Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

IFT19- Migration models and their reliability in safety validation

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Migration of monomers
Migration of monomers
Wird geladen in …3
×

Hier ansehen

1 von 19 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie IFT19- Migration models and their reliability in safety validation (20)

Anzeige

Weitere von Packaging Technology and Research, LLC (20)

Aktuellste (20)

Anzeige

IFT19- Migration models and their reliability in safety validation

  1. 1. Food Packaging Migration Models and Their Reliability in Safety Validation Created by: Ziynet Boz, Ph.D. Packaging Technology and Research LLC.
  2. 2. Created by: Migration Overview  Migration mechanism in food- packaging systems  Several affecting factors  Several packaging technologies, conditions, food types  Databases generated with food simulants for compliance © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED2 Migration Temperature Concentration MW Solubility Time Compositions Partition Coefficients Surface/ Volume Ratio Contact type Mobility
  3. 3. Created by: Why models? • Experimental procedures are time- intensive, costly • Numerous combinations of packaging- food-environment • Risk assessment in decision-making • Limited migration packaging design • Lowering the additive diffusivity during synthesis • Monomers, antioxidants, stabilizers, antimicrobials etc. © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED3
  4. 4. Created by: Regulatory Opinions on Models  Current state of the models in compliance • Accepted models for FCMs are oversimplified, deterministic, “worst case” scenario • Initial Conditions: uniform distributions, no-migrant in food • Boundary Conditions: No interface resistance • No spatial distribution after migration • Total migration amount is constant (No reaction / generation) • High solubility of migrant in food (Partition coefficient = 1)  If result is lower than SML © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED4
  5. 5. Created by: Migration Models: Deterministic  Diffusion: Fick’s Law • Fick’s Second Law of Diffusion • MW distribution, density, crystallinity, orientation, solubility, migrant molecular size, shape, plasticization effect, Tg, Tm  Diffusion coefficient 𝐷𝐴 𝑃  Partition coefficient 𝐾𝑝  Assumptions • C0, food = 0 , migrant is homogenously distributed in Pkg • Good approximation for single layer packages • Overestimation ageing, long storage, low MW -> Overestimation • Absence of chemical reaction, loss (e.g. evaporation) © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED5 𝜕𝐶𝐴 𝑃 𝜕𝑡 = 𝐷𝐴 𝑃 𝜕2 𝐶𝐴 𝑃 𝜕𝑥2 𝐾𝑝 = 𝐶𝐴 𝑃 (∞) 𝐶𝐴 𝐹 (∞) 𝛼 = 𝑀𝐴 𝐹 (∞) 𝑀𝐴 𝑃 (∞) = 𝐶𝐴 𝐹 (∞) 𝐶𝐴 𝑃 (∞) = 𝑉 𝐹 𝐾𝑝 𝑉 𝑃 If 𝛼>>1 & Kp < 1 -> 100% migration
  6. 6. Created by: Migration Models: Deterministic 6 Bi>100 No Resistance h is not infinitive Diffusion coefficient Interaction effects Swelling of the packaging materials -> Swelling layer E.g. Olive oil into PP (Poças, Oliveira, Oliveira, & Hogg, 2008)
  7. 7. Created by: Migration Models: Empirical  Disregarding underlying mechanism behind coefficients • Empirical equations for D: LDPE, HDPE, PP -> f(T, MW) (Arrhenius-like) • Partitioning, mass transfer, polymer morphology, shape/polarity of the migrant are not considered • Piringer Model to determine D with overestimated diffusion (50% of the results) • Underestimate the effect of temperature for high MW migrants • Limm and Hollifield model for additive diffusion in polyolefins (Arr. Type)  Weibull model © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED7 Piringer model
  8. 8. Created by: Migration Models: Probabilistic  Variability in migration model outputs as a result of the uncertainty in model inputs  Mixed effect models with deterministic models  Probability distribution of the diffusion coefficient using Molecular mass  Distribution of outputs  Monte Carlo sampling  Fourier Amplitude Sensitivity Test (FAST)  Latin hypercube sampling  Capturing lack of knowledge • Temperature fluctuations • Time of contact • Non-systematic errors  Uoverall Migration = 2 mg/dm2 or 12 mg/kg
  9. 9. Created by: Migration Models: Plastics  Majority of the migration studies are polyolefins  Low partition coefficients with non-polar simulants/foods due to Tg  Lack of data on polymers glassy at their temperature of use  PET requires longer testing time • Recent studies: Virgin layer migration barrier  Adhesives, urethane polymers, repeated Pkg use © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED9 Hexanal Olive oil migration (Gavriil, Kanavouras, & Coutelieris, 2018)
