2014.12 - Let's Disco - 2 (EDDI 2014)

Dr.-Ing. Thomas Hartmann
Dr.-Ing. Thomas HartmannBig Data Architect, Consultant, and Developer at Bosch um Robert Bosch GmbH
2014.12 - Let's Disco - 2 (EDDI 2014)
Controlled Vocabularies
Controlled Vocabularies 
•Existing DDI-CVs are available in RDF 
–Represented in SKOS format 
–Each CV is a skos:ConceptScheme 
–Each CV entry is a skos:Concept 
–Versioning is considered 
•Available at https://github.com/linked- statistics/DDI-controlled-vocabularies 
•Next step: Review by DDI-CV Working Group
skos:Concept 
skos:Concept Scheme 
SummaryStatisticsType_1.0# 
ArithmeticMean 
Variance 
StandardDeviation 
a 
a 
a 
a 
skos:hasTopConcept 
skos:hasTopConcept 
skos:hasTopConcept
<http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#ArithmeticMean> a skos:Concept ; skos:definition "Mathematical average of a set of values. The mean is calculated by adding up two or more values and dividing the total by their number. In social/political science, it is usually the sum of the measurements divided by the number of subjects, or cases."@en ; skos:inScheme <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#CodeList> ; skos:notation "ArithmeticMean" ; skos:prefLabel "Arithmetic mean (X)"@en .
SummaryStatisticsType_2.0# 
skos:Concept Scheme 
SummaryStatisticsType_1.0# 
SummaryStatisticsType# 
a 
a 
a 
dcterms:hasVersion 
dcterms:hasVersion
Versioning 
<http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType#> a skos:ConceptScheme ; 
dcterms:title "Base Scheme of Summary Statistic Type"@en ; dcterms:description "Specifies the type of summary statistic. Summary statistics are a single number representation of the characteristics of a set of values."@en ; owl:versionInfo "1.0" ; dcterms:hasVersion <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0# >, <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_2.0# > .
Variables
Relationships to other Vocabularies
Relationships to other vocabularies 
•Data Cube 
–For representing multidimensional aggregate data 
•DCAT 
–For representing collections (catalogs) of research datasets 
–For providing additional information about physical aspects (file size, file formats) of research data files 
•PROV-O 
–For representing detailed provenance information, e.g. generation and aggregation of data, versioning information, etc.
MicrodataData Set_1 
AggregatedData Set_1 
prov:Entity 
disco:LogicalData Set 
qb:DataSet 
a 
a 
a 
a 
prov:wasDerivedFrom
Simple Case 
ddi:AggregatedDataSet_1 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_1 . 
ddi:MicrodataDataSet_1 a prov:Entity .
Complex Case 
ddi:AggregatedDataSet_2 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_2 ; prov:wasGeneratedBy ddi:AggregationActivity ; prov:qualifiedDerivation [ a prov:Derivation ; prov:entity ddi:MicrodataDataSet_2 ; prov:hadActivity ddi:AggregationActivity ] . 
ddi:AggregationActivity a prov:Activity . 
ddi:MicrodataDataSet_2 a prov:Entity;
European Study_1 
EuropeanData Set_1 
DataCatalog_1 
disco:Logical DataSet 
disco:Study 
dcat:Catalog 
dcat:Catalog Record 
dcat:Dataset 
a 
a 
a 
a 
a 
dcat:record 
dcat:dataset
ddi:DataCatalog_1 a dcat:Catalog ; dcat:record ddi:EuropeanStudy_1 ; dcat:dataset ddi:EuropeanDataSet_1 . 
ddi:EuropeanStudy_1 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_1 . 
