Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Energy internet

938 Aufrufe

Veröffentlicht am

he Energy Internet
An alternative renewable power distribution system to the electrical grid using dynamic charging of autonomous eVehicles and Internet Routing Protocols

Veröffentlicht in: Internet
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Energy internet

  1. 1. The Energy Internet An alternative renewable power distribution system to the electrical grid using dynamic charging of autonomous eVehicles and Internet Routing Protocols Latest Update November 5, 2017 Bill.st.arnaud@gmail.com
  2. 2. Executive Summary • Autonomous eVehicle used to transport energy from roadside or roof top solar panels in rural or suburban areas to buildings (V2B) in cities or other infrastructure as needed • It allows eVehicles to become an energy transport system in competition with electrical grid in addition to carrying people and goods • Charging eVehicles as they move (dynamic Charging) significantly reduces size, cost and weight of batteries and allows rapid transfer of power from/to vehicle • Technology already working for buses in various cities around the world and in use on factory floors • Energy Internet can significantly mitigate against two largest sources of CO2 - Transportation and Electrical Energy Generation • New energy routing protocols adopted from Internet - SDN-P, BGP-P
  3. 3. “Packetized Power” with autonomous eVehicles • Autonomous eVehicles could be used to capture renewable power from solar panels using dynamic charging along highways and suburbia to deliver to buildings and infrastructure elsewhere • Alternative back up power source instead of diesel generators for cell phone towers, etc • Autonomous vehicles could store and forward power to other vehicles at packet power routing points • Where practical can be also used to carry passengers – next generation ZipCar
  4. 4. Suburban sprawl answer to global warming? • Suburban lifestyle with solar panels on every house with dynamic charging of vehicles driving by the house • Rather than charging vehicles at home and driving to work or shopping, vehicle is charged on the way to and from work or shopping • eVehicle can then be used for supplementary power during the day at work, or during the night at home – http://www.navigantresearch.com/research/vehicle-to- building-technologies • Suburban sprawl to power cities of the future – http://www.lincoln.ac.uk/news/2013/07/745.asp • How suburban sprawl paradoxically could be the answer to global warming – http://goo.gl/bXO6x
  5. 5. Vehicle To Building (V2B) Power • In the coming decade, the energy stored electric vehicle batteries will increasingly be made available to commercial buildings • Numerous pilot projects are now underway around the world to develop and test V2B technologies. • The majority of these programs are part of larger projects that are testing microgrid and smart grid technologies. – http://www.navigantresearch.com/research/v ehicle-to-building-technologies
  6. 6. eVehicle energy storage and micro grids for university 6 UCSD 2nd life battery program University Delaware use of eVehicles for power
  7. 7. Energy Internet Routing • With Energy Internet it is assumed that their are small local power source part of micro grid e.g: – Local rooftop solar panels – WiFi and Internet of Things (IoT) with its own solar panel – Business or home powered by eVehicles (V2B) • Many possible virtual and real power circuits: Software Defined Power Networks (SDN- P) – PoE, USB, Traditional 110/220, 48V Dc,Pulse power over Cat 5 – Power routing across devices following path of virtual power circuit – Power routing between eVehicles and dynamic charging stations • Ideal for existing intelligent networked devices like computers, power walls, switches, routers, servers, Wifi hot spots , electric vehicle charging stations, etc – Most of these devices have their own on board storage and so techniques such as round-robin power distribution are possible • Network engineers & researchers have to start thinking how to deploy networks that are powered solely by solar power and autonomous eVehicles http://www.theglobeandmail.com/report-on-business/rob-commentary/rob-insight/an-earth-day- look-at-the-sunny-state-of-solar/article18101176/#dashboard/follows/ … 7
  8. 8. Current limitations of eVehicles (EV) • High capital cost due to large cost of batteries • High operating cost because batteries need to be replaced every 2-5 years • Limited range, especially in cold weather when battery capacity is reduced – Battery capacity reduced by up to 1/3 if air conditioning or cabin heating is required • Long time to re-charge between trips – So a small number of short trips within a day can deplete batteries – Inhibits spontaneity of taking a long trip because of uncertainty of charge state • Battery powered trucks and buses are more problematic in terms of range and cost 8
  9. 9. Alternative to the battery • Rather than waiting for perfect battery why not change the charging system? • Old world thinking that vehicles must be stationary to be refueled. – This was true when using fossil fuels • But with electric vehicles there is no reason why they cannot be charged while on the move • Dynamic (on the move) charging (aka opportunity charging) – Only 1/5 of battery capacity required compared to regular eVehicle 9
