SlideShare a Scribd company logo
1 of 19
Waves and Wave PropertiesWaves and Wave Properties
Why are we able to see?
Answer: Because there is light.
And…what is light?
Answer: Light is a wave.
So…what is a wave?
Answer: A wave is a disturbance
that carries energy from place to
place.
A wave does NOT carry matter with
it! It just moves the matter as it goes
through it.
Some waves do not need matter
(called a “medium”) to be able to
move (for example, through space).
These are called electromagnetic
waves (or EM waves).
Some waves MUST have a medium
in order to move. These are called
mechanical waves.
Wave Types
1.Transverse waves: Waves in which the medium
moves at right angles to the direction of the wave
Parts of transverse waves:
Crest: the highest point of the wave
Trough: the lowest point of the wave
2. Compressional (or longitudinal) waves:
Waves in which the medium moves back and
forth in the same direction as the wave
Parts of longitudinal waves:
Compression: where the particles are close together
Rarefaction: where the particles are spread apart
Wave Properties
Wave properties depend on what
(type of energy) is making the waves.
1.Wavelength: The distance between one point
on a wave and the exact same place on the
next wave.
2. Frequency: How many waves go past a point in one
second; unit of measurement is hertz (Hz).
The higher the frequency, the more energy in the wave.
10 waves going past in 1 second = 10 Hz
1,000 waves go past in 1 second = 1,000 Hz
1 million waves going past = 1 million Hz
3. Amplitude: How far the medium moves from
rest position (where it is when not moving).
Remember that for transverse waves, the highest
point is the crest, and the lowest point is the trough.
Remember that for compressional waves, the points where the medium is
close together are called compressions and the areas where the medium is
spread apart are called rarefactions.
The closer together and further apart the particles are, the larger the amplitude.
compression
rarefaction
The energy of a wave is proportional to the
square of its amplitude. Mathematically
speaking . . .
E = CA2
Where:
E = energy (the capacity to do work)
C = a constant (depends on the medium)
A = amplitude
For example:
If the amplitude is equal to 3 units
(and we assume C = 1 for this case) . . .
E = (1) (3)2
= (1) (9) = 9 units
Note that when the amplitude of a wave is one
unit, the energy is one unit.
•When the amplitude is doubled, the energy is
quadrupled.
•When the energy is 10 times greater, the energy is 100
times greater!
Amplitude Energy
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
E = CA2
4. Wave speed: Depends on the medium in which
the wave is traveling. It varies in solids, liquids
and gases.
A mathematical way to calculate speed:
wave speed = wavelength x frequency
(in meters) (in Hz)
OR
v = f x ‫ג‬
Problem: If a wave has a wavelength of 2 m and a frequency of 500 Hz,
what is its speed?
Answer: speed = 2 m x 500 Hz = 1000 m/s
Changing Wave Direction
1.Reflection: When waves bounce off a surface.
If the surface is flat, the angle at which the wave
hits the surface will be the same as the angle at
which it leaves the surface
(angle in = angle out).
This is the law of reflection.
2. Refraction: Waves can bend.
This happens when a wave
enters a new medium and its
SPEED CHANGES.
The amount of bending depends
on the medium it is entering.
3. Diffraction: The bending of waves AROUND
an object.
The amount of bending depends on the size of
the obstacle and the size of the waves.
Large obstacle, small wavelength = low diffraction
Small obstacle, large wavelength = large diffraction
Image Sources
2004 Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052-6399 USA. All rights reserved.
Denise W. Carlson. Used with permission.
Tom Henderson, The Physics Classroom
http://www.mwit.ac.th/~physicslab/applet_04/physics_classroom/Class/sound/u11l1c.html
Kraalennest, Wikipedia http://en.wikipedia.org/wiki/File:Crest_trough.svg

More Related Content

What's hot

Waves Ppp
Waves PppWaves Ppp
Waves Ppp
eliseb
 
Ch 2 One Dimensional Kinematics
Ch 2 One Dimensional KinematicsCh 2 One Dimensional Kinematics
Ch 2 One Dimensional Kinematics
Scott Thomas
 
Conservation of Momentum
Conservation of MomentumConservation of Momentum
Conservation of Momentum
Jan Parker
 
