Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 1
Prof. Dr. Christian Bizer
Evolving the Web in...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 2
Hello
Professor Christian Bizer
University of...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 3
Data and Web Science Group @ University of Ma...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 4
Querying the Classic Web
DB
HTML
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 5
Long Standing Goal
Query the Web like
a singl...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 6
2001 Article: The Semantic Web
Envisions thre...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 7
14 Years Later
There are 1.5 million publicat...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 8
Outline
1. Semantic Annotations in HTML Pages...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 9
1. Semantic Annotations in HTML Pages
Simple ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 10
Semantic Annotation Formats
Microformats
Mic...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 11
Open Graph Protocol
− allows site owners to ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 12
Schema.org
− ask site owners since 2011 to
a...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 13
Usage of Schema.org Data @ Google
Rich snipp...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 14
Event Data in Google Applications
https://de...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 15
Flight Offers in Google Search Results
Annot...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 16
Rich-Snippets Get More User Attention
− Such...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 17
Motivation for Semantic Annotations
− Study ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 18
The Common Crawl
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 19
The Web Data Commons Project
− extracts all ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 20
Overall Adoption 2014
620 million HTML pages...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 21
Number of PLDs providing Semantic Annotations
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 22
Most Popular Classes
RDFa
Microdata
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 23
Topical Focus – Microdata 2014
2014 2013
Cla...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 24
Adoption by E-Commerce Websites
Distribution...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 25
Properties used to Describe Products
Top 15 ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 26
Adoption by Travel Websites
Top 15 Travel We...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 27
Properties used to Describe Hotels
Top 10 Pr...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 28
Adoption by Job Websites
Distribution by Top...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 29
Properties used to Describe Job Postings
Top...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 30
Class / Property Distribution
 Only a small...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 31
Opportunity 1: Search Engine Optimization
Ge...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 32
Opportunity 2: Change Push to Pull Communica...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 33
Opportunity 3: Applications beyond Rich-Snip...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 34
Main Challenge: Data Integration and Cleansi...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 35
Property PLDs
# %
schema:Product/name 78,292...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 36
Categorization of Product Offers
− We analyz...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 37
Identity Resolution for Electronic Products
...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 38
Starting Points for Further Improvements
− I...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 39
Conclusion: Semantic Annotations in HTML Pag...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 40
Download and Play with the Data
− http://www...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 41
2. Linked Data
B C
RDF
RDF
link
A D E
RDF
li...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 42
Links as Integration Hints
 publishing Iden...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 43
Effort Distribution between Publisher and Co...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 44
LOD Datasets on the Web: April 2014
Growth w...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 45
Uptake in the Government Domain
− Various ef...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 46
Uptake in the Libraries Community
− Institut...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 47
Uptake in the Life Science Domain
− Goals:
1...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 48
Uptake in the Linguistic Research Community
...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 49
Ontological Agreement
− Strong agreement on ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 50
RDF Links
− Some datasets put a lot of effor...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 51
RDF Links in the LOD Cloud: August 2014
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 52
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 53
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 54
Linked Data as Background Knowledge for Data...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 55
Unemployment Table with Additional Attributes
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 56
RapidMiner Linked Open Data Extension
Allows...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 57
Finding Correlations
− Use additional attrib...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 58
Commercial Applications: Content Management ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 59
− IBM Rational uses Linked Data
technologies...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 60
Conclusion: Linked Data vs. HTML-embeded Dat...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 61
3. Knowledge Graphs
− Google Knowledge Graph...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 62
Data Sources used to Build Knowledge Graphs
...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 63
Application of the Google Knowledge Graph
− ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 64
Application of the Microsoft Knowledge Graph
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 65
1. Answer fact queries: “birthdate michael d...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 66
Google Now Smart Cards
− Direct answers are ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 67
New SEO Topic: How to influence Knowledge Gr...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 68
Behind-the-Scenes Applications
− Google
• us...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 69
Public Knowledge Graphs
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 70
The DBpedia Knowledge Base - Version 2014
− ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 71
DBpedia @ BIS2015
1. Thursday, 10:00
The Pas...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 72
Google Knowledge Vault
− Research project to...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 73
Data Sources for Public Research in this Spa...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 74
Conclusion: 2001 Article - The Semantic Web
...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 75
4. Conclusions
1. Publication of Structured ...
Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 76
Thanks
− References
• Robert Meusel, Petar P...