  10. 10. Dynamic Charging • The current vision for most eVehicles is stationary charging at home or at the office • With dynamic mobile charging, the eVehicle can be charged as it is travelling along the highway using power from roadside solar panels and/or windmills – Technology already in use for public bus transportation in various cities and on factory/warehouse systems (opportunity charging) • eVehicle can then be used to deliver this energy as a backup or primary power source at the home or office, rather than consuming electricity at destination – Also known as Vehicle to Building (V2B) Power distribution – http://www.navigantresearch.com/research/vehicle-to-building-technologies • eVehicle then would become a competitor to the electrical grid for delivering renewable energy.
  11. 11. Advantages of dynamic charging • Smaller number of batteries possible -reducing capital costs • Frequent charging of batteries prevents battery depletion and longer life • Reduces concerns of range anxiety • Heavier eVehicles such as trucks and buses are realistically possible • Vehicle can be charged enroute and then used as an alternate power source for the home or business –vehicle to grid or vehicle to business • Eventually concepts of “packet” based power are conceivable leading to future “Energy Internet” 11
  12. 12. Dynamic Charging Technologies • Wireless : – Inductive charging uses the electromagnetic field to transfer energy between two objects in close – Magnetic resonance uses the magnetic coupling of two objects exchanging energy through their varying or oscillating magnetic fields. • Conductive Requires physical contact – Overhead Conductive uses overhead rails or wires as in tram and trolley wires – In Ground Conductive embedded rails as in subways or slot car racing – Capacitive Umbrellas uses overhead “electrical umbrellas” 12
  13. 13. Wireless vs Conductive • Wireless – Pros • No wires or physical obstructions – Cons • Difficult to maintain in heavy traffic and inclement weather such as ice and snow • Concerns about impact on embedded medical devices such as pace makers from strong magnetic fields • Risks of fire if small pieces of metal debris or on charging pad • Very low efficiencies • Still experimental • Conductive – Pros • In operation in several cities around the world with public buses and trams • Well proven technology – Cons • Unsightly wires and infrastructure • High voltages and currents
  14. 14. Qualcomm Dynamic Charging • Qualcomm Technologies, Inc., designed and built a wireless DEVC system capable of charging an electric vehicle (EV) dynamically at up to 20 kilowatts at highway speeds. • Qualcomm Technologies also demonstrated simultaneous charging, in which two vehicles on the same track can charge dynamically at the same time. • The vehicles can pick up charge in both directions along the track, and in reverse, further showcasing how the Qualcomm Halo DEVC system has been designed to support real-world implementation of dynamic charging.
  15. 15. EU Funded Program • Project addresses directly the technological feasibility, economic viability and socio-environmental of dynamic on-road charging of electric vehicles • Advanced solutions, conceived to enable full integration in the grid and road infrastructure within urban- and extra-urban environments for a wide range of future electric vehicles, will be implemented and tested. • http://www.fabric-project.eu/
  16. 16. England Is Going to Test Roads That Actually Charge Electric Cars Trials, slated to begin later this year, will involve installing charging systems underneath mock roads designed to replicate real highway conditions. In these “dynamic charging” systems, coils are buried beneath the asphalt of special charging lanes, offering contactless charging to vehicles fitted with charging “receivers.” Read more: http://www.smithsonianmag.com/innovati on/england-going-to-test-roads-that- actually-charge-electric-cars- 180956336/#ES24P9XDe7Exzlyy.99
  17. 17. KAIST reveals proof of concept dynamic charging in city park • Batteries 1/5 the size required for normal eVehicle • http://www.gizmag.com/kaist-proof-of-concept-olev-power-road/14454/
  18. 18. Brabant NL to deploy world’s first dynamic mobile charging • Starting in mid -2013 the demonstration project will use inductive charging to charge vehicles as they drive a special lane in the highway. – http://www.youtube.com/watch?v=IBTx87xiscs – http://www.wired.com/autopia/2012/10/glowing-roads/
  19. 19. Shanghai Capabus – Capacitive Dynamic Charging China is experimenting with a new form of electric bus, known as Capabus, which runs without continuous overhead lines (is an autonomous vehicle) by using power stored in large onboard electric double-layer capacitors (EDLCs), which are quickly recharged whenever the vehicle stops at any bus stop (under so-called electric umbrellas), and fully charged in the terminus. 19 http://en.wikipedia.org/wiki/Capa_vehicle
  20. 20. Flash Charging of Buses • 15 second charging of bus at each stop • http://www.abb.com/cawp/seitp202/93 15e568e4c6a1f8c1257b7400302fcd.aspx
  21. 21. Volvo’s electric i-road • Volvo research into a future where trucks and buses continuously are supplied with electric power without carrying large batteries. Instead, power lines are built into the surface of the road. This could be a future solution for long-distance trucks and buses running on electricity. – http://news.volvogroup.com/2013/05/23 /the-road-of-tomorrow-is-electric/
  22. 22. Sweden Elways http://elways.se/elways-solution/?lang=en Conductive solution
  23. 23. Siemens dynamic charging for trucks 23 http://reviews.cnet.com/8301- 13746_7-57430211-48/siemens- electrifies-trucks-with-trolley- technology/
