Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Cwin16 tls-faurecia predictive maintenance

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 21 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Andere mochten auch (20)

Anzeige

Ähnlich wie Cwin16 tls-faurecia predictive maintenance (20)

Weitere von Capgemini (20)

Anzeige

Aktuellste (20)

Cwin16 tls-faurecia predictive maintenance

  1. 1. Maintenance Predictive ou comment le Big Data révolutionne les usines du futur AIE Suresnes, 26 Septembre 2016 Capgemini, Capgemini Consulting, Sogeti HT
  2. 2. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 2 Table of Contents  Enjeux, contexte et bénéfices  Solutions techniques Big Data  Applications IBM PMQ et Braincube
  3. 3. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 3  Manufacturing Intelligence => Braincube  Predictive Maintenance => PMQ Faurecia Digital Enterprise Project 3- Prepare Rapid Scale-Up 2- Experiment and Learn 1- Explore & Design FEB. 2015 SEPT. 2015 200 digital use cases 40 Proofs of concept 9 solutions Deploy 40 sites Deploy 40 sites END. 2018 2016 2017 2018 Pilot 6 sites Industrialize Deploy 14 sites A systemic approach, at the speed of light
  4. 4. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 4 Digital Enterprise Manufacturing Intelligence & Predictive Maintenance  Big data benefits Why do we implement Big Data initiative? Improve productivity  OEE*, Improve production flows, stock, …  Optimization cost of energy, utilities, indirect cost  Accelerate run at rate (loss of raw material, FMC) Run Plant respecting standards Reduce product quality issues  Reduce scrap  Anticipation of non-quality with alerts and recommendations Reduce key equipment issues  Minimize unscheduled downtime and breakdowns  Manage business opportunities such as insourcing capacity  Increased equipment life cycle (*) OEE stand for Overall Equipment Effectiveness (« Taux de Rendement Synthétique » in French) Manufacturing Intelligence Monitor production process in real time And make decisions based on data Predictive Maintenance Predict potential breakdowns of a machine through data analysis and historian 2 families of Big Data tools in Operations  Monitor & alert in real time production parameters  Display tuning information to the operator on the shop floor  Keep production line stability for all shifts  Benchmark plants
  5. 5. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 5 Table of Contents  Enjeux, contexte et bénéfices  Solutions techniques Big Data  Applications IBM PMQ et Braincube
  6. 6. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 6 Commencer par démontrer l’intérêt d’une architecture Big Data au centre de la solution globale via un pilote  A pilot…  In time boxing (3 months on Big Insights environment with plants data)  Thru simulated flow in a first step and then connected to plants  Real-time data flows implementation, reusable for industrialization  Analytics : demo of some possibilities Manufacturing Intelligence (Braincube) Predictive Maintenance (IBM PMQ) Plants Plants … sensors sensors 1 2 3 3 4 4 1 2 3 4 IBM Cloud/Hadoop infrastructures One shot data initialization Real time simulation alimentation Direct real time alimentation 3 2 5 5 Analytics & discovery Open Data, External Data, etc.
  7. 7. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 7 Définir l’architecture Big Data cible en fonction des besoins Architecture Framework for Predictive Maintenance Simplified Architecture Functions and Technologies ❶ Data ingestion of Ticketing Data and Traceability Data ❷ Data storage of Process Data, Traceability Data and Ticketing Data Ticketing Data Traceability Data SAP logs Other Data ❸ Processing to calculate KPI’s, traceability and graphs preparation ❹Visualization of KPI’s Predictive Maintenance (IBM PMQ) Usage Analytics Visualization API / Drivers Structuration Processing SQL NoSQL Storage Hadoop HDFS Warehouse In memory Ingestion Batch Micro Batch Real time 1 2 3 4 1 2 3 4 ❶ Real time ingestion of Process Data from Plants ❷ In memory storage of Process Data ❸ Trans-coding for PMQ and Braincube ❹ Publishing to PMQ with Kafka and Braincube with HTTPs Manufacturing Intelligence (Braincube) Process Data Kafka Kafka Kafka BigInsights 3 5 ❺Data Discovery ❶ Batch layer ❶ Stream layer
  8. 8. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 8 Retour concrets et intérêts du Big Data ❶ Single point of entry - reduce the load on PCo side - distribute the process data to all analytical components ❷ Storage capacities - centralization of data in one place - available for any type of request from MI/PM ❸ Analytics & discovery - computing power for custom analytics - direct analytical functions ❹ Data Publishing - compatible with current & new partners - custom data visualization Manufacturing Intelligence (Braincube) Predictive Maintenance (IBM PMQ) PCOOther Data Big Data TraçaStratos
