Anzeige

Hide and seek in time robust covert timing channels

Security Researcher um Escola Politécnica da USP
1. Dec 2012
Anzeige

Más contenido relacionado

Similar a Hide and seek in time robust covert timing channels(20)

Anzeige

Hide and seek in time robust covert timing channels

  1. Hide and Seek in Time - Robust Covert Timing Channels Privacy Enhancing Technologies Anonymität im Internet Vorlesung KOM - Multimedia Communications Lab Prof. Dr.-Ing. Ralf Steinmetz (Director) Dept. of Electrical Engineering and Information Technology Dr.-Ing. Matthias Hollick Dept. of Computer Science (adjunct Professor) Prof. Dr.-Ing. Ralf Steinmetz TUD – Technische Universität Darmstadt Merckstr. 25, D-64283 Darmstadt, Germany Matthias.Hollick@KOM.tu-darmstadt.de Tel.+49 6151 166150, Fax. +49 6151 166152 Cassius de Oliveira Puodzius Tel.+49 6151 166158 www.KOM.tu-darmstadt.de 18. Mai 2012 © author(s) of these slides 2008
  2. Presentation outline  Background  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-2
  3. Background Covert channel  Background  Covert Channel Conceal the existence of communication by hiding it into overt communication (legitimate traffic)  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-3
  4. Background Covert channel  Background  Covert Channel Conceal the existence of communication by hiding it into overt communication (legitimate traffic)  Adversaries Problem Definition Covert storage channels: Data transmission by modifying unused or random bits in the packet header   Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-4
  5. Background Covert channel  Background  Covert Channel Conceal the existence of communication by hiding it into overt communication (legitimate traffic)  Adversaries  Problem Definition Covert storage channels: Data transmission by modifying unused or random bits in the packet header Covert timming channels: Modulation of the message into temporal properties of the traffic  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-5
  6. Background Covert channel  Background  Covert Channel Conceal the existence of communication by hiding it into overt communication (legitimate traffic)  Adversaries  Problem Definition Covert storage channels: Data transmission by modifying unused or random bits in the packet header Covert timming channels: Modulation of the message into temporal properties of the traffic  Channel Capacity Adversaries Undetectability Channel   Protocol Robustness • Passive: Make use of statistical test toCorrector Code) legitimate traffic  Multi-channel (Error distinguish covert from  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-6
  7. Background Covert channel  Background  Covert Channel Conceal the existence of communication by hiding it into overt communication (legitimate traffic)  Adversaries  Problem Definition Covert storage channels: Data transmission by modifying unused or random bits in the packet header Covert timming channels: Modulation of the message into temporal properties of the traffic  Channel Capacity Adversaries Undetectability Channel   Protocol Robustness • Passive: Make use of statistical test toCorrector Code) legitimate traffic  Multi-channel (Error distinguish covert from • Active (jammers): Disrupt covert timing channels by adding random delays to individual packets  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-7
  8. Problem Definition Create a covert timing channel which is resilient to passive and  Background active adversaries  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-8
  9. Problem Definition (2) Channel Capacity  Background  Covert Channel Maximum number of (covert) bits which are transmited in  Adversaries  Problem Definition bits per packet (bpp) each packet, i.e.,  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-9
  10. Problem Definition (2) Channel Capacity  Background  Covert Channel Maximum number of (covert) bits which are transmited in  Adversaries  Problem Definition bits per packet (bpp) each packet, i.e., - R : transmission  Channel Capacity Channel Undetectability Determined by: - Pe: bit error rate Corrector Code)   Protocol tRobustness rate  Multi-channel (Error(BER)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-10
