SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
Multivariate Archimax copulas 
Anne-Laure Fougeres 
Institut Camille Jordan, Universite Lyon 1 
joint work with 
A. Charpentier, Ch. Genest and J.G. Neslehova 
November 3, 2014 
Workshop Extreme Value Theory, Spatial and Temporal Aspects 
Besancon
I. Motivation 
II. C ;L is a copula 
III. Stochastic representations for Archimax copulas 
IV. Simulation algorithms 
V. Extremal behavior of Archimax copulas 
VI. Conclusion - Perspectives
I. Motivation 
Multivariate risks often deal with extremes of dependent variables: 
I Alimentary risks: Global exposition to the contamination risk 
via a set of aliments. 
I Insurance risks: ruin probabilities, when several types of 
contracts are concerned (natural disaster). 
I Coastal 
ooding: electrical infrastructures, dikes. 
Multivariate extreme-value theory provides a useful 
mathematical framework to handle such risks.
Consider a d-variate sample X1; : : : ;Xn, with Xi = (Xi1 
; : : : ;Xid 
), 
for each i = 1; : : : ; n. De
ne 
P(Xi  x) = F(x) = C(F1(x1); : : : ; Fd (xd )) ; 
so that F1; : : : ; Fd are the marginal cdfs (assume them continuous), 
F is the joint cdf, and C is the associated copula. 
Assumption: existence of a multivariate domain of attraction 
There exist (an); (bn);G such that, when n ! 1, 
Fn(an;1 x1 + bn;1; : : : ; an;d xd + bn;d ) = Fn(an x + bn) ! G(x); 
where the attractor G is a d-variate cdf with non degenerate 
margins G1; : : : ;Gd , and x is any continuity point of G.
This means equivalently that: 
. the marginal cdfs Fj are in the univariate domain of attraction 
of the Gj 's (j = 1; : : : ; d). 
. there exists a d-variate copula C? such that for any u 2 [0; 1]d , 
lim 
n!1 
C(u1=n 
1 ; : : : ; u1=n 
d )n = C?(u1; : : : ; ud ) ; (1) 
and the limiting cdfs are related via G(x) = C?(G1(x1); : : : ;Gd (xd )): 
Notation: F 2 D(G) or C 2 D(C?). 
Equation (1) is equivalent to 
n 
h 
1  C 
 
1  
x1 
n 
; : : : ; 1  
xd 
n 
i 
! log C?(ex1 ; : : : ; exd ) = L?(x) : 
L? = stable tail dependence function (Huang, 1992)
L?(x) = lim 
n!1 
n 
h 
1  C 
 
1  
x1 
n 
; : : : ; 1  
xd 
n 
i 
= lim 
n!1 
n P 
h 
F1(X1)  1  
x1 
n 
or : : : or Fd (Xd )  1  
xd 
n 
i 
: 
Tail regions of interest for L?: 
at least one of the components X1; : : : ;Xd becomes large.
Some properties of the stable tail dependence function L 
I LM(x) := max(x1; : : : ; xd )  L(x)  L(x) := x1 +    + xd 
comonotonicity case independence case 
I margins are standardized: L(0; : : : ; 0; xj ; 0; : : : ; 0) = xj 
I L is homogeneous of order 1 
L(x) = lim 
s!1 
s 
 
1  C 
 
1  
x1 
s= 
; : : : ; 1  
xd 
s= 
 
= lim 
t!1 
t 
h 
1  C 
 
1  
x1 
t 
; : : : ; 1  
xd 
t 
i 
= L(x) : 
I L is convex, i.e. for each  2 [0; 1], 
Lfx + (1  )yg  L(x) + (1  )L(y) :
Question:
x an attractor C? (equivalently L?); which kind of 
distribution F does belong to its domain of attraction? 
I theoretical descriptive interest. 
I practical modeling interest: To get large families with a 

exible structure in a speci
c domain of attraction. 
I numerical interest: Risk evaluation requires estimation of C?. 
Several estimators exist. How to compare them? For a small 
sample simulation study, designs of experiments involve to .
x several attractors C?; . simulate, for each attractor, from several distributions 
C 2 D(C?).
Attractor of classical multivariate distributions 
I Multivariate normal d.f. ! Independence 
I Archimedean copulas 
C (u1; : : : ; ud ) =   
 