  9. 9. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 9 Quelques visualisations possibles des données dans HDFS Ingestion Plants Monitoring Storage Processing Visualization Plants Processing Parts Traceability IT Ticketing Flat filesExternal Databases Real Time Process Data
  10. 10. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 10 Table of Contents  Enjeux, contexte et bénéfices  Solutions techniques Big Data  Applications IBM PMQ et Braincube
  11. 11. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 11 Predictive Maintenance – Principe et mise en œuvre avec PMQ Visualisation & Usage Data AnalysisData Storage & StructurationData Collect 7.5 5 min. DATA COLLECTION DATA STRUCTURATION MODEL & ANALYSE DEPLOY & IMPROVE OBJECTIVES & DATA IDENTIFICATION  Define clear objectives  Identify if relevant data are available  Prepare Change MIPM DEPLOYMENT  Industrial IS  Machines connected  Data collection  Secure & scalable  Data structuration  Data Lake  Analytics platform  Monitoring  Modeling  Dashboarding  Deployment  Adapt, optimize  Change management 1. Récupération des données du data lake en temps réel 2. Traitement sur intervalles puis mise à disposition d’un modèle prédictif (algorithme) 3. Le modèle établit un score d’anomalies 4. Interprétation et décision  Machine learning : Détection d’anomalies corrélée à une base d’apprentissage et de connaissances.  Performance: Disposer de modèles pertinents avec des données significatives , d’un contexte métier et des process.
  12. 12. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 12 Predictive Maintenance – Illustration avec machine de Fine blanking
  13. 13. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 13
  14. 14. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 14
  15. 15. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 15
  16. 16. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 16
  17. 17. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 17 Into data: a concrete example on Big data for an automotive supplier Data Driven Production • Manufacturing Intelligence What we wanted to achieve with BIG DATA  Reduce scraps  Quickly investigate a production problem 19 Equipment on the line A measure every 1s 60 000 s in a production day 220 days of production > 20 parameters by equipment followed in real time X X 5 Billions data available for analyse in 1 year of production XX = BRAINCUBE Solution
  18. 18. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 18 How we can do that: Reduce scraps on dashboard « It is not knowing what to do, it’s doing what you know » Anthony Robbins 2015 06 Scrap at the FRIMO Manufacturing intelligence is about undestanding what makes your production green and repeat it Guides & Rules
  19. 19. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 19 Braincube found a way to adjust production settings that reduce scraps Rule – RHD2 Lookint at only 2 parameters combined (temperature galvano & thickness) ... 1 : Good parts went from 96 to 98,2% 4 ...we were 3,8% time with a setting that generate few scraps... The analytics say that we could be up to 40% time in this favourable situation 4 And save M€ ! 5 ...During the past 27 days... 32
  20. 20. Presentation Title | Date Copyright © 2016 Capgemini and Sogeti. All rights reserved. 20 A collaborative plateform to share the production status in real time FROM DATA TO FACTS BASED ACTIONS ON THE PRODUCTION LINE Manufacturing Intelligence Site manager, COO, BU manager •Production line manager •Quality manager •Methods •Process engineering •Operator on the shop floor
  21. 21. www.capgemini.com The information contained in this presentation is proprietary. Copyright © 2016 Capgemini and Sogeti. All rights reserved. Rightshore® is a trademark belonging to Capgemini. www.sogeti.com About Capgemini and Sogeti With more than 180,000 people in over 40 countries, Capgemini is a global leader in consulting, technology and outsourcing services. The Group reported 2015 global revenues of EUR 11.9 billion. Together with its clients, Capgemini creates and delivers business, technology and digital solutions that fit their needs, enabling them to achieve innovation and competitiveness. A deeply multicultural organization, Capgemini has developed its own way of working, the Collaborative Business Experience™, and draws on Rightshore®, its worldwide delivery model. Sogeti is a leading provider of technology and software testing, specializing in Application, Infrastructure and Engineering Services. Sogeti offers cutting-edge solutions around Testing, Business Intelligence & Analytics, Mobile, Cloud and Cyber Security. Sogeti brings together more than 23,000 professionals in 15 countries and has a strong local presence in over 100 locations in Europe, USA and India. Sogeti is a wholly-owned subsidiary of Cap Gemini S.A., listed on the Paris Stock Exchange.

×