Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Chris Wiggins: "engagement & reality"

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 36 Anzeige

Weitere Verwandte Inhalte

Andere mochten auch (16)

Ähnlich wie Chris Wiggins: "engagement & reality" (20)

Anzeige

Weitere von chris wiggins (17)

Aktuellste (20)

Anzeige

Chris Wiggins: "engagement & reality"

  1. 1. engagement & reality chris.wiggins@columbia.edu chris.wiggins@nytimes.com @chrishwiggins this talk: bit.ly/nyt-engagement
  2. 2. 1851 1996
  3. 3. example: millions of views per hour2015
  4. 4. data science: the web is your “online presence”
  5. 5. data science: the web is a microscope
  6. 6. data science: the web is an experimental tool
  7. 7. data science: the web is an optimization tool
  8. 8. news: 20th century church state
  9. 9. news: 21st century church state engineering
  10. 10. news: 21st century church state engineering
  11. 11. supervised learning, e.g., “the funnel” innovation report, 2014
  12. 12. interpreting supervised learningsupercoolstuff collaboration w/b. chen
  13. 13. interpreting supervised learningsupercoolstuff
  14. 14. optimization & learning, e.g., popular mechanics, 2015
  15. 15. getting to know the readers daeil kim, cf. bit.ly/nyt-engagement
  16. 16. audiences matter
  17. 17. audiences matter innovation report, 2014
  18. 18. R.I.P. good times this talk: bit.ly/nyt-engagement
  19. 19. “a startup is a temporary organization in search of a repeatable and scalable business model” —Steve Blank this talk: bit.ly/nyt-engagement
  20. 20. every publisher is now a startup this talk: bit.ly/nyt-engagement
  21. 21. what else is there besides clicks?
  22. 22. what else is there besides clicks? this talk: bit.ly/nyt-engagement
  23. 23. what else is there besides clicks? this talk: bit.ly/nyt-engagement
  24. 24. “engagement”: examples if your biz model is clicks, engagement=clicks if your biz model is sharing, engagement=sharing if your biz model is time on page, engagement=time on page if your biz model is subscription…?
  25. 25. “engagement”: examples if your biz model is clicks, engagement=clicks if your biz model is sharing, engagement=sharing if your biz model is time on page, engagement=time on page if your biz model is subscription…?
  26. 26. “engagement”: examples if your biz model is clicks, engagement=clicks if your biz model is sharing, engagement=sharing if your biz model is time on page, engagement=time on page if your biz model is subscription…?
  27. 27. “engagement”: examples if your biz model is clicks, engagement=clicks if your biz model is sharing, engagement=sharing if your biz model is time on page, engagement=time on page if your biz model is subscription…?
  28. 28. WWND?
  29. 29. WWND? what would $NFLX do?
  30. 30. from “data scientists @ work” -Caitlin Smallwood VP, Science and Algorithms at Netflix this talk: bit.ly/nyt-engagement
  31. 31. from “data scientists @ work” -Caitlin Smallwood VP, Science and Algorithms at Netflix this talk: bit.ly/nyt-engagement
  32. 32. WWND? if your biz model is subscription, machine learning can help: Balance predictive power for true KPI (retention) with 1. interpretability 2. should be • easy to measure, • quick to measure, • or both
  33. 33. ML can help! “engagement” is hard to define. you choose: 1. poetry 2. philosophy 3. science Wbinan of f2) which predicts 1)
  34. 34. ML can help! “engagement” is hard to define. you choose: 1. poetry 2. philosophy 3. science WE CHOSE SCIENCE: • find 1) reality: KPI, preferably units of USD • find 2) interpretable and observable features • learn combination of 2) which predicts 1)
  35. 35. chris.wiggins@columbia.edu chris.wiggins@nytimes.com @chrishwiggins this talk: bit.ly/nyt-engagement ghost of science past
  36. 36. chris.wiggins@columbia.edu chris.wiggins@nytimes.com @chrishwiggins this talk: bit.ly/nyt-engagement we’re hiring!

×