Nächste SlideShare
Wird geladen in …5
×

Evolving the Web into a Global Dataspace – Advances and Applications

2.764 Aufrufe

Veröffentlicht am

Keynote talk at the 18th International Conference on Business Information Systems, 24-26 June 2015, Poznań, Poland

URL:
http://bis.kie.ue.poznan.pl/bis2015/keynote-speakers/

Abstract:
Motivated by Google, Yahoo!, Microsoft, and Facebook, hundreds of thousands of websites have started to annotate structured data within their pages using markup formats such as Microdata, RDFa, and Microformats. In parallel, the adoption of Linked Data technologies by government agencies, libraries, and scientific institutions has risen considerably. In his talk, Christian Bizer will give an overview of the content profile of the resulting Web of Data. He will showcase applications that exploit the Web of Data and will discuss the challenges of integrating and cleansing data from thousands of independent Web data sources.

Veröffentlicht in: Daten & Analysen
0 Kommentare
3 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

Keine Downloads
Aufrufe
Aufrufe insgesamt
2.764
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
502
Aktionen
Geteilt
0
Downloads
32
Kommentare
0
Gefällt mir
3
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie
  • Since 2012
  • High agreement on vocabulary
    biggest Datasets in their category (288 million product descriptions, 42 million reviews)
  • http://www.alexa.com/topsites/category/Top/Shopping
    Amazon Instant Video: Ja mit JSON-LD
  • Potential reason: HR databases are not stuctured
  • Hotels: 60% of booking via websites, commission 20%
    Tricky leagal questions involved
  • PrecisionElectrinics = 93%
    PrecisionAppeal= 88%
  • Google: 300 people
    Microsoft: 120 people
    Yahoo: 30 people
  • Very up-to-date info (oscar nomenees)
  • Evolving the Web into a Global Dataspace – Advances and Applications

    1. 1. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 1 Prof. Dr. Christian Bizer Evolving the Web into a Global Dataspace - Advances and Applications - 18th International Conference on Business Information System (BIS 2015)
    2. 2. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 2 Hello Professor Christian Bizer University of Mannheim Research Topics −Web Technologies −Web Data Profiling −Web Data Integration −Web Mining
    3. 3. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 3 Data and Web Science Group @ University of Mannheim − 6 Professors • Heiner Stuckenschmidt • Rainer Gemulla • Christian Bizer • Simone Ponzetto • Heiko Paulheim • Johanna Völker − 25 researchers and PhD students − http://dws.informatik.uni-mannheim.de/ 1. Research methods for integrating and mining large amounts of heterogeneous information from the Web. 2. Empirically analyze the content and structure of the Web.
    4. 4. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 4 Querying the Classic Web DB HTML
    5. 5. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 5 Long Standing Goal Query the Web like a single, global database
    6. 6. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 6 2001 Article: The Semantic Web Envisions three things to happen: 1.people publish data in structured form in addition to HTML pages on the Web 2.common vocabularies / ontologies are used to represent data 3.people implement cool applications that do smart things with the available data Tim Berners-Lee, James Hendler and Ora Lassila: The Semantic Web. Scientific American, May 2001.
    7. 7. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 7 14 Years Later There are 1.5 million publications about the Semantic Web on Google Scholar, but 1. Do people publish structured data on the Web? 2. Do people agree on common vocabularies / ontologies? 3. What are the cool applications that do smart things with the data?
