SlideShare a Scribd company logo
1 of 12
Download to read offline
Improve Reliability Using Phasor Measurement 
                  Units for Smart Grid 
                     Sajal Jain, 9028‐65‐4127, USC Viterbi School of Engineering 
                                   EE‐444 Power System Technology 
                                                       
Abstract


For  the  transmission  and  distribution  system  to  become  more  affordable,  reliable  and 
sustainable  the  grid  needs  to  become  smarter.  During  the  past  few  years  a  considerable 
number  of  activities  have  been  carried  out  in  United  States  to  achieve  a  smart  power  grid. 
Smart  Grid  is  envisioned  to  use  all  present  technologies  in  transforming  grid  intelligently  in 
better situational awareness and operation friendliness. At the same time blackouts in past 
and reliability of grid are major issues for system engineers. This paper describes a system to 
improve  the  security  of  grid  against  false  faults  and  load  swing.  This  system  called, 
the Phasor Measurement Unit (PMU) is an important and promising technology in making the 
future grid smarter. 
 
    1. INTRODUCTION 
    The  society  depends  on  reliable  electricity  as  an  essential  source  for  security,  health  and 
welfare; communication, finance, transportation, food, water supply, heating, cooling, leisure, 
computers, entertainment, education, and almost every aspect of life we could think of. People 
always  expect  that  electricity  will  be  available  when  they  flick  on  the  switch.  But  providing 
electricity  with  high  reliability  is  a  tough  challenge  with  so  many  components  and  unseen 
conditions.  After  generation  of  electricity,  it  requires  a  reliable,  efficient  and  affordable 
transmission system to deliver power from utility to customer.  
    The electricity is generated at lower voltages of about 10KV to 25KV from various sources of 
generation and then stepped up to high voltage of 230KV and above for transmission to reduce 
losses,  transmit  bulk  power  reliably  and  economically  over  long  distances.  The  transmission 

                                                                                                            
                                                                                                   Page | 1  
 
lines    are 
         a       interco
                       onnected        at    various    switchin
                                                               ng    points    to    form
                                                                                        m    a    net
                                                                                                    twork 




Fig1 Basic Structure of Electric System 

of power
       r carrying lin
                    nes which ar
                               re called as  grid. United
                                                        d States has  about 157,0
                                                                                000 miles of
                                                                                           f high 
voltage g
        grid transmis
                    ssion lines. A
                                 After electricity reaches
                                                         s its destinat
                                                                      tion it is again stepped d
                                                                                               down 
to  lower voltages  depending  on the  source  it  has  to  feed  i.e.  industrial  (12KV  to  115KV or 
        r                       n                                                                  V) 
residential (120V to 2
                     240V) and distributed to
                                            o customers. 




                                                                                                           
Fig2 Transmission System
                       m Investment over time 

    Though  the  electric  demand in  United  States  has  b
                                d                          been  increasing  at  25% since  1990 the 
                                                                                   %           0, 
transmission facility construction
                                 n is decreasing at about
                                                        t 30%. Thus this results into more power 
         ansmitted  per  line  whic creates  grid  congestion,  less  reliability  and  higher  elect
being  tra                        ch                                                                tricity 
cost.  The
         e consequen
                   nces of these
                               e bottleneck
                                          ks become la
                                                     arge and ma
                                                               ay cause loss
                                                                           s of grid stab
                                                                                        bility, 

                                                                                                           
                                                                                                  Pag
                                                                                                    ge | 2  
 
lose  of  power,  loss  of  communication,  etc.  This  situation  is  known  as  blackout  or  rolling 
blackout. 
     
    2. BLACKOUTS 
    The cascading failures in a power system which result in the loss of power over a region for 
considerable duration of time are referred as blackout. These have a major direct and indirect 
impact on the economy and national security. Although large cascading blackouts are relatively 
rare,  their  impact  on  the  system  results  into  such  a  high  risk  that  it  becomes  necessary  to 
mitigate and avoid them in the best possible way. 
    There has been number of blackouts in United States over the time which resulted in new 
transmission  policies  for  reliability  improvement  every  time.  The  major  blackouts  and  their 
causes and impact were: 
        2. a.    November 9, 1965 
        One  of  the  five  230KV  line  operating  from  Beck  plant  in  Ontario  to  the  Toronto  area 
went down due to operation of a backup protection relay. While distribution of power on the 
four remaining lines, they started tripping every 2.5 seconds resulting into huge power swing 
and  cascading  outage.  It  blacked  out  almost  entire  northeast  affecting  around  30  million 
people’s life. It took about 13 hours to bring back the power for the entire region. 
        2. b.  July 13, 1977  
        This blackout though concentrated to the New York City only but has major impact on 
the economy and security of the people. It triggered from a total collapse of two 345 KV lines 
on a common tower struck by lighting and tripping off. The utility dispatcher tried to save the 
system over the next hour, but the system collapsed and resulted into blackout which affected 
9 million New York City residents and lasted for about 26hrs. 
        2. c.    July 2, 1996 
        In the summer of 1996 in the Western North America a line to ground fault due to a tree 
resulted into flashover of a 345KV line. The protective systems detected the fault and operated 
to de‐energize the line, but due to faulty operation of protective relay on a parallel transmission 
line  it  de‐energized  a  second  line.  The  loss  of  2  lines  from  the  system  reduced  the  ability  of 
                                                                                                               