  24. 24. Case Study Campus Golf Cart • Application: – Golf courses, retirement community vehicles, university campus service fleet, emergency V2B backup for critical systems such as network and computing equipment • Assume : – Golf course with dynamic charge rail at each hole and course distance 10km (including distance between holes) or average .5km hole – Typical golf cart consumption 200 wh/km. Therefore need to charge golf cart 100 wh to get to next hole – 2 Golf carts arriving at a given hole every 7-8 minutes –9 arrivals per hour • Solar capacity: – 2 x 100 wh x 9 arrivals/hr = 1.8 kwh – Assuming 150w panels = 12-15 panels average per hole • Skeg power capacity: – Assume golf cart stays on charging rail for one minute= 6000 watt-minutes power transfer – Approx 6000 volts @1A or 250V @ 20A or 600V @ 10A for 60v @ 100A or 48V @125A – Note that streetcar and subways usually operate at 600V @ 200 A & Elways claims 250 Kw power – 48V design would eliminate need for DC/DC converters (but would not be useful for cars or trucks) • Ultra capacitor size: – Maxwell BCAP 3000 3wh => 33 caps required
  25. 25. System Diagram for Golf Cart System Solar PV array Inverter Regulator Charger DC/DC Converter Ultra Capacitor Battery Bank Charge Rail 600V 600V .1 KW 48V 1.5 KW 600V .1KW Ske g Battery Bank Motor 48V Ultra Capacitor 100wH 500wH DC/DC Converter Solenoid Rail Activation Switch Rail De- Activation Switch To grid ~ GolfCart
  26. 26. Golf Cart System Design Notes • Golf Cart electrical systems are very simple typically with 48V circuits – http://s985.photobucket.com/user/wizards1/media/DIAGRAMS/1980marathonwiringdiagram.png.html • 600V design chosen for charge rail as this is the most common voltage for streetcars, subways, etc. But based on design of charge rail and skeg other voltages and power ratings may make more sense to reduce arcing and/or welding • DC/DC converter pulse power requirements is .5KW over 1 minute duration assuming voltage rail is 600 V – DC/DC converters should be bi-directional to enable future V2B and power routing applications • Assumption that golf cart stays in contact with rail for 1 minute. May be possible to use higher currents and voltages or longer rails – E.g. Elways has tested their rail at 250KW continuous • Solar array charging system has 5x capacity of individual golf cart to enable charging of several carts in rapid succession • Only one golf cart allowed per charge rail segment. Charge rail may be made up many segments to allow several carts to be charged at once • For rail and skeg design see www.elways.se
  27. 27. Why not use power from grid for dynamic charging? • Within 3- 4 years it is expected electricity from solar panels will be cheaper than from grid – http://mobile.nytimes.com/2014/11/24/business/energy-environment/solar-and-wind- energy-start-to-win-on-price-vs-conventional-fuels.html?referrer=&_r=0 • Most grid systems have large percentage of coal power – CO2 savings are marginal – Scant CO2 Benefit from China’s Coal-Powered Electric Cars – http://green-broadband.blogspot.com/2011/10/scant-co2-benefit-from-chinas- coal.html • Grid interconnection fees, transformers, debt retirement charges, etc significantly drive up costs – However in some locations using solar panel to feed power to grid may allow for additional revenue • Grid and utility power reliability is declining with increased severe weather due to climate change 27
  28. 28. Future vulnerability of grid why we need an alternative for distribution of local renewable power • “US Energy sector vulnerabilities to climate change and extreme weather” US Department of Energy July 2013 – http://energy.gov/sites/prod/files/20 13/07/f2/20130716- Energy%20Sector%20Vulnerabilities% 20Report.pdf 28 Recent Sample outages • Coal and nuclear power generating capacity will decrease by between 4 and 16 percent in the United States and a 6 to 19 percent decline in Europe due to lack of cooling water. • http://www.reuters.com/articl e/2012/06/04/climate-water- energy- idUSL3E8H41SO20120604
  29. 29. Initial target markets • Drive through banks, fast food restaurants, parking garages, universities, golf courses, etc – “Will that be fries with your free electrical charge?” – Complete package of PV system on roof connected to ultra-capacitor and charge rail – When PV is not charging vehicles it can be making money from feed in tariff – Guaranteed 6-10% return even if not a single vehicle charged • V2B for maintain critical systems at universities and businesses such as computing and network equipment, alarm systems, etc • Eventually deployed at toll plazas, on/off ramps, stop lights and intersections 29
  30. 30. More on Energy Internet • How suburban sprawl paradoxically could be the answer to global warming http://goo.gl/bXO6x • Green Investment Opportunity for small business - on the move electric car charging http://goo.gl/c44Tv • Dynamic Charging and Why Energy needs to be Free to reduce CO2 http://goo.gl/LQQum • Packet Based Energy Delivery Systems http://goo.gl/pZEdE • Electric roads and Internet will allow coast to coast driving with no stopping and no emissions http://goo.gl/lMmLy
  31. 31. Let’s Keep The Conversation Going E-mail Bl og s http://green-broadband.blogspot.com Twitt erhttp://twitter.com/BillStArnaud Bill.St.Arnaud@gmail.com Bill St. Arnaud is a R&E Network and Green IT consultant who works with clients on a variety of subjects such as the next generation research and education and Internet networks. He also works with clients to develop practical solutions to reduce GHG emissions such as free broadband and electrical highways (See http://green-broadband.blogspot.com/) .