 1(u1) +    +  1(ud ) 
	 
where the generator   : R+ ! [0; 1] satis
es speci
c conditions. 
Archimedean copulas ! Multivariate logistic EV 
L?(x1; : : : ; xd ) = 
nPd 
j=1 x1=r 
j 
or 
(with r  1). 
But in fact Independence case (r = 1) for 
. Clayton's family  (t) = (1 + t)1=;   0 
. Frank's family  (t) = log f1  et(1  e)g =
I Elliptical distributions 
X =  + RAU 
where  location parameter, R random radial component, 
A d  d-matrix invertible such that AAT positive de
nite, and 
U random d-vector uniformly distributed on Sd1. 
Elliptical distribution ! Independence 
with R rapidly varying 
I Extreme value d.f. CA ! itself CA
Objective: Construct a family of multivariate copulas 
I which can have any extreme value distribution as its 
maximum attractor 
I which is easy to simulate. 
Caperaa, Fougeres and Genest (2000) : bivariate Archimax copulas 
C ;A(u1; u2) =   
 
f 1(u1) +  1(u2)gA 
 
 1(u1) 
 1(u1) +  1(u2) 
 
; 
(2) 
where A : [0; 1] ! [1=2; 1] and   : [0;1) ! [0; 1] such that 
(i) A is convex and, for all t 2 [0; 1], max(t; 1  t)  A(t)  1; 
(ii)   : (0; 1] ! [0;1) is convex, decreasing, such that  (0) = 1 and 
limx!1  (x) = 0.
Archimax because... two important particular cases 
I if A  1, C;A reduces to an Archimedean copula, 
C (u1; u2) =  f 1(u1) +  1(u2)g 
I if  (t) = et , C ;A is an extreme-value copula, 
CA(u1; u2) = exp 
 
ln(u1u2)A 
 
ln(u1) 
ln(u1u2) 
 