  10. 10. Created by: Migration Models: Paper & Paperboard  Inhomogeneous medium: Heterogenous, porous, fiber- based  Solid products adsorption/desorption  Fickian diffusion seems to poorly estimate low porosity low thickness  Simulants: Tenax®, Propak®  Weibull model provides good fit  Phthalates  Migrant volatility, polarity, affinity impact © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED10 (Poças, Oliveira, Pereira, Brandsch, & Hogg, 2011)
  11. 11. Created by: Migration Models: Other materials  Ceramic and printing inks  Cadmium and lead migration from ceramic into acid food simulants was studied • Time-temperature influence • Fickian Diffusion • 600 h & 130 days • Ion exchange -> hydrolysis © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED11 (Dong, Lu, & Liu, 2015)
  12. 12. Created by: Simulation Software  MIGRATEST 2000/2001 Fabes GmbH, Germany  AKTS SML by Advanced Kinetics Technology Solution, Switzerland  SMEWISE (Simulation of Migration Experiments with Swelling Effect)  MULTITEMP, MULTIWISE by Safe Food Packaging Portal  SFPP3 France  FMECAengine  FACET (Flavors, Additives and Food Contact Materials Exposure Task) © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED12
  13. 13. Created by: Decision-making Based on Models  FDA Model, EU Piringer model -> Overestimation 95% • E.g. HDPE-food simulant, PET-water, AO-Tenax®, Photoinitiator-paper-Tenax®  Oversimplification and assumptions: Over- or under-estimated migration  Possibility of rejecting potentially safe materials and chemicals  Trained professionals  Only for known chemicals IAS  Target group: Converters and Chemical Industry  High-throughput models only suitable for multiple migrants © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED13
  14. 14. Created by: Research Gaps  A more realistic estimation of diffusion coefficients are needed  Effects of swelling phenomenon  Environment-package-food systems should be considered  Data needed beyond regulatory compliance but a food quality perspective  Actual interactions should be considered E.g. Oxygen effects, Flavor desorption etc.  Models of migrants from multilayer materials with numerical methods  Industrial tools to assess the migration: Practical, Robust  Non-plastic materials: E.g. paper and paperboard  Nanomaterial migration assessment  Emerging modeling methods E.g. Molecular modeling, molecular thermodynamics, coupled models with human exposure © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED14
  15. 15. Created by: References  20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf. (n.d.-a). Retrieved from https://www.plasticseurope.org/application/files/8115/1722/2186/20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf  20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf. (n.d.-b). Retrieved from https://www.plasticseurope.org/application/files/8115/1722/2186/20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf  Aparicio, J. L., & Elizalde, M. (n.d.). Migration of Photoinitiators in Food Packaging: A Review. Packaging Technology and Science, 28(3), 181–203. https://doi.org/10.1002/pts.2099  ARVANITOYANNIS, I. S., & BOSNEA, L. (2004). Migration of Substances from Food Packaging Materials to Foods. Critical Reviews in Food Science and Nutrition, 44(2), 63–76. https://doi.org/10.1080/10408690490424621  Arvanitoyannis, I. S., & Kotsanopoulos, K. V. (2014). Migration Phenomenon in Food Packaging. Food–Package Interactions, Mechanisms, Types of Migrants, Testing and Relative Legislation—A Review. Food and Bioprocess Technology, 7(1), 21–36. https://doi.org/10.1007/s11947-013-1106-8  Ashby, R. (1988). Migration from polyethylene terephthalate under all conditions of use. Food Additives & Contaminants, 5(sup001), 485–492. https://doi.org/10.1080/02652038809373681  Begley, T., Castle, L., Feigenbaum, A., Franz, R., Hinrichs, K., Lickly, T., … Piringer, O. (2005). Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Additives & Contaminants, 22(1), 73–90. https://doi.org/10.1080/02652030400028035  Begley, T. H., White, K., Honigfort, P., Twaroski, M. L., Neches, R., & Walker, R. A. (2005). Perfluorochemicals: Potential sources of and migration from food packaging. Food Additives & Contaminants, 22(10), 1023–1031. https://doi.org/10.1080/02652030500183474  Bhunia, K., Sablani, S. S., Tang, J., & Rasco, B. (2013). Migration of Chemical Compounds from Packaging Polymers during Microwave, Conventional Heat Treatment, and Storage. Comprehensive Reviews in Food Science and Food Safety, 12(5), 523–545. https://doi.org/10.1111/1541-4337.12028  Biryol, D., Nicolas, C. I., Wambaugh, J., Phillips, K., & Isaacs, K. (2017). High-throughput dietary exposure predictions for chemical migrants from food contact substances for use in chemical prioritization. Environment International, 108, 185–194. https://doi.org/10.1016/j.envint.2017.08.004  Bodai, Z., Jakab, P. P., Novák, M., Nyiri, Z., Szabó, B. S., Rikker, T., & Eke, Z. (2016). Solubility determination as an alternative to migration measurements. Food Additives & Contaminants: Part A, 33(3), 574–581. https://doi.org/10.1080/19440049.2016.1142676  Bott, J., Störmer, A., & Franz, R. (2014). Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Additives & Contaminants: Part A, 31(10), 1769–1782. https://doi.org/10.1080/19440049.2014.952786  Bradley, E. L., Castle, L., & Speck, D. R. (2014). Model studies of migration from paper and board into fruit and vegetables and into TenaxTM as a food simulant. Food Additives & Contaminants: Part A, 31(7), 1301–1309. https://doi.org/10.1080/19440049.2014.914633  Brandsch, R. (2017). Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment. Food Additives & Contaminants: Part A, 34(10), 1743–1766. https://doi.org/10.1080/19440049.2017.1339235  Cai, H., Ji, S., Zhang, J., Tao, G., Peng, C., Hou, R., … Wan, X. (2017). Migration kinetics of four photo-initiators from paper food packaging to solid food simulants. Food Additives & Contaminants: Part A, 34(9), 1632–1642. https://doi.org/10.1080/19440049.2017.1331470  Chung, D., Papadakis, S. E., & Yam, K. L. (2002). Simple models for assessing migration from food-packaging films. Food Additives & Contaminants, 19(6), 611–617. https://doi.org/10.1080/02652030210126389  Dong, Z., Lu, L., & Liu, Z. (2015). Migration Model of Toxic Metals from Ceramic Food Contact Materials into Acid Food. Packaging Technology and Science, 28(6), 545–556. https://doi.org/10.1002/pts.2122  Ernstoff, A. S., Fantke, P., Huang, L., & Jolliet, O. (2017a). High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools. Food and Chemical Toxicology, 109, 428–438. https://doi.org/10.1016/j.fct.2017.09.024  Ernstoff, A. S., Fantke, P., Huang, L., & Jolliet, O. (2017b). High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools. Food and Chemical Toxicology, 109, 428–438. https://doi.org/10.1016/j.fct.2017.09.024 © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED15
  16. 16. Created by: References  FACET exposure tool. (n.d.). Retrieved May 29, 2019, from Food Packaging Forum website: https://www.foodpackagingforum.org/food-packaging-health/facet-exposure-tool  Fan, C., Cui, R., Lu, W., Chen, H., Yuan, M., & Qin, Y. (2019). Effect of high pressure treatment on properties and nano–Ag migration of PLA-based food packaging film. Polymer Testing, 76, 73–81. https://doi.org/10.1016/j.polymertesting.2019.03.005  Fang, X., & Vitrac, O. (2017). Predicting diffusion coefficients of chemicals in and through packaging materials. Critical Reviews in Food Science and Nutrition, 57(2), 275–312. https://doi.org/10.1080/10408398.2013.849654  Fasano, E., Bono-Blay, F., Cirillo, T., Montuori, P., & Lacorte, S. (2012). Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control, 27(1), 132–138. https://doi.org/10.1016/j.foodcont.2012.03.005  Feigenbaum, A. E., Riquet, A. M., & Scholler, D. (2000). Fatty Food Simulants: Solvents to Mimic the Behavior of Fats in Contact with Packaging Plastics. In ACS Symposium Series: Vol. 753. Food Packaging (Vol. 753, pp. 71–81). https://doi.org/10.1021/bk-2000- 0753.ch007  Franz, R. (2005). Migration modelling from food-contact plastics into foodstuffs as a new tool for consumer exposure estimation. Food Additives & Contaminants, 22(10), 920–937. https://doi.org/10.1080/02652030500157700  Gavriil, G., Kanavouras, A., & Coutelieris, F. A. (2017). Food-packaging migration models: A critical discussion. Critical Reviews in Food Science and Nutrition, 0(0), 1–11. https://doi.org/10.1080/10408398.2017.1317630  Gavriil, G., Kanavouras, A., & Coutelieris, F. A. (2018a). Can Fick law-based models accurately describe migration within a complete food product life cycle? Journal of Food Processing and Preservation, 42(2), e13520. https://doi.org/10.1111/jfpp.13520  Gavriil, G., Kanavouras, A., & Coutelieris, F. A. (2018b). Food-packaging migration models: A critical discussion. Critical Reviews in Food Science and Nutrition, 58(13), 2262–2272. https://doi.org/10.1080/10408398.2017.1317630  Gehring, C., & Welle, F. (2018). Migration Testing of Polyethylene Terephthalate: Comparison of Regulated Test Conditions with Migration into Real Food at the End of Shelf Life. Packaging Technology and Science, 31(12), 771–780. https://doi.org/10.1002/pts.2291  Hoekstra, E. J., Simoneau, C., Brandsch, R., Dequatre, P., Mercea, P., Milana, M.