    8. 8. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 8 Outline 1. Semantic Annotations in HTML Pages 2. Linked Data 3. Knowledge Graphs 4. Conclusions
    9. 9. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 9 1. Semantic Annotations in HTML Pages Simple idea: Help machines to understand Web content by marking up data in HTML pages. <div itemtype="http://schema.org/Hotel"> <span itemprop="name">Vienna Marriott Hotel</span> <span itemprop="address" itemscope="" itemtype="http://schema.org/PostalAddress"> <span itemprop="streetAddress">Parkring 12a</span> <span itemprop="addressLocality">Vienna</span> <span itemprop="addressCountry">Austria</span> </span> <div itemprop="aggregateRating" itemscope itemtype="http://schema.org/AggregateRating"> <span itemprop="ratingValue"> 4 </span> stars-based on <span itemprop="reviewCount"> 250 </span> reviews. </div>
    10. 10. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 10 Semantic Annotation Formats Microformats Microdata RDFa − date back to 2003 − small set of fixed formats − W3C Recommendation in 2008 − can represent any type of data − proposed in 2009 − tries to be simpler than RDFa
    11. 11. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 11 Open Graph Protocol − allows site owners to determine how entities are displayed in Facebook − relies on RDFa for marking up data in HTML pages − available since April 2010
    12. 12. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 12 Schema.org − ask site owners since 2011 to annotate data for enriching search results − 675 Types: Event, Place, Local Business, Product, Review, Person − Encoding: Microdata, RDFa, JSON-LD
    13. 13. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 13 Usage of Schema.org Data @ Google Rich snippets within search results
    14. 14. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 14 Event Data in Google Applications https://developers.google.com/structured-data/
    15. 15. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 15 Flight Offers in Google Search Results Annotated webpages directly below Google Flights results
    16. 16. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 16 Rich-Snippets Get More User Attention − Suchen Source: www.looktracker.com Potential business incentive.
    17. 17. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 17 Motivation for Semantic Annotations − Study by searchmetrics.com in 2013: 10.000s of search keywords − Type of rich-snippet displayed by Google: Source: http://www.searchmetrics.com/de/knowledge-base/schema/ Google displays Rich-Snippets for 40% of all queries.
    18. 18. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 18 The Common Crawl
    19. 19. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 19 The Web Data Commons Project − extracts all Microformat, Microdata, RDFa data from the Common Crawl − analyzes and provides the extracted data for download − four extraction runs so far • 2014 CC Corpus: 2.0 billion HTML pages  20.4 billion RDF triples • 2013 CC Corpus: 2.2 billion HTML pages  17.2 billion RDF triples • 2012 CC Corpus: 3.0 billion HTML pages  7.3 billion RDF triples • 2009/2010 CC Corpus: 2.5 billion HTML pages  5.1 billion RDF triples − uses 100 machines on Amazon EC2 • approx. 3000 machine/hours (spot instances of type c3.xlarge)  550 Euro − http://www.webdatacommons.org/structureddata/
    20. 20. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 20 Overall Adoption 2014 620 million HTML pages out of the 2 billion pages provide semantic annotations (30%). 2.72 million pay-level-domains (PLDs) out of the 15.68 million pay-level-domains covered by the crawl provide annotations (17%). Google, 2014*: 5 million websites provide Schema.org data. * Guha in LDOW2014 Keynote
    21. 21. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 21 Number of PLDs providing Semantic Annotations
    22. 22. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 22 Most Popular Classes RDFa Microdata
