Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Applications of integration

323 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung, Technologie
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Applications of integration

  1. 1. Applications of Integration<br />Volume Methods <br />
  2. 2. Variables<br />Integral- area which is being found for area/volume, dictated by two points on a graph from point A to B<br />F(x)=a,b<br />Revolve around the X-axis or Y-Axis <br />
  3. 3. Equations<br />Vdisc/washer= ∏r2 h<br />Vshell= 2 ∏rh<br />
  4. 4. Methods<br />Disc Method - Disc method is used with hollow solids when finding volume-top-bottom - be sure to determinewhich graph is on top and which is on thebottom <br />
  5. 5. Washer Method<br />is used when there are two solids within each other<br />Same equation as disc method<br />Top-bottom <br />
  6. 6. Shell Method<br />Used primarily when it is on the y-axis <br />Different equation than disc and washer<br />Can be used at any time<br />Remember! When rotated aroundthe x-axis the equation should be in terms of y. <br />
  7. 7. Remember!<br />To change the equation if on the y-axis <br />
  8. 8. Remember!<br />You can determine which graph is on top and which is on the bottom by plugging in a number which is in the interval and the bigger of the two is the one on top<br />
  9. 9. Practice <br />X2-9=f(x) 1) Graph the function 2) Find the Interval (-3,3) 3) Set Up the Integral∏∫ X2-9 (a,b = -3,3) 4) Solve using Calculator 5) Don’t forget units<br />

×