-R., … Institute for Health and Consumer Protection. (2015). Practical guidelines on the application of migration modelling for the estimation of specific migration. Retrieved from http://dx.publications.europa.eu/10.2788/04517  Holmes, M. J., Hart, A., Northing, P., Oldring, P. K. T., Castle, L., Stott, D., … Wardman, O. (2005). Dietary exposure to chemical migrants from food contact materials: A probabilistic approach. Food Additives & Contaminants, 22(10), 907–919. https://doi.org/10.1080/02652030500307172  INCDTIM Cluj-Napoca. (n.d.). Retrieved May 29, 2019, from https://www.itim-cj.ro/en/index.php?menu=2&submenu=23gr1  Jokar, M., Pedersen, G. A., & Loeschner, K. (2017). Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Additives & Contaminants: Part A, 34(3), 434–450. https://doi.org/10.1080/19440049.2016.1271462  Juliano, P., Koutchma, T., Sui, Q., Barbosa-Cánovas, G., & Sadler, G. (2010). Polymeric-Based Food Packaging for High-Pressure Processing. Food Engineering Reviews, 2, 274–297. https://doi.org/10.1007/s12393-010-9026-0  Kadam, A. A., Karbowiak, T., Voilley, A., & Debeaufort, F. (n.d.). Techniques to measure sorption and migration between small molecules and packaging. A critical review. Journal of the Science of Food and Agriculture, 95(7), 1395–1407. https://doi.org/10.1002/jsfa.6872  Kuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., & Bigger, S. W. (n.d.). Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Comprehensive Reviews in Food Science and Food Safety, 14(4), 411–430. https://doi.org/10.1111/1541-4337.12139  Lau, O.-W., & Wong, S.-K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882(1), 255–270. https://doi.org/10.1016/S0021-9673(00)00356-3  Martínez-López, B., Gontard, N., & Peyron, S. (2018). Worst case prediction of additives migration from polystyrene for food safety purposes: a model update. Food Additives & Contaminants: Part A, 35(3), 563–576. https://doi.org/10.1080/19440049.2017.1402129  Migration. (n.d.). Retrieved May 28, 2019, from Food Packaging Forum website: https://www.foodpackagingforum.org/food-packaging-health/migration © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED16
  17. 17. Created by: References  Migration of Residual Monomers From Plastics Into Food. (n.d.). Retrieved June 13, 2018, from ResearchGate website: https://www.researchgate.net/publication/321022473_Migration_of_Residual_Monomers_From_Plastics_Into_Food  Mutsuga, M., Kawamura, Y., Sugita-Konishi, Y., Hara-Kudo, Y., Takatori, K., & Tanamoto, K. (2006). Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Additives & Contaminants, 23(2), 212–218. https://doi.org/10.1080/02652030500398361  Nerín, C. (n.d.). Harnessing the Power of CCS for Routine Screening Applications on the UNIFI Informatics Platform. 36.  Nerin, C., Alfaro, P., Aznar, M., & Domeño, C. (2013). The challenge of identifying non-intentionally added substances from food packaging materials: A review. Analytica Chimica Acta, 775, 14–24. https://doi.org/10.1016/j.aca.2013.02.028  Nguyen, P. M., Goujon, A., Sauvegrain, P., & Vitrac, O. (2018). A Computer-Aided Methodology to Design Safe Food Packaging and Related Systems. Aiche Journal, 59(4). https://doi.org/10.1002/aic.14056  Nguyen, P. M., Julien, J. M., Breysse, C., Lyathaud, C., Thébault, J., & Vitrac, O. (2017). Project SafeFoodPack Design: case study on indirect migration from paper and boards. Food Additives & Contaminants: Part A, 1–18. https://doi.org/10.1080/19440049.2017.1315777  Nguyen, P.-M., Guiga, W., & Vitrac, O. (2016). Molecular thermodynamics for food science and engineering. Food Research International, 88, 91–104. https://doi.org/10.1016/j.foodres.2016.03.014  Nguyen, P.-M., Julien, J. M., Breysse, C., Lyathaud, C., Thébault, J., & Vitrac, O. (2017). Project SafeFoodPack Design: case study on indirect migration from paper and boards. Food Additives & Contaminants: Part A, 34(10), 1703–1720. https://doi.org/10.1080/19440049.2017.1315777  Non-intentionally added substances (NIAS). (n.d.). Retrieved May 29, 2019, from Food Packaging Forum website: https://www.foodpackagingforum.org/food-packaging-health/non-intentionally-added-substances-nias  Oldring, P. K. T., Castle, L., Hart, A., & Holmes, M. J. (2006). Migrants from food cans revisited – application of a stochastic model for a more realistic assessment of exposure to bisphenol A diglycidyl ether (BADGE). Packaging Technology and Science, 19(3), 121– 137. https://doi.org/10.1002/pts.715  Paseiro-Cerrato, R., DeJager, L., & Begley, T. H. (2019). Determining the migration of nadic acid, terephthalic acid, isophthalic acid and two oligomers from polyester food cans into food in the U.S. market. Food Control, 101, 69–76. https://doi.org/10.1016/j.foodcont.2019.02.033  Poças, F., & Franz, R. (2018). Chapter 10 - Overview on European Regulatory