    23. 23. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 23 Topical Focus – Microdata 2014 2014 2013 Class Instances # PLDs PLDs # % # % 1 schema:WebPage 51.757.000 148,893 18,16% 69.712 15,04 2 schema:Article 54.972.000 88,7 10,82% 65.930 14,22 3 schema:Blog 3.787.000 110,663 13,50% 64.709 13,96 4 schema:Product 288.083.000 89,608 10,93% 56.388 12,16 5 schema:PostalAddress 48.804.000 101,086 12,33% 52.446 11,31 6 dv:Breadcrumb 269.088.000 76,894 9,38% 44.187 9,53 7 schema:AggregateRating 59.070.000 50,510 6,16% 36.823 7,94 8 schema:Offer 236.953.000 62,849 7,66% 35.635 7,69 9 schema:LocalBusiness 20.194.000 62,191 7,58% 35.264 7,61 10 schema:BlogPosting 11.458.000 65,397 7,98% 32.056 6,92 11 schema:Organization 101.769.000 52,733 6,43% 24.255 5,23 12 schema:Person 115.376.000 47,936 5,85% 21.107 4,55 13 schema:ImageObject 35.356.000 25,573 3,12% 16.084 3,47 14 dv:Product 12.411.000 16,003 1,95% 13.844 2,99 15 schema:Review 42.561.000 20,124 2,45% 13.137 2,83 16 dv:Review-aggregate 3.964.000 14,094 1,72% 13.075 2,82 17 dv:Organization 3.155.000 10,649 1,30% 9.582 2,07 18 dv:Offer 7.170.000 11,64 1,42% 9.298 2,01 19 dv:Address 2.138.000 9,674 1,18% 8.866 1,91 20 dv:Rating 1.732.000 9,367 1,14% 8.360 1,8 − Top Classes − Topics: • CMS and blog metadata • products and offers • ratings and reviews • business listings • address data • ...and a massive long tail schema: = Schema.org dv: = Google Rich Snippet Vocabulary (deprecated)
    24. 24. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 24 Adoption by E-Commerce Websites Distribution by Alexa Top-15 Shopping Sites Top-Level Domain TLD #PLDs com 38344 co.uk 3605 net 1813 de 1333 pl 1273 com.br 1194 ru 1165 com.au 1062 nl 1002 Website schema:Product Amazon.com  Ebay.com  NetFlix.com  Amazon.co.uk  Walmart.com  etsy.com  Ikea.com  Bestbuy.com  Homedepot.com  Target.com  Groupon.com  Newegg.com  Lowes.com  Macys.com  Nordstrom.com  Adoption by Top-15: 60 %
    25. 25. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 25 Properties used to Describe Products Top 15 Properties PLDs # % schema:Product/name 78,292 87 % schema:Product/image 59,445 66 % schema:Product/description 58,228 65 % schema:Product/offers 57,633 64 % schema:Offer/price 54,290 61 % schema:Offer/availability 36,789 41 % schema:Offer/priceCurrency 30,610 34 % schema:Product/url 23,723 26 % schema:Product/aggregateRating 21,166 24 % schema:AggregateRating/ratingValue 20,513 23 % schema:AggregateRating/reviewCount 14,930 17 % schema:Product/manufacturer 10,150 11 % schema:Product/brand 9,739 11 % schema:Product/productID 9,221 10 % schema:Product/sku 7955 9 %
    26. 26. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 26 Adoption by Travel Websites Top 15 Travel Websites schema:Hotel Any Class Booking.com (uses DataVoc)   TripAdvisor   Expedia   Agoda   Hotels.com   Kayak   Priceline   Travelocity   Orbitz   ChoiceHotels   HolidayCheck   ChoiceHotels   InterContinental Hotels Group   Marriott International   Global Hyatt Corp.   Adoption: 73 %
    27. 27. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 27 Properties used to Describe Hotels Top 10 Properties PLDs # % schema:Hotel/name 4173 88,35 % schema:Hotel/address 3311 70,10 % schema:Hotel/telephone 2488 52,68 % schema:PostalAddress/streetAddress 2362 50,01 % schema:PostalAddress/addressLocality 2231 47,24 % schema:Hotel/url 2102 44,51 % schema:PostalAddress/postalCode 2096 44,38 % schema:AggregateRating/ratingValue 1952 41,33 % schema:Hotel/aggregateRating 1866 39,51 % schema:AggregateRating/bestRating 1697 35,93 %
    28. 28. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 28 Adoption by Job Websites Distribution by Top-10 Employment Sites Top-Level Domain Adoption by Top-10: 70 % TLD #PLDs jobs 908 com 828 org 263 co.uk 194 net 40 nl 38 ca 33 de 32 jobs 908 Website schema:JobPosting Indeed.com  Monster.com  Careerbuilder.com  Snagajob.com  Jobsdb.com  Jobsearch.about.com  Jobs.net  Internships.com  Jobs.aol.com  Quintcareers.com 
    29. 29. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 29 Properties used to Describe Job Postings Top 10 Properties PLDs # % JobPosting/title 2588 91.16 % JobPosting/hiringOrganization 1412 49.74 % JobPosting/description 1192 41.99 % JobPosting/jobLocation 1062 37.41 % Organization/name 862 30.36 % JobPosting/datePosted 793 27.93 % Place/address 471 16.59 % JobPosting/baseSalary 227 8.00 % JobPosting/industry 209 7.36 % JobPosting/educationRequirements 145 5.11 %
    30. 30. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 30 Class / Property Distribution  Only a small set of classes / properties is used.  Strong focus on Schema.org and Facebook vocabularies. schema.org 675 classes 965 properties
    31. 31. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 31 Opportunity 1: Search Engine Optimization Get richer visibility in search results and potentially more clicks.
