></ul><ul><ul><li>Conserve body heat </li></ul></ul>
  52. 52. Capnography Waveform Question <ul><li>How would your capnogram change if you intentionally decreased your respiratory rate to 8? </li></ul><ul><ul><li>Frequency </li></ul></ul><ul><ul><li>Duration </li></ul></ul><ul><ul><li>Height </li></ul></ul><ul><ul><li>Shape </li></ul></ul>
  53. 53. Hypoventilation RR : EtCO 2 Normal Hypoventilation 4 5 0 4 5 0
  54. 54. Waveform: Regular Shape, Plateau Above Normal <ul><li>Indicates increase in ETCO 2 </li></ul><ul><ul><li>Hypoventilation </li></ul></ul><ul><ul><li>Respiratory depressant drugs </li></ul></ul><ul><ul><li>Increased metabolism </li></ul></ul><ul><li>Interventions </li></ul><ul><ul><li>Adjust ventilation rate </li></ul></ul><ul><ul><li>Decrease respiratory depressant drug dosages </li></ul></ul><ul><ul><li>Maintain normal body temperature </li></ul></ul>
  55. 55. Capnography Waveform Patterns 0 4 5 Hypoventilation 4 5 0 Hyperventilation Normal
  56. 56. Capnography Waveform Question <ul><li>How would the waveform shape change during an asthma attack? </li></ul>
  57. 57. Bronchospasm Waveform Pattern <ul><li>Bronchospasm hampers ventilation </li></ul><ul><ul><li>Alveoli unevenly filled on inspiration </li></ul></ul><ul><ul><li>Empty asynchronously during expiration </li></ul></ul><ul><ul><li>Asynchronous air flow on exhalation dilutes exhaled CO 2 </li></ul></ul><ul><li>Alters the ascending phase and plateau </li></ul><ul><ul><li>Slower rise in CO 2 concentration </li></ul></ul><ul><ul><li>Characteristic pattern for bronchospasm </li></ul></ul><ul><ul><li>“ Shark Fin” shape to waveform </li></ul></ul>
  58. 58. Capnography Waveform Patterns Norma l Bronchospasm 4 5 0
  59. 59. Capnography Waveform Patterns Hypoventilation Normal Bronchospasm Hyperventilation 4 5 0 4 5 0 4 5 0
  60. 60. The Intubated Patient
  61. 61. Confirm ET Tube Placement 4 5 0
  62. 62. Detect ET Tube Displacement <ul><li>Capnography </li></ul><ul><ul><li>Immediately detects ET tube displacement </li></ul></ul>Source: Murray I. P. et. al . 1983. Early detection of endotracheal tube accidents by monitoring CO 2 concentration in respiratory gas. Anesthesiology 344-346 4 5 0 Hypopharyngeal Dislodgement
  63. 63. Detect ET Tube Displacement <ul><li>Only capnography provides </li></ul><ul><ul><li>Continuous numerical value of EtCO 2 with apnea alarm after 30 seconds </li></ul></ul><ul><ul><li>Continuous graphic waveform for immediate visual recognition </li></ul></ul>Source: Linko K. et. al . 1983. Capnography for detection of accidental oesophageal intubation. Acta Anesthesiol Scand 27: 199-202 4 5 0 Esophageal Dislodgement
  64. 64. Confirm ET Tube Placement <ul><li>Capnography provides </li></ul><ul><ul><li>Documentation of correct placement </li></ul></ul><ul><ul><li>Ongoing documentation over time through the trending printout </li></ul></ul><ul><ul><li>Documentation of correct position at ED arrival </li></ul></ul>
  65. 65. Capnography in Cardiopulmonary Resuscitation <ul><li>Assess chest compressions </li></ul><ul><li>Early detection of ROSC </li></ul><ul><li>Objective data for decision to cease resuscitation </li></ul>
  66. 66. CPR: Assess Chest Compressions <ul><li>Use feedback from EtCO 2 to depth/rate/ force of chest compressions during CPR </li></ul>4 5 0