                                                                                                      Page | 3  
 
system to carry the power from generating station to load causing shut down of two out of four 
generating  units  at  the  plant.  This  resulted  into  unbalance  between  load  and  supply  and 
frequency  begin  to  decline.  The  system  became  unstable,  automatic  protection  systems 
initiated and outages occurred for few customers to save the entire system. It affected around 
2 million customers and took from few minutes to several hours for completely re‐energizing 
the system. 
        2. d.  August 10, 1996 
        In the same summer of 1996 another blackout occurred. This time the system triggered 
from  random  transmission  line  outages,  resulting  into  system  instability  causing  four  electric 
islands in western interconnection. It is believed that before the event the lines were heavily 
loaded  due  to  extreme  demand  caused  by  hot  weather  day  throughout  most  of  the  western 
region and also because of high electric transfers from Canada into northwest to California as 
the  hydroelectric  plants  were  working  in  excellent  condition.  Again  due  to  trees  touching  the 
lines  multiple  short  circuits  occurred  on  500kv  lines  resulting  into  cascading  outages  due  to 
overloads.  It  was  also  discovered  the  operators  had  done  the  adequate  operating  studies.  It 
affected around 7.5 million customers and lasted for about 9 hrs. 
        2. e.    July 25, 1998  
        The blackout triggered from a lightning striking a 345KV line in Minnesota and initiating 
system protection to de‐energize the line. This resulted into overloading of the low voltage lines 
in the region, but the lightning struck another 345KV line and protective system de‐energized it 
too.  This  resulted  into  extreme  overloading  of  lower  voltage  transmission  lines  and  system 
protection  began  removing  them  from  service.  The  cascading  removal  of  lines  continued  and 
entire northern MAPP region formed three islands, resulting into blackout of the northwestern 
Ontario Hydro system. It affected around 152 thousand people and lasted for about 19 hrs. 
        2. f.    August 14, 2003 
    The biggest blackout in the history of Northern America resulted into shutting down of 508 
generating units in 265 power plants across the north east. 50 million people not only in US but 
Canada too were left without electricity. It is believed that due to very high electric demand a 
generating unit in Eastlake, Ohio went offline putting strain on HV transmission lines. But again 

                                                                                                          
                                                                                                 Page | 4  
 
short  circuits  occurred  due  to  overgrown  trees,  resulting  into  cascading  effects  ultimately 
forcing  to  shutdown  many  power  plants.  The  various  direct  causes  and  contributing  factors 
included: 
    o Failure to maintain adequate reactive power support 
    o Failure to ensure operation within secure limits 
    o Inadequate vegetation management 
    o Inadequate operator training 
    o Failure  to  identify  emergency  conditions  and  communicate  that  status  to  neighboring 
        systems 
    o Inadequate regional‐scale visibility over the bulk power system. 
         
    The various reports on blackouts have shown that these blackouts were preventable. Most 
of  the  instances  due  to  inefficiency  of  the  system  and  operator  to  respond  in  such  a  short 
period for multiple cascading effects have been the reason. Though after 1965 blackout several 
regulations and recommendations were made to prevent similar situation to arise in future, still 
August 2003 blackout has many similarities to the earlier ones.  
    For improvement of the reliability of the system we require comprehensive monitoring of 
the system, training and enforcement of standards within the system, so that it could response 
to critical situation, earliest possible over a larger area in the shortest possible time period with 
minimum human interference required. 

 
    3. SMART GRID 
    According to “The Smart Grid: An Introduction” publication by US Department of Energy’s 
Office of Electricity Delivery and Energy reliability, A smarter grid applies technologies, tools and 
techniques available now to bring knowledge to power‐ knowledge capable of making the grid 
work far more efficiently 
       Ensuring its reliability to degree never before possible 
       Maintaining its affordability 
       Reinforcing our global competitiveness 
                                                                                                          
                                                                                                 Page | 5  
 
   Fully accommodating renewable and traditional energy sources 
       Potential reducing our carbon footprint 
       Introducing advancements and efficiencies yet to be envisioned 
 
It  is  a  technology  that  will  force  the  Utilities  and  suppliers  to  redesign  the  electric  grid  and 
rethink its operations. It will enable to deliver electricity to the consumer from supplier using 
the  complete  power  system  with  ability  to  save  energy,  improve  efficiency,  quality  and 
reliability and reduce consumer cost.  It will enable distributed generation grid connection, grid 
energy  storage  for  distributed  generation  load  balancing  and  containing  failures  due  to 
widespread power grid cascading failures by using advanced sensing, information technology, 
networks, communication techniques, control, transport and distribute electricity. 
 




                                                                                               
Fig3 Basic Smart Grid Ingredients 
                                      



                                                                                                                
                                                                                                       Page | 6  
 
4. PHASOR MEASUREMENT UNITS 
         
        4.1      INTRODUCTION 
    A phasor is a complex number used to determine magnitude and relative angle for a voltage 
and current waveform. A phasor measurement unit (PMU) also known as Synchrophasor, is a 
device which in addition to voltage and current phasors can also measure simultaneously and 
synchronize the associated frequency and electric power. The measurements are synchronized 
through Global Positioning Satellite (GPS) using one pulse per second (1pps) as the reference. 




                                                                    
Fig4 Phasor representation of a sinusoidal signal (a) Sinusoidal signal (b) Phasor representation 

 
The sinusoidal waveform is represented as 
        x(t) = Xm cos(ωt + φ) 
Then the phasor representation of the signal is given by 
        X = Xm/sqrt (2)*e‐jφ = Xm/sqrt (2)*(cosφ + j sinφ) 
It  can  be  noted  that  signal  frequency  ω  is  not  states  in  the  phasor  representation.  Thus  the 
phasor implies a stationary sinusoidal waveform. PMUs use a data window which is one period 
of  fundamental  frequency  of  input  signal.  If  the  system  frequency  deviates  PMUs  uses  a 
frequency tracking and separate the fundamental frequency and its phasor representation. 
 
A synchrophasor infrastructure consists of 3 layers: 
 
    1. Measurement Layer, made up of PMUs connected at transmission voltage level 


                                                                                                              
                                                                                                     Page | 7  
 
2. Data Collection Layer, made up of phasor data concentrators to collect and synchronize 
        data  
    3. Application Layer, made of tools of PMU data for grid operators and offline analysis. 




                                                                                                             
Fig5  A Representative Synchrophasors Infrastructure 
 

        4.2      APPLICATIONS 
                  
   a. Power System Monitoring 
        
Presently system is monitored using state estimator software based on models and data from 
Supervisory  Control  and  Data  Acquisition  (SCADA)  to  find  out  voltage  magnitude  and  angles. 
These are measured in intervals of several seconds. But with PMUs instead of estimating actual 
measuring of system state could be done. The real time monitoring and time synchronization 
will  continuously  analyze  operating  conditions  and  inform  the  operators  about  stressed  grid. 
Dynamic  system  models  could  be  improved  by  detecting  and  analyzing  inter‐area  oscillation 
modes and can further be used to fine tune and optimize existing system stabilizers.   