    32. 32. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 32 Opportunity 2: Change Push to Pull Communication − Current situation: • Information providers need to push data into multiple channels • multiple search engines • multiple domain-specific portals − Web approach: • You maintain a website • All interested parties crawl your data
    33. 33. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 33 Opportunity 3: Applications beyond Rich-Snippets − E-Commerce • Rich source of product data, offers, and reviews • Opportunity to build global product catalogs • Opportunity to mine product and rating data on global-scale − Tourism • Additional data for tourism applications: Nearby local businesses, nearby landmarks, nearby hospitals, nearby events • Search engines as new competitors put pressure on large booking portals? − Recruitment • Increased market transparency • Search engines as new competitors put pressure on job portals that charge per posting? − High up-to-dateness of data • as original data providers know about changes first
    34. 34. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 34 Main Challenge: Data Integration and Cleansing The schema is standardized, but 1. entity names differ 2. the schema is rather shallow and a rather low number of properties is used 3. data quality differs as the data is created by experts and rookies
    35. 35. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 35 Property PLDs # % schema:Product/name 78,292 87% schema:Product/description 58,228 65% schema:Product/manufacturer 10,150 11% schema:Product/brand 9,739 11% schema:Product/productID 9,221 10% Looking Deeper into the E-Commerce Data 1. The structure of the data is rather shallow • Product features are encoded in titles and descriptions • Example product name: “Apple MacBook Air 11-in, Intel Core i5 1.60GHz, 64 GB” • Example product description: “Faster Flash Storage with 64 GB Solid State Drive and USB 3.0 …” • Product IDs are provided by only 10% of the websites • Categorization information is provided only by 2% of the websites.
    36. 36. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 36 Categorization of Product Offers − We analyzed 1.9 million product offers from 9200 shops − We trained bag-of-words classifier for 9 product categories on product descriptions from Amazon. Source: Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering Microdata Markup. In: 4th Workshop on Data Extraction and Object Search (DEOS2014)  @ WWW2014
    37. 37. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 37 Identity Resolution for Electronic Products − We trained feature extractors for product descriptions on offers for electronic products from Amazon. − We used the Silk framework for identity resolution. Precision= 85%
    38. 38. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 38 Starting Points for Further Improvements − Identity Resolution • Exploit product identifiers to learn better product recognizers • 10% of the websites (9,221 PLDs) use s:Product/productID • 1% of the websites (935 PLDs) use s:Product/gtin13 − Categorization of Products • Exploit categorization information provided by subset of the websites • 1,5% of the websites (1,497 PLDs) use s:Offer/category • 0,5% of the websites (460 PLDs) use s:WebPage/breadcrumb • Challenge: Integration of ~ 2,000 product taxonomies Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden Furniture > Tables > Dining Tables Home > Shop > Outdoor & Garden > Barbecues & Outdoor Living > Garden Furniture > Tables > Dining Tables Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys > over $60 Philadelphia Eagles > Philadelphia Eagles Mens > Philadelphia Eagles Mens Jerseys > over $60
    39. 39. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 39 Conclusion: Semantic Annotations in HTML Pages 1. Wide-spread adoption of semantic annotations • motivated by mayor search engines 1. Strong ontology agreement driven by data consumers • Schema.org, Open Graph Protocol 1. Main application: Rich-snippets 2. Endless data pool for • Commercial applications • product and travel data integration and mining • up-to-date listings of local businesses • job search engines that increase market transparency • Research • large-scale data integration and mining • information extraction (using annotations as distant supervision*) * Foley, et al.: Learning to Extract Local Events from the Web. SIGIR 2015
    40. 40. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 40 Download and Play with the Data − http://www.webdatacommons.org/structureddata/ − Only tip of the iceberg, as each website is only partly crawled.