  67. 67. CPR: Detect ROSC <ul><li>Briefly stop CPR and check for organized rhythm on ECG monitor </li></ul>4 5 0
  68. 68. ETCO 2 & Cardiac Resuscitation <ul><li>Non-survivors </li></ul><ul><ul><li>Average ETCO 2 : 4-10 mmHg </li></ul></ul><ul><li>Survivors (to discharge) </li></ul><ul><ul><li>Average ETCO 2 : >30 mmHg </li></ul></ul>
  69. 69. Optimize Ventilation <ul><li>Use capnography to titrate EtCO 2 levels in patients sensitive to fluctuations </li></ul><ul><li>Patients with suspected increased intracranial pressure (ICP) </li></ul><ul><ul><li>Head trauma </li></ul></ul><ul><ul><li>Stroke </li></ul></ul><ul><ul><li>Brain tumors </li></ul></ul><ul><ul><li>Brain infections </li></ul></ul>
  70. 70. Optimize Ventilation <ul><li>High CO 2 levels induce cerebral vasodilatation </li></ul><ul><ul><li>Positive: Increases CBF to counter cerebral hypoxia </li></ul></ul><ul><ul><li>Negative: Increased CBF, increases ICP and may increase brain edema </li></ul></ul><ul><li>Hypoventilation retains CO 2 which increases levels </li></ul><ul><ul><ul><li>CO 2 </li></ul></ul></ul>
  71. 71. Optimize Ventilation <ul><li>Low CO 2 levels lead to cerebral vasoconstriction </li></ul><ul><ul><li>Positive: EtCO 2 of 25-30mmHG causes a mild cerebral vasoconstriction which may decrease ICP </li></ul></ul><ul><ul><li>Negative: Decreased ICP but may cause or increase in cerebral hypoxia </li></ul></ul><ul><li>Hyperventilation decreases CO 2 levels </li></ul>CO 2
  72. 72. Optimize Ventilation <ul><li>Treatment goals </li></ul><ul><li>Avoid cerebral hypoxia </li></ul><ul><ul><li>Monitor blood oxygen levels with pulse oximetry </li></ul></ul><ul><ul><li>Maintain adequate CBF </li></ul></ul><ul><li>Target EtCO 2 of 35 mmHg </li></ul>
  73. 73. The Non-intubated Patient CC: “ trouble breathing”
  74. 74. The Non-intubated Patient CC: “trouble breathing” Asthma? Emphysema? Pneumonia? Bronchitis? CHF? PE? Cardiac ischemia?
  75. 75. The Non-intubated Patient Capnography Applications <ul><li>Identify and monitor bronchospasm </li></ul><ul><ul><li>Asthma </li></ul></ul><ul><ul><li>COPD </li></ul></ul><ul><li>Assess and monitor </li></ul><ul><ul><li>Hypoventilation states </li></ul></ul><ul><ul><li>Hyperventilation </li></ul></ul><ul><ul><li>Low-perfusion states </li></ul></ul>
  76. 76. Capnography in Bronchospastic Conditions <ul><li>Air trapped due to irregularities in airways </li></ul><ul><li>Uneven emptying of alveolar gas </li></ul><ul><ul><li>Dilutes exhaled CO 2 </li></ul></ul><ul><ul><li>Slower rise in CO 2 concentration during exhalation </li></ul></ul>A l v e o l i
  77. 77. Capnography in Bronchospastic Diseases <ul><li>Uneven emptying of alveolar gas alters emptying on exhalation </li></ul><ul><li>Produces changes in ascending phase (II) with loss of the sharp upslope </li></ul><ul><li>Alters alveolar plateau (III) producing a “shark fin” </li></ul>A B C D E I I III
  78. 78. Capnography in Bronchospastic Conditions Capnogram of Asthma Source: Krauss B., et al . 2003. FEV1 in Restrictive Lung Disease Does Not Predict the Shape of the Capnogram. Oral presentation. Annual Meeting, American Thoracic Society, May, Seattle, WA Changes in dCO 2 /dt seen with increasing bronchospasm Bronchospasm Normal