: 
Result: Archimax copulas are in the domain of attraction of an 
EV copula CA? where, for all t 2 (0; 1), 
A?(t) = ft1= + (1  t)1=gA 
( 
t1= 
t1= + (1  t)1= 
) 
whenever t7!  1(1  1=t) is regularly varying of degree 
1= with  2 (0; 1];
Additional references 
I Application in hydrology: see Basigal, Jagr and Mesiar (2011); 
I Applications in
nance: see Zivot and Wang (2006), Jaworski, 
Durante and Hardle (2013), Mai and Scherer (2014); 
I R package: acopula (Basigal); 
I Mesiar and Jagr (2013): conjecture that a suitable extension 
to arbitrary dimension should be 
C ;L(u1; : : : ; ud ) =    Lf 1(u1); : : : ;  1(ud )g: (3) 
Open problem 4.1 (Mesiar and Jagr, 2013) : C ;L is a copula as 
soon as L is a stable tail dependence function and   is an 
Archimedean generator. 
[sounds reasonable, since for d = 2, A(t) = L(t; 1t), so that (3) is (2).]
Purpose of our work 
I prove that C ;L is a copula 
solve Open problem of Mesiar and Jagr, 2013 
I study the d-variate Archimax family 
. in terms of attractor; 
. in terms of simulation issues. 
Refer to Charpentier, Fougeres, Genest and Neslehova (2014), 
JMVA 126, pp. 118-136.
C ;L is a copula: main ingredients 
For all u1; : : : ; ud 2 (0; 1), consider 
C (u1; : : : ; ud ) =  f 1(u1) +    +  1(ud )g: 
1. Characterization of an Archimedean generator 
Then C  is a copula if and only if   : [0;1) ! [0; 1] satis
es 
.  (0) = 1, 
. limx!1  (x) = 0 
.   is d-monotone, i.e.   has d  2 derivatives on (0;1), 
(1)j (j)  0 (for all j 2 f0; : : : ; d  2g), and (1)d2 (d2) 
non-increasing and convex on (0;1). 
McNeil and Neslehova (2009)
C ;L is a copula: main ingredients (cont.) 
2. Characterization of a stable tail dependence function [stdf] 
L : [0;1)d ! [0;1) is a d-variate stdf if and only if 
(a) L is homogeneous of degree 1; 
(b) L(e1) =    = L(ed ) = 1; 
(c) L is fully d-max decreasing, i.e., for any J  f1; : : : ; dg of 
arbitrary size jJj = k and all x1; : : : ; xd ; h1; : : : ; hd 2 [0;1), 
X 
(1)1++k L(x1+1h1112J ; : : : ; xd+dhd1d2J )  0: 
1;:::;k2f0;1g 
Ressel (2013)
Remark: (c) is equivalent to f : (1; 0]d ! (1; 0] de
ned by 
f (y1; : : : ; yd ) = L(y1; : : : ;yd ) (4) 
is totally increasing as de
ned in Morillas (2005), which states 
X 
(1)k1k f (y1+1h1112J ; : : : ; yd +dhd1d2J )  0: 
1;:::;k2f0;1g
First result 
Theorem 
Let L be a d-variate stdf and   be the generator of a d-variate 
Archimedean copula. There exists a vector (X1; : : : ;Xd ) of strictly 
positive random variables such that, for all x1; : : : ; xd 2 [0;1), 
Pr(X1  x1; : : : ;Xd  xd ) =    L(x1; : : : ; xd ): 
In particular, Pr(Xj  xj ) =  (xj ) for xj 2 [0;1) and j 2 f1; : : : ; dg.
Sketch of proof: 
I Morillas (2005) - McNeil and Neslehova (2009) : 
  Archimedean generator ,  y absolutely monotone of order d 
where  y : t 2 (1; 0]7!  (t) 2 [0; 1]. 
I Morillas (2005) + (c) )  y  f totally increasing. 
I L satis
es (b) 
)  y  f (y1; 0; : : : ; 0) =  y[L(y1; 0; : : : ; 0)] =  y(y1): 
I   continuous )  y  f continuous. 
Consequence:  y  f is a cdf on (1; 0]d . This means 
equivalently that  y  f (x1; : : : ;xd ) =    L(x1; : : : ; xd ) is a 
survival function on [0;1)d .
Corollary 
Let L be a d-variate stable tail dependence function and   be the 
generator of a d-variate Archimedean copula. Then 
C ;L(u1; : : : ; ud ) =    Lf 1(u1); : : : ;  1(ud )g 
is a copula, as conjectured by Mesiar and Jagr (2013).
Some examples 
I Recall that L(x) := x1 +    + xd . Then C ;L is the 
d-variate Archimedean copula C . 
I If  (t) = et , C ;L is the extreme-value copula with stdf L 
C ;L(u1; : : : ; ud ) = exp[Lf ln(u1); : : : ;ln(ud )g] : 
I Let   1 and consider the stdf of the d-variate logistic 
extreme-value copula 
L(x1; : : : ; ud ) = (x 
d )1=: 
1 +    + x 
Then for any generator  , 
C ;(u1; : : : ; ud ) =   
h 
f 1(u1)g +    + f 1(ud )g 
i1= 
 
is an Archimedean copula with generator  (t) =  (t1=).
III. Stochastic representations for Archimax copulas 
1.   is a Laplace transform. Suppose that   is the Laplace 
transform of a strictly positive r.v.  with cdf G, so that 
 (t) = 
Z 1 
0 
et dG(): 
Bernstein's Theorem (Widder, 1941) )   is completely monotone, 
i.e., it is dierentiable of any order and for all k 2 N, (1)k (k)  0. 
Let L be a d-variate stdf. Let (T1; : : : ;Td ) be a random vector 
with survival function 
Pr(T1  t1; : : : ;Td  td ) = expfL(t1; : : : ; td )g: (5) 
This means T1; : : : ;Td  E(1) with survival copula the 
extreme-value copula with stable tail dependence function L.