                                                                                                        
                                                                                               Page | 8  
 
b. Power System State Estimation 
         
Prior to PMUs state could not be measured but just inferred using unsynchronized power flow 
measurements.  But  now  state  estimation  algorithms  use  measurements  of  line  flows  and 
injections,  both  real  and  reactive  power,  to  estimate  all  bus  voltages  and  magnitude.  It 
improves the accuracy and robustness of bad data, faster solutions to linear system problems, 
and  availability  of  data  on  external  network.    Also  PMU  derived  state  estimation  provides 
possibility  for  3‐phase  or  3‐sequence  state  estimator  to  monitor  phase  unbalance  due  to 
grounding or equipment degradation.   
 
  c. Power System Event Analysis 
       
PMUs  provide  high  resolution  data  for  dynamic  event  analysis.  Earlier  data  recorders  and 
loggers didn’t have time synchronization, making the job of understanding and reconstructing a 
timeline  of  what  happened  very  difficult  and  time  consuming.  But  with  PMUs  and  GPS 
coordination  troubleshooting  time  can  cut  down  from  few  hours  to  few  seconds.  NERC 
reported  that  data  recorded  by  PMUs  during  2008  Florida  event  helped  the  event  analysis 
tremendously. 
 
  d. Line Parameter Calculation 
      
PMU data from ends of line can be used to calculate actual line parameters. It helps in verifying 
design  data  based  on  line  geometry.  Line  parameter  monitoring  and  calculation  continuously 
can help in modeling the changes line parameter with external factors line is exposed to. 
 
     e. Real Time Congestion Management 
 
It is done to maintain real time flow across transmission lines and paths within reliable transfer 
capabilities.  It  is  an  important  function  to  manage  demand  in  an  economic  manner  without 
challenging transmission limits. For congestion management actual flow on a line is compared 
to  nominal  transfer  capability  (NTC)  of  the  line  which  is  pre‐calculated.  This  pre‐calculations 
have limitation of thermal factors, voltage and stability conditions. The assumptions for NTC are 

                                                                                                           
                                                                                                  Page | 9  
 
conservative  and  can  result  in  excessive  margins  in  congestion  management.  But  with  PMUs 
highly  accurate  meter  data  in  real  time  conditions,  calculations  for  path  limit  and  path  flow 
improves  highly.  The  high  speed  real‐time  algorithms  provide  Real  Time  Transfer  Capability 
(RTC) limits with critical stability and voltage paths. 
 
    f. Power System Protection 
 
Distance relays zone 3 or backup protections many time trips due to load encroachment during 
power system disturbances. This forces protection engineers to remove backup zone, essential 
for downstream protection in case of failure of protection system to remove a fault. But PMUs 
avoid  false  failure  by  back  up  zone  supervision.  PMUs  uses  wide  area  measurements  for 
restraining back up relays to operate in case of power or load swing but coordinating with other 
PMUs data and discriminating load swing and fault 
 
   g. Adaptive Protection 
 
Conventional protection system responds to faults in a predetermined manner irrespective of 
the  prevailing  system  conditions.  Adaptive  relaying  assumes  that  system  characteristics  and 
protection  parameters  should  be  coordinated  according  to  prevailing  conditions.  PMUs 
application  for  adaptive  protection  with  out  of  step  relays  and  line  relays  provide  better 
security  and  dependability.  PMUs  have  much  accurate  measure  of  line  impedance  for  actual 
fault location. PMU uses data from both ends of the transmission line for fault calculation. 
 
    h. Power system Control 
 
Prior  to  introduction  of  PMUs  the  system  control  was  set  up  locally.  Many  subsystems  like 
machines  only  had  local  control  signals.  But  with  the  advent  of  Synchrophasors  the  remote 
control  based  upon  measured  quantities  has  taken  place.  A  time  tag  is  associated  with  the 
phasor  data  so  that  control  of  the  system  based  on  past  conditions  can  be  calculated.  The 
frequency of measurements every 15–60Hz i.e. 1‐4 times per second handles the control task 
efficiently. 

                                                                                                           
                                                                                                 Page | 10  
 
5. CONCLUSION 

It  is  believed  that  smart  grid  compared  to  present  transmission  grid  is  something  like 
supercomputers are to abacus. It is more than just a power grid, with two way communication 
and  information  technology  being  an  integral  part  of  it.  It  offers  higher  challenges  to  system 
protection  engineers  for  enhanced  reliability  of  the  grid  with  new  standards  and  regulations. 
Phasor  measurement  units  have  been  a  state  of  art  tool  that  has  proven  its  worth  in  solving 
existing  problems  and  better  understanding  of  the  power  system.  For  implementation  of 
phasor  measurement  technology  by  utilities,  identification  and  selection  of  applications 
suitable for the benefit of the individual system and the interconnected grid is a must. 

It is believed PMU technology is likely to be implemented initially for: 

a) validation of system models, and 

b) accurate postmortem analysis. 

Then  with  experience  in  PMU  data  and  real  time  operation,  much  more  complex  state 
estimation algorithms for energy and system management could be developed. Ultimately, the 
goal  is  to  improve  protection  and  control  functions  and  eliminate  catastrophic  failures  or 
reduce severity of such failures from the future of power system. 

                                  




                                                                                                            
                                                                                                  Page | 11  
 
6. REFERENCES 
 
    1. “Grid  2030:  A  National Vision  for  Electricity’s   Second  100  Years”,  July 2003  by  United 
        States Department of Energy office of Transmission and Distribution 
    2. “The Smart Grid: An Introduction” prepared for the U.S. Department of Energy by Litos 
        Strategic Communication 
    3. “National Transmission Grid Study”, May 2002 by U.S. Department of Energy 
    4. “Examples of major bulk electric system power outages”, NERC website documents 
    5. "Final Report on the August 14, 2003 Blackout in the United States and Canada:  Causes 
        and Recommendations," U.S.‐Canada Power System Outage Task Force, April 5, 2004 
    6. Farhangi,  H,  “The  path  of  the  smart  grid”  IEEE  Power  and  Energy  Magazine  Volume  8 
        Issue 1, January‐February 2010 
    7. De La Ree, J.  Centeno, V.  Thorp, J.S.  Phadke, A.G., “Synchronized Phasor Measurement 
        Applications in Power Systems” IEEE Transactions on Smart Grid Volume 1 Issue 1 June 
        2010 
    8. Bhatt,  N.B.,  “Role  of  Synchrophasors  Technology  in  Development  of  a  Smarter 
        Transmission  Grid”    IEEE  Power  and  Energy  Society  General  Meeting  2010,  25‐29  July 
        2010 
    9. Skok, S.  Ivankovic, I.  Cerina, Z., “Applications Based on PMU Technology for Improved 
        Power System Utilization” IEEE Power Engineering Society General Meeting 2007, 24‐28 
        June 2007 
    10. Tholomier,  D.;  Kang,  H.;  Cvorovic,  B.,  “Phasor  Measurement  Units:  Functionality  and 
        Applications”, Power Systems Conference, 2009. PSC '09, 10‐13 March 2009 