    41. 41. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 41 2. Linked Data B C RDF RDF link A D E RDF links RDF links RDF links RDF RDF RDF RDF RDF RDF RDF RDF RDF • by using RDF to publish structured data directly on the Web • by setting links between data items within different data sources. Set of best practices for publishing structured data on the Web in the form of a single global data graph.
    42. 42. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 42 Links as Integration Hints  publishing Identity Links on the Web  publishing Vocabulary Links on the Web <http://www4.wiwiss.fu-berlin.de/is-group/resource/persons/Person4> owl:sameAs <http://dblp.l3s.de/d2r/resource/authors/Christian_Bizer> . <http://xmlns.com/foaf/0.1/Person> owl:equivalentClass <http://dbpedia.org/ontology/Person> .
    43. 43. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 43 Effort Distribution between Publisher and Consumer Publishers or third parties provides identity/vocabulary links Consumer mines missing identity/vocabulary links Effort Distribution
    44. 44. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 44 LOD Datasets on the Web: April 2014 Growth without new category Social Networking: 94 % Source: Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in Different Topical Domains. In: 13th International Semantic Web Conference (ISWC2014).
    45. 45. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 45 Uptake in the Government Domain − Various efforts by public sector institutions world-wide − Forerunners • UK government • US government − Types of data published • statistical data • environmental data • budget and election data − Goals • Make data available to the public and other government agencies • Ease data integration by using standards, providing unique identifiers and by setting links
    46. 46. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 46 Uptake in the Libraries Community − Institutions publishing Linked Data • Library of Congress (subject headings) • German National Library (PND dataset and subject headings) • Swedish National Library (Libris - catalog) • Hungarian National Library (OPAC and digital library) • Europeana Digital Library (4 million artifacts) • Springer (metadata about conference proceedings) − Goals: 1. Interconnect resources between repositories (by topic, by location, by historical period, by ...) 2. Integrate library catalogs on global scale
    47. 47. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 47 Uptake in the Life Science Domain − Goals: 1. Connect life science datasets in order to support • biological knowledge discovery • drug discovery 1. Reuse results of previous integration efforts
    48. 48. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 48 Uptake in the Linguistic Research Community http://linguistic-lod.org/llod-cloud http://www.lider-project.eu/
    49. 49. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 49 Ontological Agreement − Strong agreement on some vocabularies − Proprietary vocabularies are used in addition to common ones, as data is often very specific Widely-Used Vocabularies Proprietary Vocabularies
    50. 50. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 50 RDF Links − Some datasets put a lot of effort into linking − Many datasets only link to a small number of other datasets or do not set RDF links at all Datasets with Top In-Degrees Out-Degrees per Category
    51. 51. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 51 RDF Links in the LOD Cloud: August 2014
    52. 52. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 52
    53. 53. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 53
    54. 54. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 54 Linked Data as Background Knowledge for Data Mining Which factors correlate with unemployment in France?