Physics (displacement, distance, speed, velocity) 1 d
Physics (displacement, distance, speed, velocity)  1 dPhysics (displacement, distance, speed, velocity)  1 d
Physics (displacement, distance, speed, velocity) 1 d
rebelman10
 

What's hot (20)

WAVES
WAVESWAVES
WAVES
 
Waves Ppp
Waves PppWaves Ppp
Waves Ppp
 
Wave speed, frequency and wavelength
Wave speed, frequency and wavelengthWave speed, frequency and wavelength
Wave speed, frequency and wavelength
 
Waves
WavesWaves
Waves
 
Waves
Waves Waves
Waves
 
Waves
WavesWaves
Waves
 
Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
Waves Basics
Waves BasicsWaves Basics
Waves Basics
 
Waves and Vibrations
Waves and VibrationsWaves and Vibrations
Waves and Vibrations
 
Waves
WavesWaves
Waves
 
waves
waveswaves
waves
 
Ch 2 One Dimensional Kinematics
Ch 2 One Dimensional KinematicsCh 2 One Dimensional Kinematics
Ch 2 One Dimensional Kinematics
 
Conservation of Momentum
Conservation of MomentumConservation of Momentum
Conservation of Momentum
 
Periodic Motion P2
Periodic  Motion   P2Periodic  Motion   P2
Periodic Motion P2
 
Physical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of UnitsPhysical Quantities--Units and Measurement--Conversion of Units
Physical Quantities--Units and Measurement--Conversion of Units
 
General Wave Properties
General Wave PropertiesGeneral Wave Properties
General Wave Properties
 
Physics (displacement, distance, speed, velocity) 1 d
Physics (displacement, distance, speed, velocity)  1 dPhysics (displacement, distance, speed, velocity)  1 d
Physics (displacement, distance, speed, velocity) 1 d
 
Transfer of Thermal Energy
Transfer of Thermal EnergyTransfer of Thermal Energy
Transfer of Thermal Energy
 
Sound Waves
Sound WavesSound Waves
Sound Waves
 
wave motion
wave motionwave motion
wave motion
 

Similar to Waves and Wave Properties--Teach Engineering

Introduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxIntroduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptx
LLOYDARENAS1
 
Waves unit (1)
Waves unit (1)Waves unit (1)
Waves unit (1)
taddlaton
 
Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02
Daniella Vineyard
 
Ch 16 Waves and Sound
Ch 16 Waves and Sound Ch 16 Waves and Sound
Ch 16 Waves and Sound
Scott Thomas
 

Similar to Waves and Wave Properties--Teach Engineering (20)

Signal
SignalSignal
Signal
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Wave properties
Wave propertiesWave properties
Wave properties
 
Introduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxIntroduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptx
 
Phy exppp chap11
Phy exppp chap11Phy exppp chap11
Phy exppp chap11
 
3.1 form 4 general wave properties
3.1 form 4 general wave properties3.1 form 4 general wave properties
3.1 form 4 general wave properties
 
Waves unit (1)
Waves unit (1)Waves unit (1)
Waves unit (1)
 
Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02
 
Wave properties
Wave propertiesWave properties
Wave properties
 
3.1 form 4 general wave properties
3.1 form 4 general wave properties3.1 form 4 general wave properties
3.1 form 4 general wave properties
 
Phys12
Phys12Phys12
Phys12
 
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH... SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH...
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 
Ultrasound physics
Ultrasound physicsUltrasound physics
Ultrasound physics
 
Wave assignment
Wave assignmentWave assignment
Wave assignment
 
Wave Motion
Wave MotionWave Motion
Wave Motion
 
Chapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptxChapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptx
 
The Energy of Waves
The Energy of Waves The Energy of Waves
The Energy of Waves
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Ch 16 Waves and Sound
Ch 16 Waves and Sound Ch 16 Waves and Sound
Ch 16 Waves and Sound
 
Physics
PhysicsPhysics
Physics
 

Recently uploaded

Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 

Recently uploaded (20)