  11. Problem Definition (2) Channel Capacity  Background  Covert Channel Maximum number of (covert) bits which are transmited in  Adversaries  Problem Definition bits per packet (bpp) each packet, i.e., - R : transmission  Channel Capacity Channel Undetectability Determined by: - Pe: bit error rate Corrector Code)   Protocol tRobustness rate  Multi-channel (Error(BER) Evaluation Trade-Off capacity → High R with low P  Modulation/Demodulation Scheme t e  High channel  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-11
  12. Problem Definition (3) Channel Undetectability  Background  Covert Channel A Adversaries is undetectable according to some statistical  covert time  Problem Definition test, if the test cannot distinguish between legitimate and covert traffic  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-12
  13. Problem Definition (3) Channel Undetectability  Background  Covert Channel A Adversaries is undetectable according to some statistical  covert time  Problem Definition test, if the test cannot distinguish between legitimate and covert traffic  Channel Capacity Channel Undetectability P(x)  Shape Test  Protocol Robustness  Multi-channel (Error Corrector Code) H (x)  Modulation/Demodulation Scheme s x  Evaluation Trade-Off KS-test  Experimental Results Hs(x) = supx|F(x) – S(x)|  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-13
  14. Problem Definition (3) Channel Undetectability  Background  Covert Channel A Adversaries is undetectable according to some statistical  covert time  Problem Definition test, if the test cannot distinguish between legitimate and covert traffic  Channel Capacity Channel Undetectability P(x)  Shape Test Regularity Test  Protocol Robustness  Multi-channel (Error Corrector Code) H (x)  Modulation/Demodulation Scheme s x  Evaluation Trade-Off KS-test  Experimental Results Hs(x) = supx|F(x) – S(x)| Hr = std(|σi - σj|/σi)  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-14
  15. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-15
  16. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity Spreading Codes  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-16
  17. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity Spreading Codes Protocol Robustness1. Choose a orthogonal code words c , ..., c ϵ {-1, 1} Channel Undetectability N  Sender:  1 K  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-17
  18. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity Spreading Codes Protocol Robustness1. Choose a orthogonal code words c , ..., c ϵ {-1, 1} Channel Undetectability N  Sender: 2. Encode k-th bit of the message by c' = b c  1 K k k k  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-18
  19. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity Spreading Codes Protocol Robustness1. Choose a orthogonal code words c , ..., c ϵ {-1, 1} Channel Undetectability N  Sender: 2. Encode k-th bit of the message by c' = b c  1 K Multi-channel (Error Corrector Code) K parallel channels, s = Σ b k k k ck k  3. Simultaneouly transmit over  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-19
  20. Protocol Robustness To handle with:  Background  Covert Channel and/or error during transmission Fortuitous delay  Adversaries Jammers adversaries  Problem Definition  Channel Capacity Spreading Codes Protocol Robustness1. Choose a orthogonal code words c , ..., c ϵ {-1, 1} Channel Undetectability N  Sender: 2. Encode k-th bit of the message by c' = b c  1 K Multi-channel (Error Corrector Code) K parallel channels, s = Σ b k k k ck k  3. Simultaneouly transmit over  Modulation/Demodulation Scheme  Evaluation Trade-OffReceiver: bit by 1/N <s, c > = b k k Decode k-th  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-20
  21. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-21
  22. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries Vector basis:  Problem Definition1, 1, 1) c = (-1, 1  Channel Capacity 1) c = (1, -1, 1, 2 c = (1, 1, -1, 1)  Channel Undetectability 3 c = (1, 1, 1, -1) Protocol Robustness 4   Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-22