ddi:EuropeanDataSet_1 a dcat:Dataset, disco:LogicalDataSet ; dcat:theme ddi:topics/WellBeing ; dcat:theme ddi:topics/PoliticalAttitudes ; dcat:keyword "Europe"@en ; dcat:keyword "Politics"@en .
2014.12 - Let's Disco - 2 (EDDI 2014)
ddi:DataCatalog_2 a dcat:Catalog; dcat:record ddi:EuropeanStudy_2 ; dcat:record ddi:AggregatedEuropeanData_2 ; dcat:dataset ddi:EuropeanDataSet_2 ; dcat:dataset ddi:AggregatedEuropeanDataSet_2 . ddi:EuropeanStudy_2 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_2 . ddi:AggregatedEuropeanData_2 a dcat:CatalogRecord ; foaf:primaryTopic ddi:AggregatedEuropeanDataSet_2. ddi:EuropeanDataSet_2 a dcat:Dataset, disco:LogicalDataSet . ddi:AggregatedEuropeanDataSet_2 a dcat:Dataset, qb:DataSet ; prov:wasDerivedFrom ddi:EuropeanStudy_2 .
PHDD
2014.12 - Let's Disco - 2 (EDDI 2014)
Mapping DDI-XML to Disco
Mapping DDI-XML to Disco 
•Mappings only between Disco and DDI 3.1 of DDI-L in order to avoid inconsistencies 
–existing mapping documents between DDI 3.1 and other DDI versions (like DDI 3.2 and DDI 2.1) can be reused 
•Availability 
–Google Doc with mapping tables as basis for automatic generation 
–Turtle file containing all mappings 
–Mapping tables in HTML specification of Disco 
•Mapping is still ongoing work
XSLT for existing DDI-XML 
•XSLTs for converting any XML output of DDI-C and DDI-L are available at https://github.com/linked-statistics/DDI-RDF- tools 
•Different XSLT for DDI-C and DDI-L
Bidirectional Mappings 
•Only between Disco and DDI-L 
–DDI-L ⤑ Disco: straight-forward mapping for all items used in Disco 
–Disco ⤑ DDI-L: straight-forward mapping for all items in the disco namespace. 
•Only standard XPath expression is defined as mapping 
•Context: 
–Items from other vocabularies - used in Disco - need a context; then there could be a clear mapping path. 
–Context information necessary for mappings, e.g., skos:notation can be mapped to variable labels and to codes. 
–Context information is either a SPARQL query or an informal description as plain literal.
Mapping Representation 
•Mapping ontology available containing all mapping triples 
•generated automatically out of the official mapping document
Mapping Representation 
skos:notation a rdfs:Class, owl:Class ; disco:mapping [ a disco:Mapping ; disco:ddi-L-Xpath "//l:Variable/l:VariableName" ; disco:ddi-L-Documentation "http://www.ddialliance.org/Specification/DDI- Lifecycle/3.1/XMLSchema/FieldLevelDocumentatio n/logicalproduct_xsd/elements/V ariable.html" disco:context "skos:notation represents variable label" ; disco:context "SELECT ?notation WHERE { ?notation rdfs:domain ?variable. ?variable a disco:Variable. }" ]
DDI 4
Let‘s Disco Now!
2014.12 - Let's Disco - 2 (EDDI 2014)
Acknowledgements 
26 experts from the statistical community and the Linked Data community coming from 12 different countries contributed to this work. They were participating in the events mentioned below. 
•1st workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in September 2011 
•Working meeting in the course of the 3rd Annual European DDI Users Group Meeting (EDDI11) in Gothenburg, Sweden in December 2011 
•2nd workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in October 2012 
•Working meeting at GESIS - Leibniz Institute for the Social Sciences in Mannheim, Germany in February 2013
1 von 29