                                                                                                         
                                                                                               Page | 12  
 

More Related Content

What's hot

High Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journalHigh Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journalSteven Theeuwen
 
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source Network
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source NetworkPV Based Load Resonant for Boost Converter by Using Quasi Z-Source Network
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source NetworkIJMTST Journal
 
Possible pictures
Possible picturesPossible pictures
Possible picturestreversimes
 
A low power rf id transponder
A low power rf id transponderA low power rf id transponder
A low power rf id transponderBien Morfe
 
Protection of Converter Dense Power Systems
Protection of Converter Dense Power Systems Protection of Converter Dense Power Systems
Protection of Converter Dense Power Systems Aditya Kumar Tripathy
 
An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...VLSICS Design
 
Commscope-Andrew CBC71921-DF-2X
Commscope-Andrew CBC71921-DF-2XCommscope-Andrew CBC71921-DF-2X
Commscope-Andrew CBC71921-DF-2Xsavomir
 
Power loss reduction in radial distribution system by using plant growth simu...
Power loss reduction in radial distribution system by using plant growth simu...Power loss reduction in radial distribution system by using plant growth simu...
Power loss reduction in radial distribution system by using plant growth simu...Alexander Decker
 
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino LogicA New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino LogicIDES Editor
 
Pv system
Pv systemPv system
Pv systemIJASCSE
 
Maximizing your coaxial (cable tv) v2
Maximizing your coaxial (cable tv) v2Maximizing your coaxial (cable tv) v2
Maximizing your coaxial (cable tv) v2Broto Santoso
 

What's hot (18)

High Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journalHigh Efficiency LDMOS Technology for UMTS base stations_journal
High Efficiency LDMOS Technology for UMTS base stations_journal
 
Pv lez 6
Pv lez 6Pv lez 6
Pv lez 6
 
Thottuvelil
ThottuvelilThottuvelil
Thottuvelil
 
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source Network
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source NetworkPV Based Load Resonant for Boost Converter by Using Quasi Z-Source Network
PV Based Load Resonant for Boost Converter by Using Quasi Z-Source Network
 
Possible pictures
Possible picturesPossible pictures
Possible pictures
 
A low power rf id transponder
A low power rf id transponderA low power rf id transponder
A low power rf id transponder
 
Il2616361640
Il2616361640Il2616361640
Il2616361640
 
Protection of Converter Dense Power Systems
Protection of Converter Dense Power Systems Protection of Converter Dense Power Systems
Protection of Converter Dense Power Systems
 
Kevin burke apc
Kevin burke apcKevin burke apc
Kevin burke apc
 
An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...An operational amplifier with recycling folded cascode topology and adaptive ...
An operational amplifier with recycling folded cascode topology and adaptive ...
 
Chapter02 fund of es.
Chapter02 fund of es.Chapter02 fund of es.
Chapter02 fund of es.
 
Commscope-Andrew CBC71921-DF-2X
Commscope-Andrew CBC71921-DF-2XCommscope-Andrew CBC71921-DF-2X
Commscope-Andrew CBC71921-DF-2X
 
Power loss reduction in radial distribution system by using plant growth simu...
Power loss reduction in radial distribution system by using plant growth simu...Power loss reduction in radial distribution system by using plant growth simu...
Power loss reduction in radial distribution system by using plant growth simu...
 
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino LogicA New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic
A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic
 
Pv system
Pv systemPv system
Pv system
 
Mk2420552059
Mk2420552059Mk2420552059
Mk2420552059
 
Maximizing your coaxial (cable tv) v2
Maximizing your coaxial (cable tv) v2Maximizing your coaxial (cable tv) v2
Maximizing your coaxial (cable tv) v2
 
Power transmission & distribution
Power transmission & distributionPower transmission & distribution
Power transmission & distribution
 

Viewers also liked

Optimal PMU Placement in Power System Considering the Measurement Redundancy
Optimal PMU Placement in Power System Considering the Measurement RedundancyOptimal PMU Placement in Power System Considering the Measurement Redundancy
Optimal PMU Placement in Power System Considering the Measurement RedundancySatyendra Singh
 
Optimal placement of_phasor_measurement_units_using_gravitat
Optimal placement of_phasor_measurement_units_using_gravitatOptimal placement of_phasor_measurement_units_using_gravitat
Optimal placement of_phasor_measurement_units_using_gravitatSatyendra Singh
 
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...IJSRD
 
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...sarasijdas
 
Reliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov modelReliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov modelamaresh1234
 
Introduction to phasor measurements units (pm us)
Introduction to phasor measurements units (pm us)Introduction to phasor measurements units (pm us)
Introduction to phasor measurements units (pm us)Supriya Senapati
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatemPanditNitesh
 
Challenges of phasor measurement units
Challenges of phasor measurement unitsChallenges of phasor measurement units
Challenges of phasor measurement unitssarasijdas
 
Role of phasor measuring unit in power system
Role of phasor measuring unit in power systemRole of phasor measuring unit in power system
Role of phasor measuring unit in power systemHASEENA. M
 

Viewers also liked (9)

Optimal PMU Placement in Power System Considering the Measurement Redundancy
Optimal PMU Placement in Power System Considering the Measurement RedundancyOptimal PMU Placement in Power System Considering the Measurement Redundancy
Optimal PMU Placement in Power System Considering the Measurement Redundancy
 
Optimal placement of_phasor_measurement_units_using_gravitat
Optimal placement of_phasor_measurement_units_using_gravitatOptimal placement of_phasor_measurement_units_using_gravitat
Optimal placement of_phasor_measurement_units_using_gravitat
 
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...
A Survey On Real Time State Estimation For Optimal Placement Of Phasor Measur...
 
