SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
Limits and Continuity




Thu Mai, Michelle Wong,
        Tam Vu
What are Limits?
Limits are built upon the concept of infinitesimal.
Instead of evaluating a function at a certain x-value,
limits ask the question, “What value does a function
approaches as its input and a constant becomes
infinitesimally small?” Notice how this question does
not depend upon what f(c) actually is. The notations
for writing a limit as x approaches a constant of the
function f(x) is:


Where c is the constant and L (if it is defined) is the
value that the function approaches.
Evaluating Limits: Direct Substitution
Sometimes, the limit as x approaches c of f(x)
is equal to f(c). If this is the case, just directly
substitute in c for x in the limit expression, as
shown below.
Dividing Out Technique
1. Always start by seeing if the substitution method works.
2. If, when you do so, the new expression obtained is an indeterminate form such as
   0/0… try the dividing out technique!
3. Because both the numerator an denominator are 0, you know they share a similar
   factor.
4. Factor whatever you can in the given function.
5. If there is a matching factor in the numerator and denominator, you can cross thru
   them since they “one out.”
6. With your new, simplified function attempt the substitution method again. Plug
   whatever value x is approaching in for x.
7. The answer you arrive at is the limit.




*Note: You may need to algebraically manipulate the function.
Rationalizing
   Sometimes, you will come across limits with radicals in fractions.
Steps
1. Use direct substitution by plugging in zero for x.
2. If you arrive at an undefined answer (0 in the denominator) see if there are any
      obvious factors you could divide out.
3. If there are none, you can try to rationalize either the numerator or the
      denominator by multiplying the expression with a special form of 1.
4. Simplify the expression. Then evaluate the rewritten limit.

Ex:
Squeeze Theorem
The Squeeze Theorem states that if
   h(x) f(x) g(x), and

then
Special Trig Limits
               (memorize these)
                                         h is angle in radians
                                     area of blue: cos(h)sin(h)/2
                                          area of pink: h/2
                                       area of yellow: tan(h)/2




Since

by the Squeeze Theorem we can say that
Special Trig Limits Continued
Continuity and Discontinuity
A function is continuous in the interval [a,b] if
there does not exist a c in the interval [a,b]
such that:
1) f(c) is undefined, or
2)                       , or 3)
 The following functions are discontinuous b/c they do not fulfill ALL
 the properties of continuity as defined above.
Removable vs Non-removable
           Discontinuities
• A removable discontinuity exists at c if f can be made continuous by
redefining f(c).
• If there is a removable discontinuity at c, the limit as xc exists;
likewise if there is a non-removable discontinuity at c, the limit as xc
does not exist.

                      For this function, there is a removable discontinuity
                      at x=3; f(3) = 4 can simply be redefined as f(3) = 2
                      to make the function continuous. The limit as x3
                      exists.




                      For this function, there is a non-removable
                      discontinuity at x=3; even if f(3) is redefined, the
                      function will never be continuous. The limit as x3
                      does not exist.
Intermediate Value Theorem
The Intermediate Value Theorem states that if
f(x) is continuous in the closed interval [a,b]
and f(a) M f(b), then at least one c exists in
the interval [a,b] such that:

         f(c) = M
When do limits not exist?
If


then…
Vertical Asymptotes
f(x) and g(x) are continuous on an open interval
containing c. if f(c) is not equal to 0 and g(c)= 0
and there’s an open interval with c which g(x) is
not 0 for all values of x that are not c, then…..




There is an asymptote at x = c
for
Properties of Limits
 Let b and c be real numbers, n be a positive integer, f and g be functions
                        with the following limits.




Sum or Difference                        Quotient

Scalar Multiple                          Power

Product
Limits Substitution
With limits substitution (informally named so
by yours truly), if

then



This is useful for evaluating limits such as:
How Do Limits Relate to
          Derivatives?
What is a derivative?
• The derivative of a function is defined as that function’s INSTANT rate of change.