Issues, Legislation, and EFSA Evaluations of Nanomaterials. In M. Â. P. R. Cerqueira, J. M. Lagaron, L. M. P. Castro, & A. A. M. de O. S. Vicente (Eds.), Nanomaterials for Food Packaging (pp. 277–300). https://doi.org/10.1016/B978-0-323-51271-8.00010-3  Poças, M. de F., Oliveira, J. C., Pereira, J. R., Brandsch, R., & Hogg, T. (2011). Modelling migration from paper into a food simulant. Food Control, 22(2), 303–312. https://doi.org/10.1016/j.foodcont.2010.07.028  Poças, M. F., Oliveira, J. C., Brandsch, R., & Hogg, T. (2010). Feasibility Study on the Use of Probabilistic Migration Modeling in Support of Exposure Assessment from Food Contact Materials. Risk Analysis, 30(7), 1052–1061. https://doi.org/10.1111/j.1539- 6924.2010.01394.x  Poças, M. F., Oliveira, J. C., Oliveira, F. A. R., & Hogg, T. (2008a). A Critical Survey of Predictive Mathematical Models for Migration from Packaging. Critical Reviews in Food Science and Nutrition, 48(10), 913–928. https://doi.org/10.1080/10408390701761944  Poças, M. F., Oliveira, J. C., Oliveira, F. A. R., & Hogg, T. (2008b). A Critical Survey of Predictive Mathematical Models for Migration from Packaging. Critical Reviews in Food Science and Nutrition, 48(10), 913–928. https://doi.org/10.1080/10408390701761944  Recent developments in the risk assessment of chemicals in food and their potential impact on the safety assessment of substances used in food contact materials. (n.d.). EFSA Journal, 14(1), 4357. https://doi.org/10.2903/j.efsa.2016.4357  Regulation on Food Packaging. (n.d.). Retrieved May 28, 2019, from Food Packaging Forum website: https://www.foodpackagingforum.org/food-packaging-health/regulation-on-food-packaging  Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., … Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21(11), 1425–1435. https://doi.org/10.1016/j.foodcont.2010.04.028 © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED17
  18. 18. Created by: References  Risk assessment of FCMs: Overview of key scientific challenges | Food Packaging Forum. (n.d.). Retrieved May 29, 2019, from https://www.foodpackagingforum.org/news/risk- assessment-of-fcms-overview-of-key-scientific-challenges  Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E., … Peaslee, G. F. (2017). Fluorinated Compounds in U.S. Fast Food Packaging. Environmental Science & Technology Letters, 4(3), 105–111. https://doi.org/10.1021/acs.estlett.6b00435  Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. (n.d.). EFSA Journal, 13(1), 3978. https://doi.org/10.2903/j.efsa.2015.3978  Stieger, G. (2016). Guidance on migration modeling | Food Packaging Forum. Retrieved May 28, 2019, from https://www.foodpackagingforum.org/news/guidance-on-migration-modeling  Stieger, G. (2018). Migration modeling. Retrieved May 28, 2019, from Food Packaging Forum website: https://www.foodpackagingforum.org/food-packaging-health/migration-modeling  Störmer, A., Bott, J., Kemmer, D., & Franz, R. (2017). Critical review of the migration potential of nanoparticles in food contact plastics. Trends in Food Science & Technology, 63, 39–50. https://doi.org/10.1016/j.tifs.2017.01.011  Till, D., Schwope, A. D., Ehntholt, D. J., Sidman, K. R., Whelan, R. H., Schwartz, P. S., … Rainey, M. L. (1987). Indirect Food Additive Migration from Polymeric Food Packaging Materials. CRC Critical Reviews in Toxicology, 18(3), 215–243. https://doi.org/10.3109/10408448709089862  Vitrac, O., & Goujon, A. (2014). Food Packaging: New Directions for the Control of Additive and Residue Migration. In T. Hamaide, R. Deterre, & J.-F. Feller (Eds.), Environmental Impact of Polymers (pp. 273–308). https://doi.org/10.1002/9781118827116.ch13  Welle, F., & Franz, R. (2011a). Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data. Food Additives & Contaminants: Part A, 28(1), 115–126. https://doi.org/10.1080/19440049.2010.530296  Welle, F., & Franz, R. (2011b). Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data. Food Additives & Contaminants: Part A, 28(1), 115–126. https://doi.org/10.1080/19440049.2010.530296  Zülch, A., & Piringer, O. G. (2010a). Measurement and modelling of migration from paper and board into foodstuffs and dry food simulants. Food Additives and Contaminants, 27(09), 1306–1324. https://doi.org/10.1080/19440049.2010.483693  Zülch, A., & Piringer, O. G. (2010b). Measurement and modelling of migration from paper and board into foodstuffs and dry food simulants. Food Additives and Contaminants, 27(09), 1306–1324. https://doi.org/10.1080/19440049.2010.483693 © INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED18
  19. 19. Created by: Thank you! Let’s Connect www.PackagingTechnologyAndResearch.com Ziynet@PackagingTechnologyAndResearch.com