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Slides erm
Slides ermSlides erm
Slides erm
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
Berlin
BerlinBerlin
Berlin
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 

Andere mochten auch (20)

Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Slides ensae-2016-1
Slides ensae-2016-1Slides ensae-2016-1
Slides ensae-2016-1
 
Slides ensae-2016-2
Slides ensae-2016-2Slides ensae-2016-2
Slides ensae-2016-2
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides act6420-e2014-ts-2
Slides act6420-e2014-ts-2Slides act6420-e2014-ts-2
Slides act6420-e2014-ts-2
 
Inequalities #2
Inequalities #2Inequalities #2
Inequalities #2
 
Slides saopaulo-catastrophe
Slides saopaulo-catastropheSlides saopaulo-catastrophe
Slides saopaulo-catastrophe
 
Slides barcelona risk data
Slides barcelona risk dataSlides barcelona risk data
Slides barcelona risk data
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Natural Disaster Risk Management
Natural Disaster Risk ManagementNatural Disaster Risk Management
Natural Disaster Risk Management
 
Slides Prix Scor
Slides Prix ScorSlides Prix Scor
Slides Prix Scor
 
Slides ilb
Slides ilbSlides ilb
Slides ilb
 

Ähnlich wie Fougeres Besancon Archimax

A transference result of Lp continuity from the Jacobi Riesz transform to the...
A transference result of Lp continuity from the Jacobi Riesz transform to the...A transference result of Lp continuity from the Jacobi Riesz transform to the...
A transference result of Lp continuity from the Jacobi Riesz transform to the...Wilfredo Urbina
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
An introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusAn introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusSpringer
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisCharaf Ech-Chatbi
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 

Ähnlich wie Fougeres Besancon Archimax (20)

CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
A transference result of Lp continuity from the Jacobi Riesz transform to the...
A transference result of Lp continuity from the Jacobi Riesz transform to the...A transference result of Lp continuity from the Jacobi Riesz transform to the...
A transference result of Lp continuity from the Jacobi Riesz transform to the...
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Galichon jds
Galichon jdsGalichon jds
Galichon jds
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
An introduction to quantum stochastic calculus
An introduction to quantum stochastic calculusAn introduction to quantum stochastic calculus
An introduction to quantum stochastic calculus
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 

Mehr von Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Fougeres Besancon Archimax