Applying Prior Knowledge:
• As learned in pre-algebra, the rate of change of a function is defined by: Δy
                                                                             Δx
Apply Knowledge of Limits:
• Consider that a limit describes the behavior of a function as x gets closer and
closer to a point on a function from both left and right.
• Δy describes a function’s rate of change. To find the function’s INSTANT rate of
  Δx       change, we can use limits.
• We can take:
                         lim Δy
                        Δx 0 Δx

          WHY? As the change in x gets closer and closer to 0, we can more
accurately predict the function’s INSTANT rate of change, and thus the function’s
derivative.
How Do Limits Relate to
      Derivatives?
                   Δy                     y –y
     Consider that Δx can be rewritten as 2Δx 1 .

           (x+ Δx, f(x+ Δx))    Analyze the graph. Notice that the change
        (x, f(x))               in y between any two points on a function is
                                f(x+ Δx) – f(x). Thus:
                                               Δy = y2 – y1 = f(x+ Δx) – f(x)
                                               Δx      Δx           Δx

So lim Δy can be rewritten as lim         f(x+ Δx) – f(x) .
  Δx 0 Δx                   Δx0               Δx


          Therefore, the derivative of f(x) at x is given by:

                               lim     f(x+ Δx) – f(x)
                               Δx 0         Δx

Weitere ähnliche Inhalte

Was ist angesagt?

Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a functionnjit-ronbrown
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and rangeTouhidul Shawan
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionMatthew Leingang
 
limits and continuity
limits and continuity limits and continuity
limits and continuity imran khan
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functionsBarbara Knab
 
Continuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsContinuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsPhil Saraspe
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusShubham .
 
Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applicationsusmancp2611
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
Relations and functions
Relations and functions Relations and functions
Relations and functions Leslie Amoguis
 
Lesson 14: Exponential Functions
Lesson 14: Exponential FunctionsLesson 14: Exponential Functions
Lesson 14: Exponential FunctionsMatthew Leingang
 
Composition Of Functions
Composition Of FunctionsComposition Of Functions
Composition Of Functionssjwong
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Matthew Leingang
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleAakash Singh
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
Benginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuityBenginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuitybasyirstar
 

Was ist angesagt? (20)

Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a function
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
limits and continuity
limits and continuity limits and continuity
limits and continuity
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
Continuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsContinuity and Discontinuity of Functions
Continuity and Discontinuity of Functions
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applications
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Lesson 14: Exponential Functions
Lesson 14: Exponential FunctionsLesson 14: Exponential Functions
Lesson 14: Exponential Functions
 
Composition Of Functions
Composition Of FunctionsComposition Of Functions
Composition Of Functions
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
Benginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuityBenginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuity
 

Andere mochten auch

Andere mochten auch (6)

Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Generalization
GeneralizationGeneralization
Generalization
 
Limits and their applications
Limits and their applicationsLimits and their applications
Limits and their applications
 
Pre calculus Grade 11 Learner's Module Senior High School
Pre calculus Grade 11 Learner's Module Senior High SchoolPre calculus Grade 11 Learner's Module Senior High School
Pre calculus Grade 11 Learner's Module Senior High School
 
Basic calculus
Basic calculusBasic calculus
Basic calculus
 
Sketchnoting: 10 Tips to get Started
Sketchnoting: 10 Tips to get StartedSketchnoting: 10 Tips to get Started
Sketchnoting: 10 Tips to get Started
 

Ähnlich wie Limits and continuity powerpoint

Tutorfly Review Session Math 31A
Tutorfly Review Session Math 31ATutorfly Review Session Math 31A
Tutorfly Review Session Math 31AEge Tanboga
 
31A WePrep Presentation
31A WePrep Presentation31A WePrep Presentation
31A WePrep PresentationEge Tanboga
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcupatrickpaz
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerixAshams kurian
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01rakambantah
 
_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdfLeoIrsi
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentationkdoha825
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfmekkimekki5
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]indu thakur
 
MVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةMVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةDr. Karrar Alwash
 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24argonaut2
 

Ähnlich wie Limits and continuity powerpoint (20)

Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
Tutorfly Review Session Math 31A
Tutorfly Review Session Math 31ATutorfly Review Session Math 31A
Tutorfly Review Session Math 31A
 
31A WePrep Presentation
31A WePrep Presentation31A WePrep Presentation
31A WePrep Presentation
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 
Limits BY ATC
Limits BY ATCLimits BY ATC
Limits BY ATC
 
Limits BY ATC
Limits BY ATCLimits BY ATC
Limits BY ATC
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerix
 