Recomendados

Best practices for generating Bio2RDF linked data von
Best practices for generating Bio2RDF linked dataBest practices for generating Bio2RDF linked data
Best practices for generating Bio2RDF linked dataalison.callahan
912 views23 Folien
Dublin Core In Practice von
Dublin Core In PracticeDublin Core In Practice
Dublin Core In PracticeMarcia Zeng
5.7K views58 Folien
Introduction to EAD von
Introduction to EADIntroduction to EAD
Introduction to EADKevin Schlottmann
1.2K views110 Folien
Resource description framework von
Resource description frameworkResource description framework
Resource description frameworkhozifa1010
2.7K views33 Folien
Introduction To RDF and RDFS von
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFSNilesh Wagmare
1.2K views19 Folien
Efficient Query Answering against Dynamic RDF Databases von
Efficient Query Answering against Dynamic RDF DatabasesEfficient Query Answering against Dynamic RDF Databases
Efficient Query Answering against Dynamic RDF DatabasesAlexandra Roatiș
714 views81 Folien

Más contenido relacionado

Was ist angesagt?

GDG Meets U event - Big data & Wikidata - no lies codelab von
GDG Meets U event - Big data & Wikidata -  no lies codelabGDG Meets U event - Big data & Wikidata -  no lies codelab
GDG Meets U event - Big data & Wikidata - no lies codelabCAMELIA BOBAN
1.4K views43 Folien
Everything you wanted to know about Dublin Core metadata von
Everything you wanted to know about Dublin Core metadataEverything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadataEduserv Foundation
1.6K views61 Folien
EAD at Metro 09-25-13 von
EAD at Metro 09-25-13EAD at Metro 09-25-13
EAD at Metro 09-25-13Kevin Schlottmann
632 views121 Folien
Ontologies in RDF-S/OWL von
Ontologies in RDF-S/OWLOntologies in RDF-S/OWL
Ontologies in RDF-S/OWLEmanuele Della Valle
1.7K views30 Folien
Introduction to RDF von
Introduction to RDFIntroduction to RDF
Introduction to RDFNarni Rajesh
6.4K views17 Folien
Ukgovld registry-intro von
Ukgovld registry-introUkgovld registry-intro
Ukgovld registry-introDave Reynolds
667 views29 Folien

Was ist angesagt?(20)

GDG Meets U event - Big data & Wikidata - no lies codelab von CAMELIA BOBAN
GDG Meets U event - Big data & Wikidata -  no lies codelabGDG Meets U event - Big data & Wikidata -  no lies codelab
GDG Meets U event - Big data & Wikidata - no lies codelab
CAMELIA BOBAN1.4K views
Everything you wanted to know about Dublin Core metadata von Eduserv Foundation
Everything you wanted to know about Dublin Core metadataEverything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadata
Eduserv Foundation1.6K views
Introduction to RDF von Narni Rajesh
Introduction to RDFIntroduction to RDF
Introduction to RDF
Narni Rajesh6.4K views
Database Programming with Perl and DBIx::Class von Dave Cross
Database Programming with Perl and DBIx::ClassDatabase Programming with Perl and DBIx::Class
Database Programming with Perl and DBIx::Class
Dave Cross14.7K views
Re-using Media on the Web: Media fragment re-mixing and playout von MediaMixerCommunity
Re-using Media on the Web: Media fragment re-mixing and playoutRe-using Media on the Web: Media fragment re-mixing and playout
Re-using Media on the Web: Media fragment re-mixing and playout
MediaMixerCommunity2.8K views
AAT LOD Microthesauri von Marcia Zeng
AAT LOD MicrothesauriAAT LOD Microthesauri
AAT LOD Microthesauri
Marcia Zeng1.6K views
The Semantic Web #9 - Web Ontology Language (OWL) von Myungjin Lee
The Semantic Web #9 - Web Ontology Language (OWL)The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)
Myungjin Lee2.2K views
DLF 2015 Presentation, "RDF in the Real World." von Avalon Media System
DLF 2015 Presentation, "RDF in the Real World." DLF 2015 Presentation, "RDF in the Real World."
DLF 2015 Presentation, "RDF in the Real World."
RDF SHACL, Annotations, and Data Frames von Kurt Cagle
RDF SHACL, Annotations, and Data FramesRDF SHACL, Annotations, and Data Frames
RDF SHACL, Annotations, and Data Frames
Kurt Cagle405 views
Rdf Overview Presentation von Ken Varnum
Rdf Overview PresentationRdf Overview Presentation
Rdf Overview Presentation
Ken Varnum994 views