  79. 79. Capnography in Bronchospastic Conditions Asthma Case Scenario Initial After therapy
  80. 80. Capnography in Bronchospastic Conditions Pathology of COPD <ul><li>Progressive </li></ul><ul><li>Partially reversible </li></ul><ul><li>Airways obstructed </li></ul><ul><ul><li>Hyperplasia of mucous glands and smooth muscle </li></ul></ul><ul><ul><li>Excess mucous production </li></ul></ul><ul><ul><li>Some hyper-responsiveness </li></ul></ul>
  81. 81. Capnography in Bronchospastic Conditions Capnography in COPD <ul><li>Arterial CO 2 in COPD </li></ul><ul><ul><li>PaCO 2 increases as disease progresses </li></ul></ul><ul><ul><li>Requires frequent arterial punctures for ABGs </li></ul></ul><ul><li>Correlating capnograph to patient status </li></ul><ul><ul><li>Ascending phase and plateau are altered by uneven emptying of gases </li></ul></ul>
  82. 82. Capnography in Bronchospastic Conditions COPD Case Scenario Initial Capnogram A Initial Capnogram B 4 5 0
  83. 83. Capnography in CHF Case Scenario <ul><li>88 year old male </li></ul><ul><li>C/O: Short of breath </li></ul><ul><li>H/O: MI X 2, on oxygen at 2 L/m </li></ul><ul><li>Pulse 66, BP 164/86, RR 36 labored and shallow, skin cool and diaphoretic, 2+ pedal edema </li></ul><ul><li>Initial SpO 2 69%; EtCO 2 17mmHG </li></ul>
  84. 84. Capnography in CHF Case Scenario <ul><li>Placed on non-rebreather mask with 100% oxygen at 15 L/m and aggressive SL nitroglycerin as per protocol </li></ul><ul><li>Ten minutes after treatment: </li></ul><ul><li>SpO 2 69% 99% </li></ul><ul><li>EtCO 2 17mmHG 35 mmHG </li></ul>Time condensed to show changes 4 5 3 5 0 2 5
  85. 85. Capnography in Hypoventilation States <ul><li>Altered mental status </li></ul><ul><ul><li>Sedation </li></ul></ul><ul><ul><li>Alcohol intoxication </li></ul></ul><ul><ul><li>Drug Ingestion </li></ul></ul><ul><ul><li>Stroke </li></ul></ul><ul><ul><li>CNS infections </li></ul></ul><ul><ul><li>Head injury </li></ul></ul><ul><li>Abnormal breathing </li></ul><ul><li>CO 2 retention </li></ul><ul><ul><li>EtCO 2 >50mmHg </li></ul></ul>
  86. 86. Capnography in Hypoventilation States <ul><li>EtCO 2 is above 50mmHG </li></ul><ul><li>Box-like waveform shape is unchanged </li></ul>Time condensed; actual rate is slower 4 5 0
  87. 87. Capnography in Hypoventilation States Hypoventilation Time condensed; actual rate is slower
  88. 88. Capnography in Hypoventilation States Hypoventilation <ul><li>Hypoventilation in shallow breathing </li></ul>4 5 0
  89. 89. Capnography in Low Perfusion <ul><li>Capnography reflects changes in </li></ul><ul><li>Perfusion </li></ul><ul><ul><li>Pulmonary blood flow </li></ul></ul><ul><ul><li>Systemic perfusion </li></ul></ul><ul><ul><li>Cardiac output </li></ul></ul>
  90. 90. Capnography in Low Perfusion Case Scenario <ul><li>57 year old male </li></ul><ul><li>Motor vehicle crash with injury to chest </li></ul><ul><li>History of atrial fib, anticoagulant </li></ul><ul><li>Unresponsive </li></ul><ul><li>Pulse 100 irregular, BP 88/p </li></ul><ul><li>Intubated on scene </li></ul>
  91. 91. Capnography in Low Perfusion Case Scenario Low EtCO 2 seen in low cardiac output Ventilation controlled