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 

Waves and Wave Properties--Teach Engineering

  • 1. Waves and Wave PropertiesWaves and Wave Properties
  • 2. Why are we able to see? Answer: Because there is light. And…what is light? Answer: Light is a wave. So…what is a wave?
  • 3. Answer: A wave is a disturbance that carries energy from place to place. A wave does NOT carry matter with it! It just moves the matter as it goes through it.
  • 4. Some waves do not need matter (called a “medium”) to be able to move (for example, through space). These are called electromagnetic waves (or EM waves). Some waves MUST have a medium in order to move. These are called mechanical waves.
  • 5. Wave Types 1.Transverse waves: Waves in which the medium moves at right angles to the direction of the wave
  • 6. Parts of transverse waves: Crest: the highest point of the wave Trough: the lowest point of the wave
  • 7. 2. Compressional (or longitudinal) waves: Waves in which the medium moves back and forth in the same direction as the wave
  • 8. Parts of longitudinal waves: Compression: where the particles are close together Rarefaction: where the particles are spread apart
  • 9. Wave Properties Wave properties depend on what (type of energy) is making the waves. 1.Wavelength: The distance between one point on a wave and the exact same place on the next wave.
  • 10. 2. Frequency: How many waves go past a point in one second; unit of measurement is hertz (Hz). The higher the frequency, the more energy in the wave. 10 waves going past in 1 second = 10 Hz 1,000 waves go past in 1 second = 1,000 Hz 1 million waves going past = 1 million Hz
  • 11. 3. Amplitude: How far the medium moves from rest position (where it is when not moving). Remember that for transverse waves, the highest point is the crest, and the lowest point is the trough.
  • 12. Remember that for compressional waves, the points where the medium is close together are called compressions and the areas where the medium is spread apart are called rarefactions. The closer together and further apart the particles are, the larger the amplitude. compression rarefaction
  • 13. The energy of a wave is proportional to the square of its amplitude. Mathematically speaking . . . E = CA2 Where: E = energy (the capacity to do work) C = a constant (depends on the medium) A = amplitude For example: If the amplitude is equal to 3 units (and we assume C = 1 for this case) . . . E = (1) (3)2 = (1) (9) = 9 units
  • 14. Note that when the amplitude of a wave is one unit, the energy is one unit. •When the amplitude is doubled, the energy is quadrupled. •When the energy is 10 times greater, the energy is 100 times greater! Amplitude Energy 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100 E = CA2
  • 15. 4. Wave speed: Depends on the medium in which the wave is traveling. It varies in solids, liquids and gases. A mathematical way to calculate speed: wave speed = wavelength x frequency (in meters) (in Hz) OR v = f x ‫ג‬ Problem: If a wave has a wavelength of 2 m and a frequency of 500 Hz, what is its speed?
  • 16. Answer: speed = 2 m x 500 Hz = 1000 m/s Changing Wave Direction 1.Reflection: When waves bounce off a surface. If the surface is flat, the angle at which the wave hits the surface will be the same as the angle at which it leaves the surface (angle in = angle out). This is the law of reflection.
  • 17. 2. Refraction: Waves can bend. This happens when a wave enters a new medium and its SPEED CHANGES. The amount of bending depends on the medium it is entering.
  • 18. 3. Diffraction: The bending of waves AROUND an object. The amount of bending depends on the size of the obstacle and the size of the waves. Large obstacle, small wavelength = low diffraction Small obstacle, large wavelength = large diffraction
  • 19. Image Sources 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved. Denise W. Carlson. Used with permission. Tom Henderson, The Physics Classroom http://www.mwit.ac.th/~physicslab/applet_04/physics_classroom/Class/sound/u11l1c.html Kraalennest, Wikipedia http://en.wikipedia.org/wiki/File:Crest_trough.svg

Editor's Notes

  1. Presentation for lesson 2: Waves and Wave Properties, in the Waves: The Three Color Mystery unit The slides are animated so you can click (space bar, mouse, etc.) to show the next item when the class is ready.
  2. Think of a stadium wave: the people are moving up and down, but the wave goes around the stadium
  3. Answer: speed = 2 m x 500 Hz = 1000 m/s
  4. For example, think of a pool ball striking the side of the pool table: The angle it hits the side is the same angle it bounces off the side.