Destacado

2012.10 - DDI Lifecycle - Moving Forward - 3 von
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3Dr.-Ing. Thomas Hartmann
1.2K views10 Folien
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang... von
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...Dr.-Ing. Thomas Hartmann
477 views22 Folien
2012.11 - ISWC 2012 - DC - 1 von
2012.11 - ISWC 2012 - DC - 12012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 1Dr.-Ing. Thomas Hartmann
449 views11 Folien
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai... von
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...Dr.-Ing. Thomas Hartmann
880 views23 Folien
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015) von
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)Dr.-Ing. Thomas Hartmann
747 views25 Folien
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema... von
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...Dr.-Ing. Thomas Hartmann
475 views17 Folien

Destacado(9)

2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang... von Dr.-Ing. Thomas Hartmann
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai... von Dr.-Ing. Thomas Hartmann
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema... von Dr.-Ing. Thomas Hartmann
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016) von Dr.-Ing. Thomas Hartmann
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba... von Dr.-Ing. Thomas Hartmann
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...

Similar a 2014.12 - Let's Disco - 2 (EDDI 2014)

Force11 JDDCP workshop presentation, @ Force2015, Oxford von
Force11 JDDCP workshop presentation, @ Force2015, OxfordForce11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, OxfordMark Wilkinson
1.2K views87 Folien
Intro to apache spark stand ford von
Intro to apache spark stand fordIntro to apache spark stand ford
Intro to apache spark stand fordThu Hiền
1.1K views194 Folien
Apache spark sneha challa- google pittsburgh-aug 25th von
Apache spark  sneha challa- google pittsburgh-aug 25thApache spark  sneha challa- google pittsburgh-aug 25th
Apache spark sneha challa- google pittsburgh-aug 25thSneha Challa
578 views42 Folien
Data Integration And Visualization von
Data Integration And VisualizationData Integration And Visualization
Data Integration And VisualizationIvan Ermilov
985 views79 Folien
Code as Data workshop: Using source{d} Engine to extract insights from git re... von
Code as Data workshop: Using source{d} Engine to extract insights from git re...Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...source{d}
177 views47 Folien
Big Data Processing using Apache Spark and Clojure von
Big Data Processing using Apache Spark and ClojureBig Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and ClojureDr. Christian Betz
6.8K views69 Folien

Similar a 2014.12 - Let's Disco - 2 (EDDI 2014)(20)