  23. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries Vector basis:  Problem Definition1, 1, 1) c = (-1, 1 c ' = b c = (1, -1, -1, -1) 1 1 1  Channel Capacity 1) c = (1, -1, 1, 2 c ' = b c = (-1, 1, -1, -1) 2 2 2 c = (1, 1, -1, 1) c ' = b c = (1, 1, -1, 1)  Channel Undetectability 3 c = (1, 1, 1, -1) 3 c ' = b c = (-1, -1, -1, 1) 3 3 Protocol Robustness 4 4 4 4   Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-23
  24. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries Vector basis:  Problem Definition1, 1, 1) c = (-1, 1 c ' = b c = (1, -1, -1, -1) 1 1 1  Channel Capacity 1) c = (1, -1, 1, 2 c ' = b c = (-1, 1, -1, -1) 2 2 2 c = (1, 1, -1, 1) c ' = b c = (1, 1, -1, 1)  Channel Undetectability 3 c = (1, 1, 1, -1) 3 3 3 c ' = b c = (-1, -1, -1, 1) Protocol Robustness 4 4 4 4   Multi-channel (Error Corrector0, -4, 0) s = Σ b c = (0, Code) k k  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-24
  25. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries Vector basis:  Problem Definition1, 1, 1) c = (-1, 1 c ' = b c = (1, -1, -1, -1) 1 1 1  Channel Capacity 1) c = (1, -1, 1, 2 c ' = b c = (-1, 1, -1, -1) 2 2 2 c = (1, 1, -1, 1) c ' = b c = (1, 1, -1, 1)  Channel Undetectability 3 c = (1, 1, 1, -1) 3 3 3 c ' = b c = (-1, -1, -1, 1) Protocol Robustness 4 4 4 4   Multi-channel (Error Corrector0, -4, 0) s = Σ b c = (0, Code) k k  Modulation/Demodulation Scheme¼ -4 = -1 b = 1/N <s, c > = 1 1  Evaluation Trade-Off b = 1/N <s, c > = ¼ -4 = -1 2 2  Experimental Results b = 1/N <s, c > = ¼ 4 = 1 3 3 b = 1/N <s, c > = ¼ -4 = -1  Conclusions 4 4 mreceived = (-1, -1, 1, -1) Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-25
  26. Protocol Robustness (2) Example:  Background N = 4, K = 4 msend = (-1, -1, 1, -1)  Covert Channel  Adversaries Vector basis:  Problem Definition1, 1, 1) c = (-1, 1 c ' = b c = (1, -1, -1, -1) 1 1 1  Channel Capacity 1) c = (1, -1, 1, 2 c ' = b c = (-1, 1, -1, -1) 2 2 2 c = (1, 1, -1, 1) c ' = b c = (1, 1, -1, 1)  Channel Undetectability 3 c = (1, 1, 1, -1) 3 3 3 c ' = b c = (-1, -1, -1, 1) Protocol Robustness 4 4 4 4   Multi-channel (Error Corrector2, -4, 0) s = Σ b c = (1, Code) k k  Modulation/Demodulation Scheme¼ -3 ≈ -1 b = 1/N <s, c > = 1 1  Evaluation Trade-Off b = 1/N <s, c > = ¼ -5 ≈ -1 2 2  Experimental Results b = 1/N <s, c > = ¼ 7 ≈ 1 3 3 b = 1/N <s, c > = ¼ -1 ≈ -1  Conclusions 4 4 mreceived = (-1, -1, 1, -1) Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-26
  27. Modulation/Demodulation Scheme  Background Prior knowledge: channel characteristics (delay, jitter, ...)  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-27
  28. Modulation/Demodulation Scheme  Background Prior knowledge: channel characteristics (delay, jitter, ...)  Covert Channel Modulation  Adversaries  Modulation group: Group of K bits which are  Problem Definition encoded each time on K parallel channels  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-28
  29. Modulation/Demodulation Scheme  Background Priorknowledge: channel characteristics (delay, jitter, ...)  Covert Channel Modulation  Adversaries  Modulation group: Group of K bits which are  Problem Definition encoded each time on K parallel channels  Channel Capacity Linear modulation of inter-packet delay  Channel Undetectability  Protocol + β s (n = 1, ..., N) t := α n Robustness n  Multi-channel (Error Corrector Code) α: shift parameter   Modulation/Demodulation Scheme β: pseudo-random parameter   Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-29
  30. Modulation/Demodulation Scheme  Background Priorknowledge: channel characteristics (delay, jitter, ...)  Covert Channel Modulation  Adversaries  Modulation group: Group of K bits which are  Problem Definition encoded each time on K parallel channels  Channel Capacity Linear modulation of inter-packet delay  Channel Undetectability  Protocol + β s (n = 1, ..., N) t := α n Robustness n  Multi-channel (Error Corrector Code) α: shift parameter   Modulation/Demodulation Scheme β: pseudo-random parameter   Evaluation Trade-Off fly Remark: α is transmited on the Experimental Results  through one of the channels  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-30