  • 1. Multivariate Archimax copulas Anne-Laure Fougeres Institut Camille Jordan, Universite Lyon 1 joint work with A. Charpentier, Ch. Genest and J.G. Neslehova November 3, 2014 Workshop Extreme Value Theory, Spatial and Temporal Aspects Besancon
  • 2. I. Motivation II. C ;L is a copula III. Stochastic representations for Archimax copulas IV. Simulation algorithms V. Extremal behavior of Archimax copulas VI. Conclusion - Perspectives
  • 3. I. Motivation Multivariate risks often deal with extremes of dependent variables: I Alimentary risks: Global exposition to the contamination risk via a set of aliments. I Insurance risks: ruin probabilities, when several types of contracts are concerned (natural disaster). I Coastal ooding: electrical infrastructures, dikes. Multivariate extreme-value theory provides a useful mathematical framework to handle such risks.
  • 4. Consider a d-variate sample X1; : : : ;Xn, with Xi = (Xi1 ; : : : ;Xid ), for each i = 1; : : : ; n. De
  • 5. ne P(Xi x) = F(x) = C(F1(x1); : : : ; Fd (xd )) ; so that F1; : : : ; Fd are the marginal cdfs (assume them continuous), F is the joint cdf, and C is the associated copula. Assumption: existence of a multivariate domain of attraction There exist (an); (bn);G such that, when n ! 1, Fn(an;1 x1 + bn;1; : : : ; an;d xd + bn;d ) = Fn(an x + bn) ! G(x); where the attractor G is a d-variate cdf with non degenerate margins G1; : : : ;Gd , and x is any continuity point of G.
  • 6. This means equivalently that: . the marginal cdfs Fj are in the univariate domain of attraction of the Gj 's (j = 1; : : : ; d). . there exists a d-variate copula C? such that for any u 2 [0; 1]d , lim n!1 C(u1=n 1 ; : : : ; u1=n d )n = C?(u1; : : : ; ud ) ; (1) and the limiting cdfs are related via G(x) = C?(G1(x1); : : : ;Gd (xd )): Notation: F 2 D(G) or C 2 D(C?). Equation (1) is equivalent to n h 1 C 1 x1 n ; : : : ; 1 xd n i ! log C?(ex1 ; : : : ; exd ) = L?(x) : L? = stable tail dependence function (Huang, 1992)
  • 7. L?(x) = lim n!1 n h 1 C 1 x1 n ; : : : ; 1 xd n i = lim n!1 n P h F1(X1) 1 x1 n or : : : or Fd (Xd ) 1 xd n i : Tail regions of interest for L?: at least one of the components X1; : : : ;Xd becomes large.
  • 8. Some properties of the stable tail dependence function L I LM(x) := max(x1; : : : ; xd ) L(x) L(x) := x1 + + xd comonotonicity case independence case I margins are standardized: L(0; : : : ; 0; xj ; 0; : : : ; 0) = xj I L is homogeneous of order 1 L(x) = lim s!1 s 1 C 1 x1 s= ; : : : ; 1 xd s= = lim t!1 t h 1 C 1 x1 t ; : : : ; 1 xd t i = L(x) : I L is convex, i.e. for each 2 [0; 1], Lfx + (1 )yg L(x) + (1 )L(y) :
  • 10. x an attractor C? (equivalently L?); which kind of distribution F does belong to its domain of attraction? I theoretical descriptive interest. I practical modeling interest: To get large families with a exible structure in a speci
  • 11. c domain of attraction. I numerical interest: Risk evaluation requires estimation of C?. Several estimators exist. How to compare them? For a small sample simulation study, designs of experiments involve to .
  • 12. x several attractors C?; . simulate, for each attractor, from several distributions C 2 D(C?).
  • 13. Attractor of classical multivariate distributions I Multivariate normal d.f. ! Independence I Archimedean copulas C (u1; : : : ; ud ) = 1(u1) + + 1(ud ) where the generator : R+ ! [0; 1] satis
  • 15. c conditions. Archimedean copulas ! Multivariate logistic EV L?(x1; : : : ; xd ) = nPd j=1 x1=r j or (with r 1). But in fact Independence case (r = 1) for . Clayton's family (t) = (1 + t)1=; 0 . Frank's family (t) = log f1 et(1 e)g =
  • 16. I Elliptical distributions X = + RAU where location parameter, R random radial component, A d d-matrix invertible such that AAT positive de
  • 17. nite, and U random d-vector uniformly distributed on Sd1. Elliptical distribution ! Independence with R rapidly varying I Extreme value d.f. CA ! itself CA