Force11 JDDCP workshop presentation, @ Force2015, Oxford von Mark Wilkinson
Force11 JDDCP workshop presentation, @ Force2015, OxfordForce11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, Oxford
Mark Wilkinson1.2K views
Intro to apache spark stand ford von Thu Hiền
Intro to apache spark stand fordIntro to apache spark stand ford
Intro to apache spark stand ford
Thu Hiền1.1K views
Apache spark sneha challa- google pittsburgh-aug 25th von Sneha Challa
Apache spark  sneha challa- google pittsburgh-aug 25thApache spark  sneha challa- google pittsburgh-aug 25th
Apache spark sneha challa- google pittsburgh-aug 25th
Sneha Challa578 views
Data Integration And Visualization von Ivan Ermilov
Data Integration And VisualizationData Integration And Visualization
Data Integration And Visualization
Ivan Ermilov985 views
Code as Data workshop: Using source{d} Engine to extract insights from git re... von source{d}
Code as Data workshop: Using source{d} Engine to extract insights from git re...Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...
source{d}177 views
Big Data Processing using Apache Spark and Clojure von Dr. Christian Betz
Big Data Processing using Apache Spark and ClojureBig Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and Clojure
Dr. Christian Betz6.8K views
Data integration with a façade. The case of knowledge graph construction. von Enrico Daga
Data integration with a façade. The case of knowledge graph construction.Data integration with a façade. The case of knowledge graph construction.
Data integration with a façade. The case of knowledge graph construction.
Enrico Daga335 views
Jump Start on Apache Spark 2.2 with Databricks von Anyscale
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale976 views
Putting Historical Data in Context: how to use DSpace-GLAM von 4Science
Putting Historical Data in Context: how to use DSpace-GLAMPutting Historical Data in Context: how to use DSpace-GLAM
Putting Historical Data in Context: how to use DSpace-GLAM
4Science3.9K views
How to describe a dataset. Interoperability issues von Valeria Pesce
How to describe a dataset. Interoperability issuesHow to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issues
Valeria Pesce2.7K views
Spark & Cassandra at DataStax Meetup on Jan 29, 2015 von Sameer Farooqui
Spark & Cassandra at DataStax Meetup on Jan 29, 2015 Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Sameer Farooqui3.9K views
Producing, publishing and consuming linked data - CSHALS 2013 von François Belleau
Producing, publishing and consuming linked data - CSHALS 2013Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013
François Belleau2.5K views
20160818 Semantics and Linkage of Archived Catalogs von andrea huang
20160818 Semantics and Linkage of Archived Catalogs20160818 Semantics and Linkage of Archived Catalogs
20160818 Semantics and Linkage of Archived Catalogs
andrea huang629 views
Orchestrating the Intelligent Web with Apache Mahout von aneeshabakharia
Orchestrating the Intelligent Web with Apache MahoutOrchestrating the Intelligent Web with Apache Mahout
Orchestrating the Intelligent Web with Apache Mahout
aneeshabakharia2.6K views
11. From Hadoop to Spark 1:2 von Fabio Fumarola
11. From Hadoop to Spark 1:211. From Hadoop to Spark 1:2
11. From Hadoop to Spark 1:2
Fabio Fumarola7.6K views
Apache Spark Tutorial von Ahmet Bulut
Apache Spark TutorialApache Spark Tutorial
Apache Spark Tutorial
Ahmet Bulut1.8K views

Más de Dr.-Ing. Thomas Hartmann

KIT Graduiertenkolloquium 11.05.2016 von
KIT Graduiertenkolloquium 11.05.2016KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016Dr.-Ing. Thomas Hartmann
409 views61 Folien
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop... von
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...Dr.-Ing. Thomas Hartmann
916 views27 Folien
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM) von
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)Dr.-Ing. Thomas Hartmann
898 views21 Folien
2014.10 - How to Formulate and Validate Constraints (DC 2014) von
2014.10 - How to Formulate and Validate Constraints (DC 2014)2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)Dr.-Ing. Thomas Hartmann
550 views54 Folien
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia... von
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...Dr.-Ing. Thomas Hartmann
611 views15 Folien
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014) von
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)Dr.-Ing. Thomas Hartmann
702 views17 Folien

Más de Dr.-Ing. Thomas Hartmann(20)

2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop... von Dr.-Ing. Thomas Hartmann
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia... von Dr.-Ing. Thomas Hartmann
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014) von Dr.-Ing. Thomas Hartmann
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
The Next Generation of the Microdata Information System MISSY - An Integrated... von Dr.-Ing. Thomas Hartmann
The Next Generation of the Microdata Information System MISSY - An Integrated...The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ... von Dr.-Ing. Thomas Hartmann
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ... von Dr.-Ing. Thomas Hartmann
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10] von Dr.-Ing. Thomas Hartmann
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]

Último

Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... von
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...ShapeBlue
154 views62 Folien
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... von
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...ShapeBlue
123 views28 Folien
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... von
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...ShapeBlue
138 views18 Folien
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T von
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TShapeBlue
112 views34 Folien
The Power of Heat Decarbonisation Plans in the Built Environment von
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built EnvironmentIES VE
69 views20 Folien
Why and How CloudStack at weSystems - Stephan Bienek - weSystems von
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsShapeBlue
197 views13 Folien