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
 
Reliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov modelReliability analysis of pmu using hidden markov model
Reliability analysis of pmu using hidden markov model
 
Introduction to phasor measurements units (pm us)
Introduction to phasor measurements units (pm us)Introduction to phasor measurements units (pm us)
Introduction to phasor measurements units (pm us)
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatem
 
Challenges of phasor measurement units
Challenges of phasor measurement unitsChallenges of phasor measurement units
Challenges of phasor measurement units
 
Role of phasor measuring unit in power system
Role of phasor measuring unit in power systemRole of phasor measuring unit in power system
Role of phasor measuring unit in power system
 

Similar to 42839874 improve-reliability-using-phasor-measurement-units-for-smart-grid-sajal-jain

Voltage and power quality control in wind power applications by svc
Voltage and power quality control in wind power applications by svcVoltage and power quality control in wind power applications by svc
Voltage and power quality control in wind power applications by svcHari Prasath
 
220v gss working modelFinal report
220v gss working modelFinal report220v gss working modelFinal report
220v gss working modelFinal reportgiriraj bairwa
 
NTDC 220kV Transmission gird station Internship report
NTDC 220kV Transmission gird station Internship reportNTDC 220kV Transmission gird station Internship report
NTDC 220kV Transmission gird station Internship reportAneel-k Suthar
 
Thermal power plant working
Thermal power plant workingThermal power plant working
Thermal power plant workingSandeep Jamdar
 
Principles of Power Systems V.K Mehta Complete Book - Chapter 7
Principles of Power Systems V.K Mehta Complete Book - Chapter 7Principles of Power Systems V.K Mehta Complete Book - Chapter 7
Principles of Power Systems V.K Mehta Complete Book - Chapter 7Power System Operation
 
Green power zone
Green power zoneGreen power zone
Green power zoneCHESF
 
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015Isam Shahrour
 
Presentation PT.pptx
Presentation PT.pptxPresentation PT.pptx
Presentation PT.pptxKASHIFzaman16
 
Review of Reduction of Leakage Current in Cascaded Multilevel Inverter
Review of Reduction of Leakage Current in Cascaded Multilevel InverterReview of Reduction of Leakage Current in Cascaded Multilevel Inverter
Review of Reduction of Leakage Current in Cascaded Multilevel InverterIJRST Journal
 
315564438 hvdc-transmission-ppt
315564438 hvdc-transmission-ppt315564438 hvdc-transmission-ppt
315564438 hvdc-transmission-pptLaveen Raghunam
 
Testing Pv Micro Inverters Using The Am Xs Four Quadrant Capability
Testing Pv Micro Inverters Using The Am Xs Four Quadrant CapabilityTesting Pv Micro Inverters Using The Am Xs Four Quadrant Capability
Testing Pv Micro Inverters Using The Am Xs Four Quadrant CapabilityTechnical Representatives, Inc.
 

Similar to 42839874 improve-reliability-using-phasor-measurement-units-for-smart-grid-sajal-jain (20)

Fi25986990
Fi25986990Fi25986990
Fi25986990
 
underground presentation
underground presentation underground presentation
underground presentation
 
Voltage and power quality control in wind power applications by svc
Voltage and power quality control in wind power applications by svcVoltage and power quality control in wind power applications by svc
Voltage and power quality control in wind power applications by svc
 
CF IN HVDC.pptx
CF IN HVDC.pptxCF IN HVDC.pptx
CF IN HVDC.pptx
 
Blackout
BlackoutBlackout
Blackout
 
Electric09
Electric09Electric09
Electric09
 
220v gss working modelFinal report
220v gss working modelFinal report220v gss working modelFinal report
220v gss working modelFinal report
 
NTDC 220kV Transmission gird station Internship report
NTDC 220kV Transmission gird station Internship reportNTDC 220kV Transmission gird station Internship report
NTDC 220kV Transmission gird station Internship report
 
Thermal power plant working
Thermal power plant workingThermal power plant working
Thermal power plant working
 
Main paper
Main paperMain paper
Main paper
 
Principles of Power Systems V.K Mehta Complete Book - Chapter 7
Principles of Power Systems V.K Mehta Complete Book - Chapter 7Principles of Power Systems V.K Mehta Complete Book - Chapter 7
Principles of Power Systems V.K Mehta Complete Book - Chapter 7
 
Green power zone
Green power zoneGreen power zone
Green power zone
 
AC DISTRIBUTION - ELECTRICAL POWER SYSTEM
AC DISTRIBUTION - ELECTRICAL POWER SYSTEMAC DISTRIBUTION - ELECTRICAL POWER SYSTEM
AC DISTRIBUTION - ELECTRICAL POWER SYSTEM
 
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015
Chapter 5 Smart electrical grid , Smart City Summer Course, AUST, 2015
 
Presentation PT.pptx
Presentation PT.pptxPresentation PT.pptx
Presentation PT.pptx
 
Review of Reduction of Leakage Current in Cascaded Multilevel Inverter
Review of Reduction of Leakage Current in Cascaded Multilevel InverterReview of Reduction of Leakage Current in Cascaded Multilevel Inverter
Review of Reduction of Leakage Current in Cascaded Multilevel Inverter
 
315564438 hvdc-transmission-ppt
315564438 hvdc-transmission-ppt315564438 hvdc-transmission-ppt
315564438 hvdc-transmission-ppt
 
Pdu 2021 s2
Pdu 2021 s2Pdu 2021 s2
Pdu 2021 s2
 
Testing Pv Micro Inverters Using The Am Xs Four Quadrant Capability
Testing Pv Micro Inverters Using The Am Xs Four Quadrant CapabilityTesting Pv Micro Inverters Using The Am Xs Four Quadrant Capability
Testing Pv Micro Inverters Using The Am Xs Four Quadrant Capability
 
B011120723
B011120723B011120723
B011120723
 

More from chndkr87

22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-pschndkr87
 
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-pschndkr87
 
12 eipp galvan
12 eipp galvan12 eipp galvan
12 eipp galvanchndkr87
 
Fuel cellcharacterization
Fuel cellcharacterizationFuel cellcharacterization
Fuel cellcharacterizationchndkr87
 