  • 18. Objective: Construct a family of multivariate copulas I which can have any extreme value distribution as its maximum attractor I which is easy to simulate. Caperaa, Fougeres and Genest (2000) : bivariate Archimax copulas C ;A(u1; u2) = f 1(u1) + 1(u2)gA 1(u1) 1(u1) + 1(u2) ; (2) where A : [0; 1] ! [1=2; 1] and : [0;1) ! [0; 1] such that (i) A is convex and, for all t 2 [0; 1], max(t; 1 t) A(t) 1; (ii) : (0; 1] ! [0;1) is convex, decreasing, such that (0) = 1 and limx!1 (x) = 0.
  • 19. Archimax because... two important particular cases I if A 1, C;A reduces to an Archimedean copula, C (u1; u2) = f 1(u1) + 1(u2)g I if (t) = et , C ;A is an extreme-value copula, CA(u1; u2) = exp ln(u1u2)A ln(u1) ln(u1u2) : Result: Archimax copulas are in the domain of attraction of an EV copula CA? where, for all t 2 (0; 1), A?(t) = ft1= + (1 t)1=gA ( t1= t1= + (1 t)1= ) whenever t7! 1(1 1=t) is regularly varying of degree 1= with 2 (0; 1];
  • 20. Additional references I Application in hydrology: see Basigal, Jagr and Mesiar (2011); I Applications in
  • 21. nance: see Zivot and Wang (2006), Jaworski, Durante and Hardle (2013), Mai and Scherer (2014); I R package: acopula (Basigal); I Mesiar and Jagr (2013): conjecture that a suitable extension to arbitrary dimension should be C ;L(u1; : : : ; ud ) = Lf 1(u1); : : : ; 1(ud )g: (3) Open problem 4.1 (Mesiar and Jagr, 2013) : C ;L is a copula as soon as L is a stable tail dependence function and is an Archimedean generator. [sounds reasonable, since for d = 2, A(t) = L(t; 1t), so that (3) is (2).]
  • 22. Purpose of our work I prove that C ;L is a copula solve Open problem of Mesiar and Jagr, 2013 I study the d-variate Archimax family . in terms of attractor; . in terms of simulation issues. Refer to Charpentier, Fougeres, Genest and Neslehova (2014), JMVA 126, pp. 118-136.
  • 23. C ;L is a copula: main ingredients For all u1; : : : ; ud 2 (0; 1), consider C (u1; : : : ; ud ) = f 1(u1) + + 1(ud )g: 1. Characterization of an Archimedean generator Then C is a copula if and only if : [0;1) ! [0; 1] satis
  • 24. es . (0) = 1, . limx!1 (x) = 0 . is d-monotone, i.e. has d 2 derivatives on (0;1), (1)j (j) 0 (for all j 2 f0; : : : ; d 2g), and (1)d2 (d2) non-increasing and convex on (0;1). McNeil and Neslehova (2009)
  • 25. C ;L is a copula: main ingredients (cont.) 2. Characterization of a stable tail dependence function [stdf] L : [0;1)d ! [0;1) is a d-variate stdf if and only if (a) L is homogeneous of degree 1; (b) L(e1) = = L(ed ) = 1; (c) L is fully d-max decreasing, i.e., for any J f1; : : : ; dg of arbitrary size jJj = k and all x1; : : : ; xd ; h1; : : : ; hd 2 [0;1), X (1)1++k L(x1+1h1112J ; : : : ; xd+dhd1d2J ) 0: 1;:::;k2f0;1g Ressel (2013)
  • 26. Remark: (c) is equivalent to f : (1; 0]d ! (1; 0] de
  • 27. ned by f (y1; : : : ; yd ) = L(y1; : : : ;yd ) (4) is totally increasing as de
  • 28. ned in Morillas (2005), which states X (1)k1k f (y1+1h1112J ; : : : ; yd +dhd1d2J ) 0: 1;:::;k2f0;1g
  • 29. First result Theorem Let L be a d-variate stdf and be the generator of a d-variate Archimedean copula. There exists a vector (X1; : : : ;Xd ) of strictly positive random variables such that, for all x1; : : : ; xd 2 [0;1), Pr(X1 x1; : : : ;Xd xd ) = L(x1; : : : ; xd ): In particular, Pr(Xj xj ) = (xj ) for xj 2 [0;1) and j 2 f1; : : : ; dg.
  • 30. Sketch of proof: I Morillas (2005) - McNeil and Neslehova (2009) : Archimedean generator , y absolutely monotone of order d where y : t 2 (1; 0]7! (t) 2 [0; 1]. I Morillas (2005) + (c) ) y f totally increasing. I L satis
  • 31. es (b) ) y f (y1; 0; : : : ; 0) = y[L(y1; 0; : : : ; 0)] = y(y1): I continuous ) y f continuous. Consequence: y f is a cdf on (1; 0]d . This means equivalently that y f (x1; : : : ;xd ) = L(x1; : : : ; xd ) is a survival function on [0;1)d .