  31. Modulation/Demodulation Scheme  Background Priorknowledge: channel characteristics (delay, jitter, ...)  Covert Channel Receive a modulation group t, which might be Modulation Adversaries of K bits which are Demodulation changed to t' due to some additive channel noise x   Modulation group: Group   Problem Definition encoded each time on K parallel channels  Channel Capacity Linear modulation of inter-packet delay  Channel Undetectability  Protocol + β s (n = 1, ..., N) t := α n Robustness n  Multi-channel (Error Corrector Code) α: shift parameter   Modulation/Demodulation Scheme β: pseudo-random parameter   Evaluation Trade-Off fly Remark: α is transmited on the Experimental Results  through one of the channels  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-31
  32. Modulation/Demodulation Scheme  Background Priorknowledge: channel characteristics (delay, jitter, ...)  Covert Channel Receive a modulation group t, which might be Modulation Adversaries of K bits which are Demodulation changed to t' due to some additive channel noise x   Modulation group: Group   Problem Definition encoded each time on K parallel channels  Channel Capacity Linear modulation of inter-packet delay To decode the k-th bit, one compute b ' = 1/N < 1/β t', c >  Channel Undetectability Protocol + β s (n = 1, ..., N) k k t := α  n Robustness n Hence one get b ' = b + 1/(N β) <x , c >  Multi-channel (Error Corrector Code) k k k α: shift parameter   Modulation/Demodulation Scheme β: pseudo-random parameter   Evaluation Trade-Off fly Remark: α is transmited on the Experimental Results  through one of the channels  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-32
  33. Modulation/Demodulation Scheme (2) Removing Regularity  Background Variance of each modulation group g: σ = β σ such that β and σ are determined by K and T  Covert Channel 2 2 2  Adversaries g s s  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-33
  34. Modulation/Demodulation Scheme (2) Removing Regularity  Background Variance of each modulation group g: σ = β σ such that β and σ are determined by K and T  Covert Channel 2 2 2  Adversaries g s s The correlation Definition modulated inter-packet delay t is given by Problem coefficient of the   Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-34
  35. Modulation/Demodulation Scheme (2) Removing Regularity  Background Variance of each modulation group g: σ = β σ such that β and σ are determined by K and T  Covert Channel 2 2 2  Adversaries g s s The correlation Definition modulated inter-packet delay t is given by Problem coefficient of the   Channel Capacity  Channel Undetectability  Protocol Robustness  The  correlation of the inter-packet delays can dynamically change by appropriately controlling the Multi-channel (Error Corrector Code) generation of α and β  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-35
  36. Modulation/Demodulation Scheme (2) Removing Regularity  Background Variance of each modulation group g: σ = β σ such that β and σ are determined by K and T  Covert Channel 2 2 2  Adversaries g s s The correlation Definition modulated inter-packet delay t is given by Problem coefficient of the   Channel Capacity  Channel Undetectability  Protocol Robustness  The  correlation of the inter-packet delays can dynamically change by appropriately controlling the Multi-channel (Error Corrector Code) generation of α and β As long as T is the parameter which controls the system robustness and undetectability, it remains Modulation/Demodulation Scheme fixed, while K is uniformly chosen in [1, K ]   Evaluation Trade-Off max  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-36
  37. Modulation/Demodulation Scheme (2) Removing Regularity  Background Variance of each modulation group g: σ = β σ such that β and σ are determined by K and T  Covert Channel 2 2 2  Adversaries g s s The correlation Definition modulated inter-packet delay t is given by Problem coefficient of the   Channel Capacity  Channel Undetectability  Protocol Robustness  The  correlation of the inter-packet delays can dynamically change by appropriately controlling the Multi-channel (Error Corrector Code) generation of α and β As long as T is the parameter which controls the system robustness and undetectability, it remains Modulation/Demodulation Scheme fixed, while K is uniformly chosen in [1, K ]   Evaluation Trade-Off max Experimental Results Remark: A seed of a pseudo-random generator can be priorly shared between the sender and the   Conclusions that they are able to get β without any further communication receiver, so Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-37