    55. 55. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 55 Unemployment Table with Additional Attributes
    56. 56. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 56 RapidMiner Linked Open Data Extension Allows you to 1. link local table to LOD data sources 2. extend local table with additional attributes 3. mine extended tables using all Rapidminer features
    57. 57. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 57 Finding Correlations − Use additional attributes to find interesting correlations − Example correlation for unemployment in France: • African islands, islands in the Indian Ocean, outermost regions of the EU (positive) • Population growth (positive) • Energy consumption (negative) • Hospital beds/inhabitants (negative) • Fast food restaurants (positive) • Police stations (positive) Source: Petar Ristoski, Christian Bizer, and Heiko Paulheim: Mining the Web of Linked Data with RapidMiner. Semantic Web Challenge, Winner of the Open Track, 2014.
    58. 58. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 58 Commercial Applications: Content Management at BBC − Interconnect content management systems of different TV and radio stations. − Similar efforts to connect content repositories at Elsevier and Springer. Source: http://www.w3.org/2001/sw/sweo/public/UseCases/BBC
    59. 59. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 59 − IBM Rational uses Linked Data technologies to connect data from different • software development tools • software lifecycle tools − Goals: 1. Make data independent of concrete tool (IBM or third party) 2. Allow services (reporting, discovery) to access data from all tools 3. Distributed data space as an alternative to central repository or integration hub / bus Commercial Applications: Application Integration at IBM Source: http://www.w3.org/2001/sw/sweo/public/UseCases/IBM
    60. 60. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 60 Conclusion: Linked Data vs. HTML-embeded Data Linked Data Microdata, Microformats, RDFa ~ 1000 sources millions of sources covers wider range of specific topics focused on search engines and facebook more complex data structures very simple and shallow data structures partial ontology agreement strong ontology agreement data integration eased by RDF links data integration often requires NLP techniques various application prototypes some industrial uptake strong application pull by search engines
    61. 61. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 61 3. Knowledge Graphs − Google Knowledge Graph • development started 2012, builds on Freebase • 570 million objects described by over 18 billion facts (2012) • 1500 classes, 35,000 properties − Microsoft Satori Knowledge Base • revealed to the public in mid-2013 − Yahoo Knowledge Graph • revealed to the public early-2014 − Knowledge Graphs employ RDF-style graph data models Large cross-domain knowledge bases which aim to cover all “relevant” entities in the world.
    62. 62. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 62 Data Sources used to Build Knowledge Graphs 1. Wikipedia • infoboxes, category system, information extraction from text 1. Open license sources • e.g. CIA World Factbook, MusicBrainz, … 1. Commercial third-party data • e.g. IMDB, company listings, … 1. schema.org annotations in web pages • e.g. contact information for companies • e.g. logos of companies Lots of effort is spend on data integration and manual data curation
    63. 63. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 63 Application of the Google Knowledge Graph − Enrich search results with knowledge cards and lists − Goal: Fulfil information need without having users navigate to other websites
    64. 64. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 64 Application of the Microsoft Knowledge Graph
    65. 65. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 65 1. Answer fact queries: “birthdate michael douglas” 2. Compare things: ”compare eiffel tower vs empire state building” Applications of the Google Knowledge Graph
    66. 66. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 66 Google Now Smart Cards − Direct answers are especially important in the mobile context − Google Now displays direct answers for 19.45% of the queries (Source: Stone Temple Consulting, 2015) − Medical facts are reviewed by an average of 11.1 doctors (Source: Google)
    67. 67. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 67 New SEO Topic: How to influence Knowledge Graphs? Source: http://searchengineland.com/ leveraging-wikidata-gain-google- knowledge-graph-result-219706