Assingmentfuelcell
AssingmentfuelcellAssingmentfuelcell
Assingmentfuelcellchndkr87
 
Fuel cellcharacterization
Fuel cellcharacterizationFuel cellcharacterization
Fuel cellcharacterizationchndkr87
 

More from chndkr87 (7)

22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
 
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
22726998 precise-synchronization-of-phasor-measurements-in-electric-ps
 
12 eipp galvan
12 eipp galvan12 eipp galvan
12 eipp galvan
 
Fuel cellcharacterization
Fuel cellcharacterizationFuel cellcharacterization
Fuel cellcharacterization
 
Assingmentfuelcell
AssingmentfuelcellAssingmentfuelcell
Assingmentfuelcell
 
Fuel
FuelFuel
Fuel
 
Fuel cellcharacterization
Fuel cellcharacterizationFuel cellcharacterization
Fuel cellcharacterization
 

Recently uploaded

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 

Recently uploaded (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 

42839874 improve-reliability-using-phasor-measurement-units-for-smart-grid-sajal-jain

  • 1. Improve Reliability Using Phasor Measurement  Units for Smart Grid  Sajal Jain, 9028‐65‐4127, USC Viterbi School of Engineering  EE‐444 Power System Technology    Abstract For  the  transmission  and  distribution  system  to  become  more  affordable,  reliable  and  sustainable  the  grid  needs  to  become  smarter.  During  the  past  few  years  a  considerable  number  of  activities  have  been  carried  out  in  United  States  to  achieve  a  smart  power  grid.  Smart  Grid  is  envisioned  to  use  all  present  technologies  in  transforming  grid  intelligently  in  better situational awareness and operation friendliness. At the same time blackouts in past  and reliability of grid are major issues for system engineers. This paper describes a system to  improve  the  security  of  grid  against  false  faults  and  load  swing.  This  system  called,  the Phasor Measurement Unit (PMU) is an important and promising technology in making the  future grid smarter.    1. INTRODUCTION  The  society  depends  on  reliable  electricity  as  an  essential  source  for  security,  health  and  welfare; communication, finance, transportation, food, water supply, heating, cooling, leisure,  computers, entertainment, education, and almost every aspect of life we could think of. People  always  expect  that  electricity  will  be  available  when  they  flick  on  the  switch.  But  providing  electricity  with  high  reliability  is  a  tough  challenge  with  so  many  components  and  unseen  conditions.  After  generation  of  electricity,  it  requires  a  reliable,  efficient  and  affordable  transmission system to deliver power from utility to customer.   The electricity is generated at lower voltages of about 10KV to 25KV from various sources of  generation and then stepped up to high voltage of 230KV and above for transmission to reduce  losses,  transmit  bulk  power  reliably  and  economically  over  long  distances.  The  transmission    Page | 1    
  • 2. lines  are  a interco onnected  at  various  switchin ng  points  to  form m  a  net twork  Fig1 Basic Structure of Electric System  of power r carrying lin nes which ar re called as  grid. United d States has  about 157,0 000 miles of f high  voltage g grid transmis ssion lines. A After electricity reaches s its destinat tion it is again stepped d down  to  lower voltages  depending  on the  source  it  has  to  feed  i.e.  industrial  (12KV  to  115KV or  r  n  V)  residential (120V to 2 240V) and distributed to o customers.    Fig2 Transmission System m Investment over time  Though  the  electric  demand in  United  States  has  b d  been  increasing  at  25% since  1990 the  %  0,  transmission facility construction n is decreasing at about t 30%. Thus this results into more power  ansmitted  per  line  whic creates  grid  congestion,  less  reliability  and  higher  elect being  tra ch  tricity  cost.  The e consequen nces of these e bottleneck ks become la arge and ma ay cause loss s of grid stab bility,    Pag ge | 2    
  • 3. lose  of  power,  loss  of  communication,  etc.  This  situation  is  known  as  blackout  or  rolling  blackout.    2. BLACKOUTS  The cascading failures in a power system which result in the loss of power over a region for  considerable duration of time are referred as blackout. These have a major direct and indirect  impact on the economy and national security. Although large cascading blackouts are relatively  rare,  their  impact  on  the  system  results  into  such  a  high  risk  that  it  becomes  necessary  to  mitigate and avoid them in the best possible way.  There has been number of blackouts in United States over the time which resulted in new  transmission  policies  for  reliability  improvement  every  time.  The  major  blackouts  and  their  causes and impact were:  2. a.  November 9, 1965  One  of  the  five  230KV  line  operating  from  Beck  plant  in  Ontario  to  the  Toronto  area  went down due to operation of a backup protection relay. While distribution of power on the  four remaining lines, they started tripping every 2.5 seconds resulting into huge power swing  and  cascading  outage.  It  blacked  out  almost  entire  northeast  affecting  around  30  million  people’s life. It took about 13 hours to bring back the power for the entire region.  2. b.  July 13, 1977   This blackout though concentrated to the New York City only but has major impact on  the economy and security of the people. It triggered from a total collapse of two 345 KV lines  on a common tower struck by lighting and tripping off. The utility dispatcher tried to save the  system over the next hour, but the system collapsed and resulted into blackout which affected  9 million New York City residents and lasted for about 26hrs.  2. c.  July 2, 1996  In the summer of 1996 in the Western North America a line to ground fault due to a tree  resulted into flashover of a 345KV line. The protective systems detected the fault and operated  to de‐energize the line, but due to faulty operation of protective relay on a parallel transmission  line  it  de‐energized  a  second  line.  The  loss  of  2  lines  from  the  system  reduced  the  ability  of    Page | 3    