Lemh105
Lemh105Lemh105
Lemh105
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdf
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
 
Section 1-5
Section 1-5Section 1-5
Section 1-5
 
MVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةMVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطة
 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24
 
Application of Derivatives
Application of DerivativesApplication of Derivatives
Application of Derivatives
 

Mehr von canalculus

Teaching resume
Teaching resumeTeaching resume
Teaching resumecanalculus
 
Teaching resume
Teaching resumeTeaching resume
Teaching resumecanalculus
 
Open house calc
Open house calcOpen house calc
Open house calccanalculus
 
Open house geo
Open house geoOpen house geo
Open house geocanalculus
 
Summer Packet Answers
Summer Packet AnswersSummer Packet Answers
Summer Packet Answerscanalculus
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructionscanalculus
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructionscanalculus
 
Serving the gifted student
Serving the gifted studentServing the gifted student
Serving the gifted studentcanalculus
 
Varsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketsVarsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketscanalculus
 
Jv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketsJv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketscanalculus
 
Varsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketsVarsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketscanalculus
 
AB practice test
AB practice testAB practice test
AB practice testcanalculus
 
A lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewA lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewcanalculus
 
3rd six wks sfa review 2011
3rd six wks sfa review 20113rd six wks sfa review 2011
3rd six wks sfa review 2011canalculus
 
Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011canalculus
 
Deriv calculus!
Deriv calculus!Deriv calculus!
Deriv calculus!canalculus
 

Mehr von canalculus (20)

Teaching resume
Teaching resumeTeaching resume
Teaching resume
 
Teaching resume
Teaching resumeTeaching resume
Teaching resume
 
2nd 1group
2nd 1group2nd 1group
2nd 1group
 
Open house calc
Open house calcOpen house calc
Open house calc
 
Open house geo
Open house geoOpen house geo
Open house geo
 
Georeview1 1
Georeview1 1Georeview1 1
Georeview1 1
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 
1st 1
1st 11st 1
1st 1
 
Summer Packet Answers
Summer Packet AnswersSummer Packet Answers
Summer Packet Answers
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructions
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructions
 
Serving the gifted student
Serving the gifted studentServing the gifted student
Serving the gifted student
 
Varsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketsVarsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 brackets
 
Jv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketsJv boys 2012 district 21 brackets
Jv boys 2012 district 21 brackets
 
Varsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketsVarsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 brackets
 
AB practice test
AB practice testAB practice test
AB practice test
 
A lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewA lg 2 fall final 2011 review
A lg 2 fall final 2011 review
 
3rd six wks sfa review 2011
3rd six wks sfa review 20113rd six wks sfa review 2011
3rd six wks sfa review 2011
 
Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011
 
Deriv calculus!
Deriv calculus!Deriv calculus!
Deriv calculus!
 

Kürzlich hochgeladen

Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...
Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...
Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...Nikki Chapple
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...itnewsafrica
 
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sectoritnewsafrica
 
Digital Tools & AI in Career Development
Digital Tools & AI in Career DevelopmentDigital Tools & AI in Career Development
Digital Tools & AI in Career DevelopmentMahmoud Rabie
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Mark Simos
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Kuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialKuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialJoão Esperancinha
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfAarwolf Industries LLC
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 

Kürzlich hochgeladen (20)

Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...
Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...
Microsoft 365 Copilot: How to boost your productivity with AI – Part two: Dat...
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
 
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
 
Digital Tools & AI in Career Development
Digital Tools & AI in Career DevelopmentDigital Tools & AI in Career Development
Digital Tools & AI in Career Development
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Kuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialKuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorial
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdf
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 