  92. 92. Capnography in Pulmonary Embolus Case Scenario Strong radial pulse Low EtCO 2 seen in decreased alveolar perfusion
  93. 93. Capnography in Rebreathing Circumstances Elevated Baseline <ul><li>Baseline elevation </li></ul><ul><li>Oxygen mask </li></ul><ul><li>Poor head and neck alignment </li></ul><ul><li>Shallow breathing – not clearing deadspace </li></ul>4 5 0
  94. 94. Capnography in DKA Case Scenario Rapid rate, normal waveform and elevated EtCO 2 seen in early respiratory compensation in DKA Source: Flanagan, J.F., et al . 1995. Noninvasive monitoring of end-tidal carbon dioxide tension via nasal cannulas in spontaneously breathing children with profound hypocarbia. Critical Care Medicine. June; 23 (6): 1140-1142 4 5 0
  95. 95. Capnography Applications on Non-intubated Patients <ul><li>New applications now being reported </li></ul><ul><ul><li>Pulmonary emboli </li></ul></ul><ul><ul><li>CHF </li></ul></ul><ul><ul><li>DKA </li></ul></ul><ul><ul><li>Bioterrorism </li></ul></ul><ul><ul><li>Others? </li></ul></ul>r r O x y g e n O 2 V e i n A t e y
  96. 96. Quiz Time!
  97. 97. Sudden Loss of Waveform <ul><li>Apnea </li></ul><ul><li>Airway Obstruction </li></ul><ul><li>Dislodged airway (esophageal) </li></ul><ul><li>Airway disconnection </li></ul><ul><li>Ventilator malfunction </li></ul><ul><li>Cardiac Arrest </li></ul>
  98. 98. Increase in ETCO 2 <ul><li>Possible causes: </li></ul><ul><ul><li>Decrease in respiratory rate (Hypoventilation) </li></ul></ul><ul><ul><li>Decrease in tidal volume </li></ul></ul><ul><ul><li>Increase in metabolic rate </li></ul></ul><ul><ul><li>Rapid rise in body temperature (hyperthermia) </li></ul></ul>
  99. 99. Esophageal Tube <ul><li>A normal capnogram is the best evidence that the ETT is correctly positioned </li></ul><ul><li>With an esophageal tube little or no CO 2 is present </li></ul>
  100. 100. Rebreathing <ul><li>Possible causes: </li></ul><ul><ul><li>Faulty expiratory valve </li></ul></ul><ul><ul><li>Inadequate inspiratory flow </li></ul></ul><ul><ul><li>Insufficient expiratory flow </li></ul></ul>
  101. 101. Inadequate Seal Around ETT <ul><li>Possible causes: </li></ul><ul><ul><li>Leaky or deflated endotracheal or tracheostomy cuff </li></ul></ul><ul><ul><li>Artificial airway too small for the patient </li></ul></ul>
  102. 102. Decrease in ETCO 2 <ul><li>Possible causes: </li></ul><ul><ul><li>Increase in respiratory rate (Hyperventilation) </li></ul></ul><ul><ul><li>Increase in tidal volume </li></ul></ul><ul><ul><li>Decrease in metabolic rate </li></ul></ul><ul><ul><li>Fall in body temperature (hypothermia) </li></ul></ul>
  103. 103. Obstruction <ul><li>Possible causes: </li></ul><ul><ul><li>Partially kinked or occluded artificial airway </li></ul></ul><ul><ul><li>Presence of foreign body in the airway </li></ul></ul><ul><ul><li>Obstruction in expiratory limb of the breathing circuit </li></ul></ul><ul><ul><li>Bronchospasm </li></ul></ul>
  104. 104. Muscle Relaxants <ul><li>“ Curare Cleft”: </li></ul><ul><ul><li>Appears when muscle relaxants begin to subside </li></ul></ul><ul><ul><li>Depth of cleft is inversely proportional to degree of drug activity </li></ul></ul>
  105. 105. You Survived! Thanks! Questions to me via groupwise: [email_address]

×