  • 32. Corollary Let L be a d-variate stable tail dependence function and be the generator of a d-variate Archimedean copula. Then C ;L(u1; : : : ; ud ) = Lf 1(u1); : : : ; 1(ud )g is a copula, as conjectured by Mesiar and Jagr (2013).
  • 33. Some examples I Recall that L(x) := x1 + + xd . Then C ;L is the d-variate Archimedean copula C . I If (t) = et , C ;L is the extreme-value copula with stdf L C ;L(u1; : : : ; ud ) = exp[Lf ln(u1); : : : ;ln(ud )g] : I Let 1 and consider the stdf of the d-variate logistic extreme-value copula L(x1; : : : ; ud ) = (x d )1=: 1 + + x Then for any generator , C ;(u1; : : : ; ud ) = h f 1(u1)g + + f 1(ud )g i1= is an Archimedean copula with generator (t) = (t1=).
  • 34. III. Stochastic representations for Archimax copulas 1. is a Laplace transform. Suppose that is the Laplace transform of a strictly positive r.v. with cdf G, so that (t) = Z 1 0 et dG(): Bernstein's Theorem (Widder, 1941) ) is completely monotone, i.e., it is dierentiable of any order and for all k 2 N, (1)k (k) 0. Let L be a d-variate stdf. Let (T1; : : : ;Td ) be a random vector with survival function Pr(T1 t1; : : : ;Td td ) = expfL(t1; : : : ; td )g: (5) This means T1; : : : ;Td E(1) with survival copula the extreme-value copula with stable tail dependence function L.
  • 35. Stochastic representations for Archimax copulas (cont.) Theorem The copula C ;L is Archimax with d-variate stdf L and completely monotone Archimedean generator if and only if it is the survival copula of the random vector (X1; : : : ;Xd ) = (T1=; : : : ;Td=) ; where has Laplace transform and is independent of the random vector (T1; : : : ;Td ) de
  • 36. ned in (5). Sketch of proof: Pr(X1 x1; : : : ;Xd xd ) = Z 1 0 Pr(T1 x1; : : : ;Td xd ) dG() = Z 1 0 expfL(x1; : : : ; xd )g dG() = L(x1; : : : ; xd ):
  • 37. Stochastic representations for Archimax copulas (cont.) 2. d-monotone. Consider 0(t) = max(0; 1 t)d1 (t 0). 0 is d-monotone ) there exists (S1; : : : ; Sd ) such that, Pr(S1 s1; : : : ; Sd sd ) = [maxf0; 1 L(s1; : : : ; sd )g]d1: Then I support of this joint survival function: d (`) = f(s1; : : : ; sd ) 2 [0; 1]d : L(s1; : : : ; sd ) 1g I S1; : : : ; Sd are (dependent) Beta r.v. B(1; d 1). Now let R be a strictly positive r.v. with cdf F, independent of (S1; : : : ; Sd ) and consider (X1; : : : ;Xd ) = (RS1; : : : ; RSd ): (6)
  • 38. Stochastic representations for Archimax copulas (cont.) Theorem (i) If (X1; : : : ;Xd ) has form (6), then its survival copula is the Archimax copula C ;L, where is the Williamson d-transform of R, i.e., for all t 2 [0;1), (t) = Z 1 t 1 t r d1 dF(r ): (ii) Let L be a d-variate stdf and be a generator of a d-variate Archimedean copula. Then C ;L is the survival copula of a random vector (X1; : : : ;Xd ) of the form (6), where the cdf F of R is the inverse Williamson d-transform of , F(r ) = 1 dX2 k=0 (1)k r k (k)(r ) k! (1)d1r d1 (d1) + (r ) (d 1)! ; where (d1) + denotes the right-hand derivative of (d2).
  • 39. Corollary A function L : [0;1)d ! [0;1) is a d-variate stdf if and only if (a) L is homogeneous of degree 1; (b) The function given, for all x1; : : : ; xd 2 [0;1), by G `(x1; : : : ; xd ) = [maxf0; 1 L(x1; : : : ; xd )g]d1 (7) de
  • 40. nes a d-variate survival function with B(1; d 1) margins. Remark: The distribution in (7) is related to the multivariate generalized Pareto distribution of Falk and Reiss (2005). See also Hofmann (2009).
  • 41. Reminder: Purpose of our work I prove that C ;L is a copula solve Open problem of Mesiar and Jagr, 2013 I study the d-variate Archimax family . in terms of simulation issues; . in terms of attractor.
  • 42. IV. Simulation algorithms Algorithm 1 Let L be the d-variate stdf associated to an extreme-value copula D, and let be a d-variate Archimedean copula generator. Suppose that is the Laplace transform of a r.v. . To simulate an observation (U1; : : : ;Ud ) from a d-variate Archimax copula C ;L, proceed as follows: 1.1 Generate an observation (V1; : : : ;Vd ) from copula D. 1.2 Set T1 = ln(V1); : : : ;Td = ln(Vd ). 1.3 Generate an observation . 1.4 Set U1 = (T1=); : : : ;Ud = (Td=).