Limits and continuity powerpoint

  • 1. Limits and Continuity Thu Mai, Michelle Wong, Tam Vu
  • 2. What are Limits? Limits are built upon the concept of infinitesimal. Instead of evaluating a function at a certain x-value, limits ask the question, “What value does a function approaches as its input and a constant becomes infinitesimally small?” Notice how this question does not depend upon what f(c) actually is. The notations for writing a limit as x approaches a constant of the function f(x) is: Where c is the constant and L (if it is defined) is the value that the function approaches.
  • 3. Evaluating Limits: Direct Substitution Sometimes, the limit as x approaches c of f(x) is equal to f(c). If this is the case, just directly substitute in c for x in the limit expression, as shown below.
  • 4. Dividing Out Technique 1. Always start by seeing if the substitution method works. 2. If, when you do so, the new expression obtained is an indeterminate form such as 0/0… try the dividing out technique! 3. Because both the numerator an denominator are 0, you know they share a similar factor. 4. Factor whatever you can in the given function. 5. If there is a matching factor in the numerator and denominator, you can cross thru them since they “one out.” 6. With your new, simplified function attempt the substitution method again. Plug whatever value x is approaching in for x. 7. The answer you arrive at is the limit. *Note: You may need to algebraically manipulate the function.
  • 5. Rationalizing Sometimes, you will come across limits with radicals in fractions. Steps 1. Use direct substitution by plugging in zero for x. 2. If you arrive at an undefined answer (0 in the denominator) see if there are any obvious factors you could divide out. 3. If there are none, you can try to rationalize either the numerator or the denominator by multiplying the expression with a special form of 1. 4. Simplify the expression. Then evaluate the rewritten limit. Ex:
  • 6. Squeeze Theorem The Squeeze Theorem states that if h(x) f(x) g(x), and then
  • 7. Special Trig Limits (memorize these) h is angle in radians area of blue: cos(h)sin(h)/2 area of pink: h/2 area of yellow: tan(h)/2 Since by the Squeeze Theorem we can say that
  • 9. Continuity and Discontinuity A function is continuous in the interval [a,b] if there does not exist a c in the interval [a,b] such that: 1) f(c) is undefined, or 2) , or 3) The following functions are discontinuous b/c they do not fulfill ALL the properties of continuity as defined above.
  • 10. Removable vs Non-removable Discontinuities • A removable discontinuity exists at c if f can be made continuous by redefining f(c). • If there is a removable discontinuity at c, the limit as xc exists; likewise if there is a non-removable discontinuity at c, the limit as xc does not exist. For this function, there is a removable discontinuity at x=3; f(3) = 4 can simply be redefined as f(3) = 2 to make the function continuous. The limit as x3 exists. For this function, there is a non-removable discontinuity at x=3; even if f(3) is redefined, the function will never be continuous. The limit as x3 does not exist.
  • 11. Intermediate Value Theorem The Intermediate Value Theorem states that if f(x) is continuous in the closed interval [a,b] and f(a) M f(b), then at least one c exists in the interval [a,b] such that: f(c) = M
  • 12. When do limits not exist? If then…
  • 13. Vertical Asymptotes f(x) and g(x) are continuous on an open interval containing c. if f(c) is not equal to 0 and g(c)= 0 and there’s an open interval with c which g(x) is not 0 for all values of x that are not c, then….. There is an asymptote at x = c for
  • 14. Properties of Limits Let b and c be real numbers, n be a positive integer, f and g be functions with the following limits. Sum or Difference Quotient Scalar Multiple Power Product
  • 15. Limits Substitution With limits substitution (informally named so by yours truly), if then This is useful for evaluating limits such as:
  • 16. How Do Limits Relate to Derivatives? What is a derivative? • The derivative of a function is defined as that function’s INSTANT rate of change. Applying Prior Knowledge: • As learned in pre-algebra, the rate of change of a function is defined by: Δy Δx Apply Knowledge of Limits: • Consider that a limit describes the behavior of a function as x gets closer and closer to a point on a function from both left and right. • Δy describes a function’s rate of change. To find the function’s INSTANT rate of Δx change, we can use limits. • We can take: lim Δy Δx 0 Δx WHY? As the change in x gets closer and closer to 0, we can more accurately predict the function’s INSTANT rate of change, and thus the function’s derivative.
  • 17. How Do Limits Relate to Derivatives? Δy y –y Consider that Δx can be rewritten as 2Δx 1 . (x+ Δx, f(x+ Δx)) Analyze the graph. Notice that the change (x, f(x)) in y between any two points on a function is f(x+ Δx) – f(x). Thus: Δy = y2 – y1 = f(x+ Δx) – f(x) Δx Δx Δx So lim Δy can be rewritten as lim f(x+ Δx) – f(x) . Δx 0 Δx Δx0 Δx Therefore, the derivative of f(x) at x is given by: lim f(x+ Δx) – f(x) Δx 0 Δx