Hinweis der Redaktion

  • Chemical partitioning from packaging material into the food systems : Migration
  • Worst case scenario: 100% migration
    Models can at least partially replace experiments
    Functional barrier (virgin polymer) effectiveness in laminated or coextruded structures
  • SML = specific migration limits
  • Therefore, the majority of the scientific literature on migration modeling is dedicated to the deterministic approach. In many cases, migration is governed by a mass transfer process called diffusion that can be described by FICK’s LAW
    Two constants partition coefficient and alpha at equilibrium
    Low Mw no longer homogenously distributed at the interface
    No transfer at the outer surface if migrant has lower volatility
  • 2-3 orders of magnitude difference, this is explained by molecular size and shape. The higher, the lower the D
    Both of these models can be applied accurately to polyolefins
  • Monte Carlo sampling based on random sampling
    Model output is the distribution of values
  • PET, PEN, PS, PA are lower than polyolefins
    Polyolefins modeling more sensitive and faster results due to high migration rates : E.g. antioxidants modeling in polyolefins
  • Paper migration is higher / faster
    To food and to atmosphere
    The retention behaviour of the substance in the paper matrix depends also on its interaction with fibres surface and, as mentioned before, the cellulose fibres have an overall negative charge due to carboxyl groups from the carbohydrates and the hydroxyl groups of the lignins. Thus, substances rich in electrons, such as naphthalene, tend to be repelled and are not retained by the fibre. As a consequence, these substances are less absorbed by the paper
    Tau system time parameter, Beta shape parameters
    Weibull model: Simple and flexible in determining mass transfer ptocessess where diffusion theories cannot explain.
  • Migratest :Piringer’s model -> Designed to overestimate
    AKTS: Monolayers (freeware version), Up to 10 layers (licensed version)
    SMEWISE: Freeware
  • Several orders of magnitude overestimation
    Values had a large margin of uncertainty
    Photoinitiator study has 20% m ore than actual values

×