  • 4. system to carry the power from generating station to load causing shut down of two out of four  generating  units  at  the  plant.  This  resulted  into  unbalance  between  load  and  supply  and  frequency  begin  to  decline.  The  system  became  unstable,  automatic  protection  systems  initiated and outages occurred for few customers to save the entire system. It affected around  2 million customers and took from few minutes to several hours for completely re‐energizing  the system.  2. d.  August 10, 1996  In the same summer of 1996 another blackout occurred. This time the system triggered  from  random  transmission  line  outages,  resulting  into  system  instability  causing  four  electric  islands in western interconnection. It is believed that before the event the lines were heavily  loaded  due  to  extreme  demand  caused  by  hot  weather  day  throughout  most  of  the  western  region and also because of high electric transfers from Canada into northwest to California as  the  hydroelectric  plants  were  working  in  excellent  condition.  Again  due  to  trees  touching  the  lines  multiple  short  circuits  occurred  on  500kv  lines  resulting  into  cascading  outages  due  to  overloads.  It  was  also  discovered  the  operators  had  done  the  adequate  operating  studies.  It  affected around 7.5 million customers and lasted for about 9 hrs.  2. e.  July 25, 1998   The blackout triggered from a lightning striking a 345KV line in Minnesota and initiating  system protection to de‐energize the line. This resulted into overloading of the low voltage lines  in the region, but the lightning struck another 345KV line and protective system de‐energized it  too.  This  resulted  into  extreme  overloading  of  lower  voltage  transmission  lines  and  system  protection  began  removing  them  from  service.  The  cascading  removal  of  lines  continued  and  entire northern MAPP region formed three islands, resulting into blackout of the northwestern  Ontario Hydro system. It affected around 152 thousand people and lasted for about 19 hrs.  2. f.  August 14, 2003  The biggest blackout in the history of Northern America resulted into shutting down of 508  generating units in 265 power plants across the north east. 50 million people not only in US but  Canada too were left without electricity. It is believed that due to very high electric demand a  generating unit in Eastlake, Ohio went offline putting strain on HV transmission lines. But again    Page | 4    
  • 5. short  circuits  occurred  due  to  overgrown  trees,  resulting  into  cascading  effects  ultimately  forcing  to  shutdown  many  power  plants.  The  various  direct  causes  and  contributing  factors  included:  o Failure to maintain adequate reactive power support  o Failure to ensure operation within secure limits  o Inadequate vegetation management  o Inadequate operator training  o Failure  to  identify  emergency  conditions  and  communicate  that  status  to  neighboring  systems  o Inadequate regional‐scale visibility over the bulk power system.    The various reports on blackouts have shown that these blackouts were preventable. Most  of  the  instances  due  to  inefficiency  of  the  system  and  operator  to  respond  in  such  a  short  period for multiple cascading effects have been the reason. Though after 1965 blackout several  regulations and recommendations were made to prevent similar situation to arise in future, still  August 2003 blackout has many similarities to the earlier ones.   For improvement of the reliability of the system we require comprehensive monitoring of  the system, training and enforcement of standards within the system, so that it could response  to critical situation, earliest possible over a larger area in the shortest possible time period with  minimum human interference required.    3. SMART GRID  According to “The Smart Grid: An Introduction” publication by US Department of Energy’s  Office of Electricity Delivery and Energy reliability, A smarter grid applies technologies, tools and  techniques available now to bring knowledge to power‐ knowledge capable of making the grid  work far more efficiently   Ensuring its reliability to degree never before possible   Maintaining its affordability   Reinforcing our global competitiveness    Page | 5    
  • 6. Fully accommodating renewable and traditional energy sources   Potential reducing our carbon footprint   Introducing advancements and efficiencies yet to be envisioned    It  is  a  technology  that  will  force  the  Utilities  and  suppliers  to  redesign  the  electric  grid  and  rethink its operations. It will enable to deliver electricity to the consumer from supplier using  the  complete  power  system  with  ability  to  save  energy,  improve  efficiency,  quality  and  reliability and reduce consumer cost.  It will enable distributed generation grid connection, grid  energy  storage  for  distributed  generation  load  balancing  and  containing  failures  due  to  widespread power grid cascading failures by using advanced sensing, information technology,  networks, communication techniques, control, transport and distribute electricity.      Fig3 Basic Smart Grid Ingredients        Page | 6    
  • 7. 4. PHASOR MEASUREMENT UNITS    4.1 INTRODUCTION  A phasor is a complex number used to determine magnitude and relative angle for a voltage  and current waveform. A phasor measurement unit (PMU) also known as Synchrophasor, is a  device which in addition to voltage and current phasors can also measure simultaneously and  synchronize the associated frequency and electric power. The measurements are synchronized  through Global Positioning Satellite (GPS) using one pulse per second (1pps) as the reference.    Fig4 Phasor representation of a sinusoidal signal (a) Sinusoidal signal (b) Phasor representation    The sinusoidal waveform is represented as  x(t) = Xm cos(ωt + φ)  Then the phasor representation of the signal is given by    X = Xm/sqrt (2)*e‐jφ = Xm/sqrt (2)*(cosφ + j sinφ)  It  can  be  noted  that  signal  frequency  ω  is  not  states  in  the  phasor  representation.  Thus  the  phasor implies a stationary sinusoidal waveform. PMUs use a data window which is one period  of  fundamental  frequency  of  input  signal.  If  the  system  frequency  deviates  PMUs  uses  a  frequency tracking and separate the fundamental frequency and its phasor representation.    A synchrophasor infrastructure consists of 3 layers:    1. Measurement Layer, made up of PMUs connected at transmission voltage level    Page | 7    
  • 8. 2. Data Collection Layer, made up of phasor data concentrators to collect and synchronize  data   3. Application Layer, made of tools of PMU data for grid operators and offline analysis.    Fig5  A Representative Synchrophasors Infrastructure    4.2 APPLICATIONS    a. Power System Monitoring    Presently system is monitored using state estimator software based on models and data from  Supervisory  Control  and  Data  Acquisition  (SCADA)  to  find  out  voltage  magnitude  and  angles.  These are measured in intervals of several seconds. But with PMUs instead of estimating actual  measuring of system state could be done. The real time monitoring and time synchronization  will  continuously  analyze  operating  conditions  and  inform  the  operators  about  stressed  grid.  Dynamic  system  models  could  be  improved  by  detecting  and  analyzing  inter‐area  oscillation  modes and can further be used to fine tune and optimize existing system stabilizers.      Page | 8    