Último(20)

Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... von ShapeBlue
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
ShapeBlue154 views
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... von ShapeBlue
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
ShapeBlue123 views
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... von ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue138 views
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T von ShapeBlue
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
ShapeBlue112 views
The Power of Heat Decarbonisation Plans in the Built Environment von IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE69 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems von ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue197 views
State of the Union - Rohit Yadav - Apache CloudStack von ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue253 views
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... von ShapeBlue
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
ShapeBlue120 views
DRBD Deep Dive - Philipp Reisner - LINBIT von ShapeBlue
DRBD Deep Dive - Philipp Reisner - LINBITDRBD Deep Dive - Philipp Reisner - LINBIT
DRBD Deep Dive - Philipp Reisner - LINBIT
ShapeBlue140 views
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ... von ShapeBlue
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
ShapeBlue79 views
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... von ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue144 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT von ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue166 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online von ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue181 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive von Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates von ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue210 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... von ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue132 views
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... von TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc160 views

2014.12 - Let's Disco - 2 (EDDI 2014)

  • 3. Controlled Vocabularies •Existing DDI-CVs are available in RDF –Represented in SKOS format –Each CV is a skos:ConceptScheme –Each CV entry is a skos:Concept –Versioning is considered •Available at https://github.com/linked- statistics/DDI-controlled-vocabularies •Next step: Review by DDI-CV Working Group
  • 4. skos:Concept skos:Concept Scheme SummaryStatisticsType_1.0# ArithmeticMean Variance StandardDeviation a a a a skos:hasTopConcept skos:hasTopConcept skos:hasTopConcept
  • 5. <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#ArithmeticMean> a skos:Concept ; skos:definition "Mathematical average of a set of values. The mean is calculated by adding up two or more values and dividing the total by their number. In social/political science, it is usually the sum of the measurements divided by the number of subjects, or cases."@en ; skos:inScheme <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#CodeList> ; skos:notation "ArithmeticMean" ; skos:prefLabel "Arithmetic mean (X)"@en .
  • 6. SummaryStatisticsType_2.0# skos:Concept Scheme SummaryStatisticsType_1.0# SummaryStatisticsType# a a a dcterms:hasVersion dcterms:hasVersion
  • 7. Versioning <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType#> a skos:ConceptScheme ; dcterms:title "Base Scheme of Summary Statistic Type"@en ; dcterms:description "Specifies the type of summary statistic. Summary statistics are a single number representation of the characteristics of a set of values."@en ; owl:versionInfo "1.0" ; dcterms:hasVersion <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0# >, <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_2.0# > .
  • 9. Relationships to other Vocabularies
  • 10. Relationships to other vocabularies •Data Cube –For representing multidimensional aggregate data •DCAT –For representing collections (catalogs) of research datasets –For providing additional information about physical aspects (file size, file formats) of research data files •PROV-O –For representing detailed provenance information, e.g. generation and aggregation of data, versioning information, etc.