  • 43. Algorithm 2 Let L be a d-variate stdf, and let be a d-variate Archimedean copula generator. To simulate an observation (U1; : : : ;Ud ) from C ;L: 2.1 Generate an observation (S1; : : : ; Sd ) from the joint survival function de
  • 44. ned, for all s1; : : : ; sd 2 [0;1), by G `(s1; : : : ; sd ) = [maxf0; 1 L(s1; : : : ; sd )g]d1: 2.2 Generate R from the cdf de
  • 45. ned, for all r 2 (0;1), by F(r ) = 1 dX2 k=0 (1)k r k (k)(r ) k! (1)d1r d1 (d1) + (r ) (d 1)! : 2.3 Set U1 = (RS1); : : : ;Ud = (RSd ).
  • 46. V. Extremal behavior of Archimax copulas Let X1;X2; : : : be iid copies of a vector X = (X1; : : : ;Xd ) whose distribution is the Archimax copula C ;L, and de
  • 47. ne for each n 2 N, Mn = max(X1; : : : ;Xn); where vector algebra is meant component-wise. Objective:
  • 48. nd the limiting behavior, as n ! 1, of the sequence (Mn). Reminder for equation (1): lim n!1 C ;L(u1=n 1 ; : : : ; u1=n d )n = C?(u1; : : : ; ud ) :
  • 49. Extremal behavior of Archimax copulas (cont.) Theorem Suppose that is the generator of a d-variate Archimedean copula such that w7! 1 (1=w) is regularly varying of index for some 2 (0; 1]. Then the copula C ;L belongs to the maximum domain of attraction of an extreme-value distribution whose unique underlying copula is de
  • 50. ned, for all u1; : : : ; ud 2 (0; 1), by CL?(u1; : : : ; ud ) = exp[Lfj ln(u1)j1=; : : : ; j ln(ud )j1=g]:
  • 51. VI. Conclusion - Perspectives Our purpose has been to I prove that C ;L is a copula as conjectured by Mesiar and Jagr, 2013 I study the d-variate Archimax family . in terms of simulation issues; . in terms of attractor. Some questions remains to be considered: I computational issues associated with Algorithms 1 and 2. I dependence structure. For d = 2, Caperaa, Fougeres and Genest (2000) : ;L = L + (1 L) : How to extend this relation to the multivariate case ?
  • 52. References (1/2) . T. Bacigal, V. Jagr, R. Mesiar (2011), Non-exchangeable random variables, Archimax copulas and their
  • 53. tting to real data, Kybernetika 47, 519-531. . P. Caperaa, A.-L. Fougeres, C. Genest (2000), Bivariate distributions with given extreme value attractor, J. Multivariate Anal. 72, 30-49. . A. Charpentier, A.-L. Fougeres, C. Genest, J.G. Neslehova (2014), Multivariate Archimax copulas, J. Multivariate Anal. 126, 118-136. . M. Falk, R.-D. Reiss (2005), On Pickands coordinates in arbitrary dimensions, J. Multivariate Anal. 92 426-453. . A.J. McNeil, J. Neslehova (2009), Multivariate Archimedean copulas, d-monotone functions and `1-norm symmetric distributions, Ann. Statist. 37, 3059-3097. . J. F. Mai, M. Scherer (2014) Financial Engineering with Copulas Explained, Palgrave Macmillan. . D. Hofmann (2009), Characterization of the D-norm corresponding to a multivariate extreme value distribution, Ph.D.Thesis, Bayerische Julius-Maximilians-Universitat Wurzburg, Germany.
  • 54. References (2/2) . X. Huang (1992), Statistics of bivariate extreme values, Ph.D. Thesis, Tinbergen Institute Research Series, The Netherlands. . P. Jaworski, F. Durante, W. K. Hardle (2013) Copulae in Mathematical and Quantitative Finance, Lecture Notes in Statistics, Vol. 213. Springer. . R. Mesiar, V. Jagr (2013), d-dimensional dependence functions and Archimax copulas, Fuzzy Sets and Systems 228, 78-87. . P.M. Morillas (2005), A characterization of absolutely monotonic functions of a
  • 55. xed order, Publ. Inst. Math. (Beograd) (N.S.) 78 (92), 93-105. . P. Ressel (2013), Homogeneous distributions - and a spectral representation of classical mean values and stable tail dependence functions, J. Multivariate Anal. 117, 246-256. . D.V. Widder (1941), The Laplace Transform, in: Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ. . E. Zivot, J. Wang (2006) Modeling Financial Time Series with Splus, Springer.