  38. Evaluation Trade-Off  Background Transmission Rate Covert Channel Rt = K / N   Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-38
  39. Evaluation Trade-Off  Background Transmission Rate Covert Channel Rt = K / N   Adversaries  Problem Definition Channel Undetectability channel to transmit α • At least one  Channel Capacity   Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-39
  40. Evaluation Trade-Off  Background Transmission Rate Covert Channel Rt = K / N   Adversaries  Problem Definition Channel Undetectability channel to transmit α • At least one  Channel Capacity Maximum transmission rate is N – 1/ N   Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-40
  41. Evaluation Trade-Off (2)  Background Robustness  Covert Channel G = β2 N  Adversaries Robustness gain  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-41
  42. Evaluation Trade-Off (2)  Background Robustness  Covert Channel G = β2 N  Adversaries Robustness gain  Problem Definition  Channel Capacity  Channel Undetectability Tβ =fixed is TB  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-42
  43. Evaluation Trade-Off (2)  Background Robustness  Covert Channel G=β N  Adversaries Robustness gain The relation between B and K  Problem2 Definition  Channel Capacity Channel Undetectability  β = TB T is fixed  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-43
  44. Evaluation Trade-Off (2)  Background Robustness  Covert Channel G=β N  Adversaries Robustness gain The relation between B and K  Problem2 Definition  Channel Capacity Channel Undetectability  β = TB T is fixed  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results can achive higher robustness by Hence, one  Conclusions  Decreasing K  Increasing N and T Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-44
  45. Evaluation Trade-Off (3)  Background Undetectability  Covert Channel achieved with smaller T  Adversaries a approximation Accurate shape  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-45
  46. Evaluation Trade-Off (3)  Background Undetectability  Covert Channel achieved with smaller T with bigger T or Kmax  Adversaries a approximation Accurate shape While better regularity achieved  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-46
  47. Experimental Results  Background Experimental scenarios: 1. LAN environment in a medium-size campus network Covert Channel   Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-47
  48. Experimental Results  Background Experimental scenarios: 1. LAN environment in a medium-size campus network 2. Covert Channel sender and receiver located in USA and Germany, respectively  WAN environment with Adversaries   Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-48
  49. Experimental Results  Background Experimental scenarios: 1. LAN environment in a medium-size campus network 2. Covert Channel sender and receiver located in USA and Germany, respectively  WAN environment with Adversaries  Network conditions for each scenario  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-49
  50. Experimental Results  Background Experimental scenarios: 1. LAN environment in a medium-size campus network 2. Covert Channel sender and receiver located in USA and Germany, respectively  WAN environment with  Adversaries Network conditions for each scenario  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code) Carrier applications  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-50
  51. Experimental Results (2) Robustness  Background  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-51
  52. Experimental Results (3) Undetectability  Background  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-52
  53. Thank you!  Background  Covert Channel  Adversaries  Problem Definition  Channel Capacity  Channel Undetectability  Protocol Robustness  Multi-channel (Error Corrector Code)  Modulation/Demodulation Scheme  Evaluation Trade-Off  Experimental Results  Conclusions Mai 2012 | Informatik Fb20 | CASED | Cassius de Oliveira Puodzius KOM – Multimedia Communications Lab MN-00-53
Anzeige