  • 11. MicrodataData Set_1 AggregatedData Set_1 prov:Entity disco:LogicalData Set qb:DataSet a a a a prov:wasDerivedFrom
  • 12. Simple Case ddi:AggregatedDataSet_1 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_1 . ddi:MicrodataDataSet_1 a prov:Entity .
  • 13. Complex Case ddi:AggregatedDataSet_2 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_2 ; prov:wasGeneratedBy ddi:AggregationActivity ; prov:qualifiedDerivation [ a prov:Derivation ; prov:entity ddi:MicrodataDataSet_2 ; prov:hadActivity ddi:AggregationActivity ] . ddi:AggregationActivity a prov:Activity . ddi:MicrodataDataSet_2 a prov:Entity;
  • 14. European Study_1 EuropeanData Set_1 DataCatalog_1 disco:Logical DataSet disco:Study dcat:Catalog dcat:Catalog Record dcat:Dataset a a a a a dcat:record dcat:dataset
  • 15. ddi:DataCatalog_1 a dcat:Catalog ; dcat:record ddi:EuropeanStudy_1 ; dcat:dataset ddi:EuropeanDataSet_1 . ddi:EuropeanStudy_1 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_1 . ddi:EuropeanDataSet_1 a dcat:Dataset, disco:LogicalDataSet ; dcat:theme ddi:topics/WellBeing ; dcat:theme ddi:topics/PoliticalAttitudes ; dcat:keyword "Europe"@en ; dcat:keyword "Politics"@en .
  • 17. ddi:DataCatalog_2 a dcat:Catalog; dcat:record ddi:EuropeanStudy_2 ; dcat:record ddi:AggregatedEuropeanData_2 ; dcat:dataset ddi:EuropeanDataSet_2 ; dcat:dataset ddi:AggregatedEuropeanDataSet_2 . ddi:EuropeanStudy_2 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_2 . ddi:AggregatedEuropeanData_2 a dcat:CatalogRecord ; foaf:primaryTopic ddi:AggregatedEuropeanDataSet_2. ddi:EuropeanDataSet_2 a dcat:Dataset, disco:LogicalDataSet . ddi:AggregatedEuropeanDataSet_2 a dcat:Dataset, qb:DataSet ; prov:wasDerivedFrom ddi:EuropeanStudy_2 .
  • 18. PHDD
  • 21. Mapping DDI-XML to Disco •Mappings only between Disco and DDI 3.1 of DDI-L in order to avoid inconsistencies –existing mapping documents between DDI 3.1 and other DDI versions (like DDI 3.2 and DDI 2.1) can be reused •Availability –Google Doc with mapping tables as basis for automatic generation –Turtle file containing all mappings –Mapping tables in HTML specification of Disco •Mapping is still ongoing work
  • 22. XSLT for existing DDI-XML •XSLTs for converting any XML output of DDI-C and DDI-L are available at https://github.com/linked-statistics/DDI-RDF- tools •Different XSLT for DDI-C and DDI-L
  • 23. Bidirectional Mappings •Only between Disco and DDI-L –DDI-L ⤑ Disco: straight-forward mapping for all items used in Disco –Disco ⤑ DDI-L: straight-forward mapping for all items in the disco namespace. •Only standard XPath expression is defined as mapping •Context: –Items from other vocabularies - used in Disco - need a context; then there could be a clear mapping path. –Context information necessary for mappings, e.g., skos:notation can be mapped to variable labels and to codes. –Context information is either a SPARQL query or an informal description as plain literal.
  • 24. Mapping Representation •Mapping ontology available containing all mapping triples •generated automatically out of the official mapping document
  • 25. Mapping Representation skos:notation a rdfs:Class, owl:Class ; disco:mapping [ a disco:Mapping ; disco:ddi-L-Xpath "//l:Variable/l:VariableName" ; disco:ddi-L-Documentation "http://www.ddialliance.org/Specification/DDI- Lifecycle/3.1/XMLSchema/FieldLevelDocumentatio n/logicalproduct_xsd/elements/V ariable.html" disco:context "skos:notation represents variable label" ; disco:context "SELECT ?notation WHERE { ?notation rdfs:domain ?variable. ?variable a disco:Variable. }" ]
  • 26. DDI 4
  • 29. Acknowledgements 26 experts from the statistical community and the Linked Data community coming from 12 different countries contributed to this work. They were participating in the events mentioned below. •1st workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in September 2011 •Working meeting in the course of the 3rd Annual European DDI Users Group Meeting (EDDI11) in Gothenburg, Sweden in December 2011 •2nd workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in October 2012 •Working meeting at GESIS - Leibniz Institute for the Social Sciences in Mannheim, Germany in February 2013