  • 9. b. Power System State Estimation    Prior to PMUs state could not be measured but just inferred using unsynchronized power flow  measurements.  But  now  state  estimation  algorithms  use  measurements  of  line  flows  and  injections,  both  real  and  reactive  power,  to  estimate  all  bus  voltages  and  magnitude.  It  improves the accuracy and robustness of bad data, faster solutions to linear system problems,  and  availability  of  data  on  external  network.    Also  PMU  derived  state  estimation  provides  possibility  for  3‐phase  or  3‐sequence  state  estimator  to  monitor  phase  unbalance  due  to  grounding or equipment degradation.      c. Power System Event Analysis    PMUs  provide  high  resolution  data  for  dynamic  event  analysis.  Earlier  data  recorders  and  loggers didn’t have time synchronization, making the job of understanding and reconstructing a  timeline  of  what  happened  very  difficult  and  time  consuming.  But  with  PMUs  and  GPS  coordination  troubleshooting  time  can  cut  down  from  few  hours  to  few  seconds.  NERC  reported  that  data  recorded  by  PMUs  during  2008  Florida  event  helped  the  event  analysis  tremendously.    d. Line Parameter Calculation    PMU data from ends of line can be used to calculate actual line parameters. It helps in verifying  design  data  based  on  line  geometry.  Line  parameter  monitoring  and  calculation  continuously  can help in modeling the changes line parameter with external factors line is exposed to.    e. Real Time Congestion Management    It is done to maintain real time flow across transmission lines and paths within reliable transfer  capabilities.  It  is  an  important  function  to  manage  demand  in  an  economic  manner  without  challenging transmission limits. For congestion management actual flow on a line is compared  to  nominal  transfer  capability  (NTC)  of  the  line  which  is  pre‐calculated.  This  pre‐calculations  have limitation of thermal factors, voltage and stability conditions. The assumptions for NTC are    Page | 9    
  • 10. conservative  and  can  result  in  excessive  margins  in  congestion  management.  But  with  PMUs  highly  accurate  meter  data  in  real  time  conditions,  calculations  for  path  limit  and  path  flow  improves  highly.  The  high  speed  real‐time  algorithms  provide  Real  Time  Transfer  Capability  (RTC) limits with critical stability and voltage paths.    f. Power System Protection    Distance relays zone 3 or backup protections many time trips due to load encroachment during  power system disturbances. This forces protection engineers to remove backup zone, essential  for downstream protection in case of failure of protection system to remove a fault. But PMUs  avoid  false  failure  by  back  up  zone  supervision.  PMUs  uses  wide  area  measurements  for  restraining back up relays to operate in case of power or load swing but coordinating with other  PMUs data and discriminating load swing and fault    g. Adaptive Protection    Conventional protection system responds to faults in a predetermined manner irrespective of  the  prevailing  system  conditions.  Adaptive  relaying  assumes  that  system  characteristics  and  protection  parameters  should  be  coordinated  according  to  prevailing  conditions.  PMUs  application  for  adaptive  protection  with  out  of  step  relays  and  line  relays  provide  better  security  and  dependability.  PMUs  have  much  accurate  measure  of  line  impedance  for  actual  fault location. PMU uses data from both ends of the transmission line for fault calculation.    h. Power system Control    Prior  to  introduction  of  PMUs  the  system  control  was  set  up  locally.  Many  subsystems  like  machines  only  had  local  control  signals.  But  with  the  advent  of  Synchrophasors  the  remote  control  based  upon  measured  quantities  has  taken  place.  A  time  tag  is  associated  with  the  phasor  data  so  that  control  of  the  system  based  on  past  conditions  can  be  calculated.  The  frequency of measurements every 15–60Hz i.e. 1‐4 times per second handles the control task  efficiently.    Page | 10    
  • 11. 5. CONCLUSION  It  is  believed  that  smart  grid  compared  to  present  transmission  grid  is  something  like  supercomputers are to abacus. It is more than just a power grid, with two way communication  and  information  technology  being  an  integral  part  of  it.  It  offers  higher  challenges  to  system  protection  engineers  for  enhanced  reliability  of  the  grid  with  new  standards  and  regulations.  Phasor  measurement  units  have  been  a  state  of  art  tool  that  has  proven  its  worth  in  solving  existing  problems  and  better  understanding  of  the  power  system.  For  implementation  of  phasor  measurement  technology  by  utilities,  identification  and  selection  of  applications  suitable for the benefit of the individual system and the interconnected grid is a must.  It is believed PMU technology is likely to be implemented initially for:  a) validation of system models, and  b) accurate postmortem analysis.  Then  with  experience  in  PMU  data  and  real  time  operation,  much  more  complex  state  estimation algorithms for energy and system management could be developed. Ultimately, the  goal  is  to  improve  protection  and  control  functions  and  eliminate  catastrophic  failures  or  reduce severity of such failures from the future of power system.        Page | 11    
  • 12. 6. REFERENCES    1. “Grid  2030:  A  National Vision  for  Electricity’s   Second  100  Years”,  July 2003  by  United  States Department of Energy office of Transmission and Distribution  2. “The Smart Grid: An Introduction” prepared for the U.S. Department of Energy by Litos  Strategic Communication  3. “National Transmission Grid Study”, May 2002 by U.S. Department of Energy  4. “Examples of major bulk electric system power outages”, NERC website documents  5. "Final Report on the August 14, 2003 Blackout in the United States and Canada:  Causes  and Recommendations," U.S.‐Canada Power System Outage Task Force, April 5, 2004  6. Farhangi,  H,  “The  path  of  the  smart  grid”  IEEE  Power  and  Energy  Magazine  Volume  8  Issue 1, January‐February 2010  7. De La Ree, J.  Centeno, V.  Thorp, J.S.  Phadke, A.G., “Synchronized Phasor Measurement  Applications in Power Systems” IEEE Transactions on Smart Grid Volume 1 Issue 1 June  2010  8. Bhatt,  N.B.,  “Role  of  Synchrophasors  Technology  in  Development  of  a  Smarter  Transmission  Grid”    IEEE  Power  and  Energy  Society  General  Meeting  2010,  25‐29  July  2010  9. Skok, S.  Ivankovic, I.  Cerina, Z., “Applications Based on PMU Technology for Improved  Power System Utilization” IEEE Power Engineering Society General Meeting 2007, 24‐28  June 2007  10. Tholomier,  D.;  Kang,  H.;  Cvorovic,  B.,  “Phasor  Measurement  Units:  Functionality  and  Applications”, Power Systems Conference, 2009. PSC '09, 10‐13 March 2009    Page | 12