    68. 68. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 68 Behind-the-Scenes Applications − Google • uses its knowledge graph to identity entities in web pages (Entity Linking) • Hummingbird ranking algorithm (deployed in 2013) uses knowledge graph as background knowledge for ranking search results. − Yahoo • uses its knowledge graph to “support applications across the company: • Web Search, Content Understanding • Recommendation, Personalization, Advertisement”* − Data Integration • becomes matching data sources against knowledge graphs as intermediate schemata. Various tasks become easier, if you know all entities in the world. *Source: Nicolas Torzec, Yahoo 2014
    69. 69. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 69 Public Knowledge Graphs
    70. 70. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 70 The DBpedia Knowledge Base - Version 2014 − Describes 4.58 million things, out of which 4.22 million are classified in a consistent ontology using 685 classes and 2679 different properties • 1,445,000 persons • 735,000 places • 241,000 organizations • 123,000 music albums − Altogether 3 billion pieces of information (RDF triples) • 580 million were extracted from the English edition of Wikipedia • 29,000,000 links to external web pages • 50,000,000 external links into other RDF datasets − DBpedia Internationalization • provides data from 125 Wikipedia language editions for download • For 28 popular languages DBpedia provides cleaned infobox data
    71. 71. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 71 DBpedia @ BIS2015 1. Thursday, 10:00 The Past, Present & Future of DBpedia Keynote by Dimitris Kontokostas 2. Thursday, 10:45 4th DBpedia Community Meeting Room 2
    72. 72. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 72 Google Knowledge Vault − Research project to build a knowledge base using facts extracted from 1 billion web pages 1. Web text (TXT): Entity linking, relationship extraction 2. HTML trees (DOM): Wrapper induction 3. HTML tables (TBL): Relational tables 4. Semantic Annotations (ANO): schema.org, OGP − Employs probabilistic model for data fusion − Results: 1.6 billion facts • 271 million with confidence >90% • 90 million not in Freebase Source: Luna Dong, Evgeniy Gabrilovich, et al.: Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. In SIGKDD, 2014.
    73. 73. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 73 Data Sources for Public Research in this Space 1. Common Crawl • ~ 2 billion HTML pages • updated very couple of months 1. WebDataCommons HTML Tables Corpus • 147 million relational web tables • selected out of the 11 billion tables contained in the Common Crawl • http://webdatacommons.org/webtables/ 1. WebDataCommons Microdata and RDFa Corpora • 20.4 billion RDF triples • http://www.webdatacommons.org/structureddata/ 1. Billion Triples Challenge Dataset 2014 • 4 billion RDF triples crawled from Linked Data sources • http://km.aifb.kit.edu/projects/btc-2014/
    74. 74. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 74 Conclusion: 2001 Article - The Semantic Web Envisions three things to happen: 1.people publish data in structured form in addition to HTML pages on the Web 2.common vocabularies / ontologies are used to represent data 3.people implement cool applications that do smart things with the available data Tim Berners-Lee, James Hendler and Ora Lassila: The Semantic Web. Scientific American, May 2001.
    75. 75. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 75 4. Conclusions 1. Publication of Structured Data • there is more data available as most people from research and industry like • especially, schema.org annotations are currently gaining traction • exciting test-bed for research on data profiling and data integration techniques 1. Ontological Agreement • exists due to application-pull (Google, Facebook) • but data source-specific attributes are also important (e.g. in life science or government statistics domain) 1. Applications • the big players are moving (Rich-Snippets, Knowledge Graphs) • there is a lot of further application potential in the available data • experimentation in industry, but many efforts are still in the prototype stage
    76. 76. Bizer: Evolving the Web into a global Dataspace, BIS 2015, 24.6.2015 Slide 76 Thanks − References • Robert Meusel, Petar Petrovski and Christian Bizer: The WebDataCommons Microdata, RDFa and Microformat Dataset Series. 13th International Semantic Web Conference (ISWC2014). • Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in Different Topical Domains (Slides, Video). 13th International Semantic Web Conference (ISWC2014). • Petar Petrovski, Volha Bryl, Christian Bizer: Integrating Product Data from Websites offering Microdata Markup. 4th Workshop on Data Extraction and Object Search (DEOS2014). − Detailed statistics on RDFa, Microdata and Microformats adoption • http://www.webdatacommons.org/structureddata/ − Detailed statistics on Linked Data adoption • http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

    ×